The complementary roles
of prepared software & programming
in the learning of mathematics

David Tall

Mathematics Education Research Centre
University of Warwick
COVENTRY CV4 7AL

Introduction

This article representghe distillation of severayears’ experienceworking with two
complementaryvays of usinghe computer to enhanoeathematicalearning. On the
one hand there ithe use of preparedoftware,carefully error-protected and specially
designed for botldemonstration and exploration afathematicalconcepts. On the
other hand ighe activity ofstudents using short programmapdifying them tosolve
similar problems and writing their own to carry out mathematical algorithms.

The first activity, the use of preparedoftware,will be exemplified by myGraphic

Calculusprograms (Tall 1986a), which are described in grefgil in aseries of six
papers, inrMathematicsTeaching beginning with“understanding thecalculus” (Tall

1984) The secondctivity will be exemplified by theise of132 ShortPrograms for
the Mathematic€lassroom, published bythe Mathematicahssociation, for whom |
was amember of the writingeam. These progranase written inBASIC, structured
usingthe facilities of theBBC dialect wherever possiblehut many commentmade
here apply to othetanguages, inparticular to Logo, whereverthe programming
activities are aimed atleveloping an understanding tfe underlyingmathematical
concepts.

My initial idea inwriting Graphic Calculuswvasthat suitably prepared softwareould
furnish mathematical experiences to aid the formatiomathematicatoncepts without
the need for any computer programming by the pupil oteheher. Such aapproach
has beenshown tohave significantsuccesqTall 1986b). However, as | observed
pupils and teachers using the material, | realteatiunderstanding would benhanced
by insight into theway the computekvas carrying out the algorithms and conjectured
that this could be done through simple computer programming.

On the otherside ofthe coin, to beable toprogram with any degree dfexibility
requires a considerable investmenttime and effort. Furthermore,any computer
languagehas idiosyncrasies whicmay conflictwith the mathematicalask inhand.
Even if the studenhas sufficient familiarity with a language to bable to program
confidently, it is one thing to bable to write gorogram to carry out a simple specific
task, it isquite another ta@reate arenvironment thaallows flexible exploration. Thus
writing short programs toarry out amathematicaprocessmay well befollowed by
the use of appropriate prepared software for more extended investigations.

In this paper | shall therefore advocateaanpromise.The mosteconomical method of
learning specifimew mathematicatoncepts may bthrough preparedoftware,but it

is best complemented by simple programming to gain further insight into the nature of
the mathematical algorithms.

Published inBulletin of the I.M.A.23, 128-133 (1986)

Strengths and weaknesses of short programs

It is remarkablehow powerful verysimple programscan be. Forinstance a single
function definition in BASIC such as

1000 DEF FNf(x)=SIN(x)

allows one to print out values of the function so that

PRINT FNf(PI/2)
will (on the BBC computer) give the value 1.

The same techniquesgork if SIN(x) is replaced by a more complicategpression, so
that a function definition will print out the values of any given formula without needing
to go through the sequence of intermediate calculations that would be needaldiate

the expression using a calculator.

A function definition may beised toinvestigate zeros dhe function. For instance, if
FNf(x)=SIN(x) one might notehat the value oENf(3) is positive and-Nf(4) is negative,
suggesting thatall being well, there may be a zero betwern3 andx=4. Initially
intelligent guesswork may allow one to home in onto a racceirate estimatand this
exploration could move on to more structured methods. For instanageayrieok at a
range of values with the command:

FOR x=3 TO 4 STEP 0.1 : PRINT x,FNf(x) : NEXT

to give the sequence of values (to two decimal places):

3.00 0.14
3.10 0.04
3.20 —-0.06
3.30 -0.16
etc.

which suggests a rodietween3.1 and 3.2. Further repetitions with successively
smaller steps, such as:

FOR x=3.1 TO 3.2 STEP 0.01 : PRINT x, FNf(x) : NEXT

will allow a closer approximation to Heund. Suchexploration greatly enhances the
understanding of more sophisticated techniques which follow.

The initial difficulty of this approach irpractice liesnot the mathematics, but in the
vagaries othe computer formatting afumbers. For instance, d¢ine BBC computer,
the enigmatic comman@%=&2020A is needed to givevo decimalplaces. If this
command is not issued, the first list of pairs of valkyesf(x) given above is displayed
as the sequence:

30.141120008
3.14.15806628E-2
3.2-5.83741427E-2
3.3-0.157745693
etc.

Here the default number formatting runs one number into the next. The two lists should
be compared very carefully to try to divine what the second one means !

However, there isnore than cosmetic difficulty involved mmsingthe computer.Even
if the computing environmenwvere made moretriendly by the introduction of new
keywords, such aBECIMAL N to give N decimaplaces,therewould still be the
need to come to termwith the particular manner imvhich a computeistores and
handles numbers.

For instancethe computewould seem to be an ideal environmentdok at limiting
arguments and calculate numerical derivatives. The function definition

2000 DEF FNg(x,h)=(FNf(x+h)—FNf(x))/h

in BBC BASIC can beused toinvestigate the numerical gradienixgn) of the earlier
function definition from %,f(x)) to (x+h,f(x+h)) ash gets smallThe gradient ak=1v3
for f(X)=sin(x) may be considered by taking h to fccessivelyl/10, 1/100, etc,
using the command:

FOR n=1 TO 10 : PRINT FNg(P1/3,1/101n) : NEXT

On the BBC computer this gives the sequence:

0.455901884
0.495661539
0.499954913
0.499980524
0.499654561
0.500585884
0.465661287
0.232830644
0

Could any student faced only with this information be expecteddbevethat, as
h-0, so gk,h) - 1/2? Why does the sequence fail to approach 1/2vagaddoes it end
up being zero ?

This is due tahe errors innumerical representation and calculatiSnpposethat the
expressiord=f(x+h)—f(x) is calculated with an erroretThen upon dividing b, even
if there were no more errors in calculation, the result would be

dre
h

which is the correct answélh, plus or minus an err@h. If the computer is giving an
answer to nine decimal places, then the error e is ofrter of size 1€°. For asmall

value ofh, sayh=10-8, the error e/h in the answer is then about 1/10, which nteans
even the accuracy of the first decimal place is in doubt! As a practical rtilerob, the
numerical derivative is likely to benostaccuratevhenh starts itsdecimal expansion
about halfway along the number of decimal platisplayed, i.e. for @lecimalplaces,

h should be around 1/4@r 1/10.

Whenh is muchsmaller, sayh=1/1010, a new phenomenooccurs.The top of the
expression,

f(x+h)—f(x)
h

is the difference betweewo numbers whichare soclose,that they are represented
within the computer as beirggual, saheir difference izero.But the bottom of the
expressionh, is represented in exponent form (in this caséE&sl0), which is non-
zero,and so thecalculated value of thethole expression is zero. Thtige attempt to
calculate the numerical limit of the gradientragets small, first tends towartise true

limit, until the maximum accuracy is reached (arobrd/10* or 1/13), then accuracy
deteriorates until the result is either displayed as zero, or becomes undefined.

The notion of a numerical gradient can still\esy useful, providedhe value ofh is
not taken to be togmall. For example, il32 Short Programsthere is auseful
program to draw the numerical derivative. Here itis in a structured form:

10 MODE 1
20 INPUT "f(x)="f$
30 PROCdrawaxes
40 PROCdrawgraph
50 PROCplotgradient
60 END
70
80 DEFPROCdrawaxes
90 VDU 29,640;512; : GCOL 0,3
110 MOVE -500,0 : DRAW 500,0 : MOVE 0,-500 : DRAW 0,500
120 VDUS5 : MOVE-500,-10 : PRINT "-5" : MOVE 500,-10 : PRINT "5" :
VDU4
130 ENDPROC
140
150 DEFPROCdrawgraph
160 GCOL 0,2 : MOVE 100*(-5),100*FNf(-5)
170 FOR x=-5 TO 5 STEP 0.2 : DRAW 100*x, 100*FNf(x) : NEXT x
180 ENDPROC
190
200 DEFPROCplotgradient
210 h=0.001
220 GCOL 0,3
230 FOR x=—5TO 5 STEP 0.2 : PLOT69,100*x,100*FNg(x) : NEXT x
240 ENDPROC
250
260 DEF FNf(x)=EVALf$
270 DEF FNg(X)=(FNf(x+h)-FNf(x))/h

The main part of therogram (lines 10-603elects dour colourgraphic mode on the
BBC computer(MODE 1), requestshe input of afunction, then goes throughhree
procedures to drathe axes, drawthe graph and plothe gradient. These procedures
are separated out after the end ofghegram, sahat thestructure can be modearly
seen. The main program uses meaningful names whilst the computer jargiegated
to the procedures.

PROCdrawaxes starts with\éDU29 command, which ishe BBC computerese to
select the origin at the centre of the scrésith screen coordinate$40,512))then
selects graphic colour 3 (white). Line 110 draws the axedirmd20 showsthe scale

by printing =5 and 5 at the extremes of #haxis (whereVDUS5 is the command to
print at the graphics cursor and VDU4 returns to nomtemloutput). PROCdrawgraph
selects graphic colour @ellow), moves tathe point (-5,f(-5)) onthe graph then
successively joins up tok,f(x)) asx increases in steps @.2 from -5 to 5. The
multiplicative factor 100 simply converts tk&y ranges -5 to 5 into screen coordinates
from —500 to 500 in each direction. PROCplotgradient is the same kind of éxcept

it selects colour 3 (red) antses PLOT69, which ithe BBC computer'serminology
for plotting single points. Note that the definitiontb&é functionFNf(x) usesthe EVAL
command teevaluate the value of thestring f$, (an extremelyuseful facility in BBC
BASIC).

This program is indeed very powerful. For instance, if it is Rl the function #)
is typed in as
f(x)=SIN(x)

then thesine curve will bedrawn andthe set ofpoints representinghe gradient is
clearly in the shape of the cosine curve (figure 1).

I;(x)=SIHx

Figure 1

Further investigations with this program wdifaw veryevocative numerical gradients
for graphs such as¥=x"2, f(x)=x"3, which will begin to give some insight into the

formula for the derivative of. However, fk)=x"4 provides a surprise (figure 2).

What are the funny near vertical lines drawn as part ofitstegraph?The answerlies
in the way the computer represents the coordinates in mekaeik. coordinate is held
as a two byte number and, as each byte is 8 binary digits, that meahs ttardinate
is held in memory as a 16 digit binamymber. Howeverthe most significant digit is
used to represent the sign of the number (1 for positive, O for negative)edves 15
bytes for the number itself, a maximum of

215-1=32767.

If the arithmetic takes the result slightly above thatue,the most significantoit is set
and the number is considered as bemggative As the y-coordinate on-screen is
initially 100*(—5)"4=62500 whiclexceeds32767,the graph starts off erroneously as
“negative” and therswitches tdarge andoositive, hence the near vertical part at the
beginning (and also at the end).

Flx)»=x74
>

Figure 2

If the program isused forinvestigating slightly more complicatédnctions, it breaks
down. For instancéhe function fk)=1/x is not definedor x=0 and the program may
crash wherthe graph reaches thoint. By changing thestep in lines170 and 230
from 0.2 to, say, 0.2001then the calculation at thaigin will be avoided sdhat no
crash occurs but then the “plot and join” method of draviwgyraph will erroneously
join the two separate parts of the curve on either side of the origin.

The function 1¥2 causes a morserious crash ake valuedor x near the origin get
“too big” for the computers graphimoordinatesOther functions, such athe square

root SQR, or the natural logarithm LiHre not defined everywhere in the givamge,

so the program fails even more comprehensively.

Of course, it is possible tpatch up theprograms, forinstance one could truncate
coordinate values so that they do not causdlems, byselecting a suitable maximum
valueM and replacing any larger value M. To take care opositive andnegative
values one could use a function such as:

3000 DEF FNc(t): IF t<~M THEN =—M ELSE IF t>M THEN = M ELSE =t

TakingM to be a bit less than 32767 and replacing-athlues, such as00* FNf(x), by
the truncated valuesNt(100*FNf(x)) would give suitable screen coordinates.

But are such technicalities sensible, or emenessary, wheane is usinghe program

just to illustrate a specific mathematical point? It would be my contention that, without a
considerable earlier investment pnogramming, it would be unwise to go to such
lengths in the mathematics curriculum.

A recentsurvey for the MathematicalAssociation Working Party orUsing the
Computer in the Secondary Mathematics Classroom” revealed that the typical secondary
school in a sample of 52 schools had between 10 and 20 computers available, of which
only 6% were reserveshecificallyfor mathematicalise. This works out at roughly 1
computer ped,000 pupils formathematics! As thechool year amounts totatal of
less than 1,000 hours, ifall the computers assigned tmathematicswere used

continuously formathematicaprogramming,then eachsecondary pupilvould have
about an hour a year...

Perhaps computers could be used that are setfasidther purposes (foexample the
50% or more in the computingaboratory). Even with thesefacilities added, an
approach based on individual children having sufficeqerience of programming is
currently far from universally practicable.

Limited computerresourcesnay beusedmore effectively to investigatmathematical
concepts througkthe use ofspecially preparedoftware designed for both classroom
demonstration and discussion, and later for groups of pupils using it in small groups on
a circuit system.

The Strengths and Weaknesses of Prepared Software

The deficiencies in short programs mentioned in the previous seatiohe avoided in
more sophisticatedoftware bycareful programming. For example, optionsay be
offered which format the numbers to a specific numbeteafmal places at the choice
of the user, and graph-drawing procedurean haveroutines to truncatehe screen
coordinatesdeal carefullywith asymptotes and introduce error-handling routines to
copewhenthe functionsbecomeundefined.The interface can be made more friendly
by allowing input infamiliar mathematicahotation instead of th&ind of notation
required in computelanguagesThere may be sophisticategtionsthat aredesigned

to encourage exploration and help to give insight into the mathematical concepts.

For example, the progra@radientin Graphic Calculus deals withthe problem of the
limit by having a default number format tre<ows fourdecimal placesnd therusing
a cleverlychosenlimiting process.The chord is drawn through two pointsb, then
recalculated as moves insteps towards, displaying the difference betwearandb,
and the numericathord gradientEach screenful of chord gradients startsliatance
c=b-a from a, then moves iten equaktepsc/10, ending up a distance/10 from a
(figure 3).

If the pointsa,b begin a reasonable distarepgart, sayp=a+1, then one can see the
limiting process in actionThe default offour decimal placesisually meanghat the

chord gradient “reacheghe numerical limitfor a screenful ofvalues, stayinghere
possibly for another screen or so before the numerical errors cause the chord gradient to
stray off course. In this wathe student can get a feelibgth howthe chord gradient

tends to a specific limityet pressingthe values numerically too close wi#ad to

errors. It is a relatively easy matter to accept that, when one dividesrtalbnumbers

with given errors, the resulting error time quotient can be quitarge. In this way the
student can be led taelieve that the formatxpressiorreally doestend to a specific

limit, and be given an insight into how the limiting process works numerically.

Fi{x)=sinx
from x=—nmrs2 to 3Ins2

)

W
= = oMo M
(4 I I - = N - - I
o A kD = h

=)
w
=y

OO Q0 Q0 Q0 Q0 S0 S0 Q0 Q0 W
[
=
o,

150 000 D 000000) = P T T T ol o A a0) P o e
LI L (o T T T
IRIDRDDIDRTDRDDERDRE =T
o e P o 0 o P L ot P = et SO L O

o0
)
)|
=]

+—-2
Touch SPACE for b to move in steps to a,
tabulating c=b—-a & the chord gradient,

or ESCAPE for another option

Figure 3

Figure 4 showshefirst six screensfull of chord-gradientthe firsttaken from figure
3). The first column begins witek=1/3 andb=1V3+1, and successive entridewn the
column exhibit the gradient of thehord forfixed a to movingb, wherethe distance
from ato b is first 1, then9/10, then 8/10, ... , down to 1/10.The secondcolumn

beginsa=1v3, b=1/3+1/10, and thesuccessive differences betwesandb are 1/10,

9/100, 8/100,.. , down to 1/100. AH moves towards, successive columnshow

the gradient of the chord moving towards the value 0.5000.

0.0226 0.4559 0.4957 0.4996 0.5000 0.5000
0.0711 0.4604 0.4961 0.4996 0.5000 0.5000
0.1200 0.4648 0.4965 0.4997 0.5000 0.5000
0.1692 0.4693 0.4970 0.4997 0.5000 0.5000
0.2184 0.4737 0.4974 0.4997 0.5000 0.5000
0.2674 0.4781 0.4978 0.4998 0.5000 0.5000
0.3159 0.4825 0.4983 0.4998 0.5000 0.4999
0.3636 0.4869 0.4987 0.4999 0.5000 0.4999
0.4104 0.4913 0.4991 0.4999 0.5000 0.5000
0.4559 0.4957 0.4996 0.5000 0.5000 0.5000

Figure 4

There are a couple of smaltrors inthe sixth column, buthese occuwhen b-a are
0.000004and 0.000003,which is already so small that numericatrors would be
expected tanterfere. By changinghe number ofdecimal places in thdisplay, it is
possible to sebow the values get close to tlieniting value before numericakrror
causes the result to stray off course. At the same time ondooilaptthe formalism in

simple cases, for instance the gradient function fg=#2, andshow howthe algebra
gives the theoretical limit to which the numerical limiting process is an approximation.

Gradient also includes a much more valuabtitine, nowbecomingwell-known,
which drawsthe extendeahord through X,f(x)), (x+c,f(x+c)) and plotsthe value of
the chord gradient as point, repeating thgrocess forincreasing values af, thus
building up a picture of the numerical gradient of graph as a “gradierfunction”.
(Figure 5.)

2
Fix)=x
from x=-3 to 3

gradient function
(Fi{x+cdr—F{xdII-sC
for
c=1-18

adient
M:mediu
f point
Figure 5

There is a faclility in theprogram to superimpose a graph with a formula specified by
the user, whocan therefore conjecture the gradient function empirically test it out
practically before going through any formal manipulation to obtairddnizative. This
kind of facility can easily be employed by a teacheth a single microcomputer for
demonstration and clas$iscussion,before passinghe initiative to thepupils for
exploration in smalgroups whilstthe rest carry out paper angencil exercises. The
program can equally easily losed forpupil exploration fromthe beginning, when an
appropriate number of microcomputers are availabldpgsKowzun describes in the
materials accompanying tid.E.P. SecondaryMathematicsPack (Waddingham and
Wigley 1985).

The value of prepared software is that it can represphtl@sophy of approach which

is based on research ibow pupilsactuallylearn. For instanceGraphic Calculuss

the result of ten years work, first studying pupdsgnitive difficulties in handling the

limit concept, then into a consideration of various approaches that might makiiahe
introduction of the ideas more intuitive (Tall 1986b). The result is a decision to base the
idea of derivativenot on the notion of &mit of the gradient of thetangent, but to
visualize it as th@radient of the graphtself. This is done through first exploring a
programMagnify thatallows any graph (given in terms of standard formulae) to be
drawn andthen any portion of thgraphmay be magnifiedonscreenMost standard
functions have the property that small portions ofghegh magnify to “look straight”.
Pupils soorlearn to glance along thgraph to see its changing gradient and form a
dynamic mental image of the gradidahction. In this waythe ideas of the calculus
take on a real meaningver and abovehe usual mechanicalprocess offormal
differentiation. Likewise thedea of integration is approach#tough seeinglynamic
pictures of areas being calculated, and the solution of first-order differential equations is
visualized aknowing the gradient ¢dx at any point X,y), and simply sketching the
solution curves which follow the given gradient directions (Tall 1986¢, 1986d).

The philosophy oflearning behindGraphic Calculusis therefore embodied in the
programs and takethe learnerfrom pre-calculus concepts through ftlmdamental
insights in differentiationintegration and differentia¢quations. Buthe programs are

also written flexibly to allow individual teachers and pupilsute them in their own

way. However, if used without any regard to the features of the computer environment,
the classical analyst and the unguided learner may both find some peculiarities.

When a version othe progranGradientwasreviewed by a teachevho did not have
any notes, a number of apparent “bugs” arose. First the teacher tgetdtte program
to draw graphs under extreme circumstances to severely tesathieg routines. One
graph attemptedvas fx)=x21 overthe rangex=—10000 tox=100000. Notbeingsure
of the appropriatg-range, the teacher took the offered optiontt@ computer to scale
the picture. It responded withe error message “ngraph”. Thefirst “bug” had been
found...

The problem here is th&BC BASIC only represents numbers tine approximate
range +168. The value of{—10000%! is 14, which is out ofthe available number

range, and 100088=10195is even more extreme. In fas®?! is only defined in BBC
BASIC for x in the approximate range66 to +66,and this is only abou?.1% of the
range requested by theacher. To scalthe graphthe programactually calculates the
function at 40 intermediate points. No wonder it failed to find a graph defined only in a
thousandth part of the range!

Then the teacher tried to draw the grapkdbr various values daf, includingn=100,
which fails to give a graph to the left of the origin. The reason for thismaetasbvious
to me, until | tried the command:

FOR n=1TO 100 : PRINT n, (<1)tn : NEXT

This quite happily printedh and (-1§ up ton=63 but crashed &=64 with the error
message “log range”. What appears to be happening is that BBC BaBlatesxn
as a product whem is a positive integelessthan64, but otherwiseusesthe standard
formula

xN = en(x)n

to calculatex" usingthe natural logarithm and the exponenfiahction. Thisformula
issues the “log range” error wheiis negative.

There were other criticisms of tipgogram,but the onghat seemed to cause timost
problems was the claim that the program did not carry out the limiting proasgssrly.
The numerical gradient

f(x+c)—f(x)
c

appeared to bdrawnalright for some values of, but the complainivas thatwhenc
was taken to be smathe wrong picturewas drawn. Irparticular the teacher tried the

valuec=1/10L0,

We saw earlier that in this case+#¢) and fk) are so close to ningecimal placeshat

the computer usually records their difference as being zero. Onlyxitssif is small,

so that fg+c) and f) are represented in exponent notation as being differentas-a
zero value given. The resulting graphtloé numerical gradient is then zexwvay from

the origin, with a tiny portion roughly correct near the origin !

The implication ofthis discussion ighat theseprogramscan beused togive great
insight into themathematicaprocessesprovidedthat they areused sensiblyBut if
matters are taken to axtreme, then difficultiesnay occur. The only way that these
difficulties can beunderstood is tdhave somedea of how the algorithms in the
program are carried out, and this implies some understanding of programming.

-10 -

Comparisons of programming & prepared software

Both programming by pupils arttle use of prepared sofwaoan greatly enhance the
development of mathematical understanding. Programming gives indivunitigive to
the pupil and a greaense of personalchievement irproblem-solving, whilst good
educational software can lbesigned to represent a philosophy of apprdhathelps
the student gain insight into timeathematicaprocesses through exploritige available
facilities. But programming demands an overheadinie and effort to develop the
expertise necessarfor personalinitiative in an environmentwhich may have
idiosyncrasies that cause difficulties to the beginner. And educasioftalare needs to
be designed carefully angsed sensibly in a way which does mpaotsh it beyond its
natural limitations.

In the future better programming environments willdesignedhat are more suitable
for building and testingnathematicatoncepts, fothe moment the availablesources
suggesthe use of prepared software fteacherdemonstration, class discussion and
pupil exploration (not necessarily thatorder), with aleavening of programming to
gain an understanding of how the computerks andhow it can be made tperform
mathematical processes.

References

Mathematical Association 1985: 132 Short Programs for the Mathematics Classroom. Stanley
Thorne.

Tall D.O. 1985: ‘Understanding the Calculus’, Mathematics Teaching, 110, 49-53.
Tall D.O. 1986a: Graphic Calculus I, 11, Ill, Glentop Publishers, London.

Tall D.O. 1986b: Building and Testing a Cognitive Approach to the Calculus using Interactive
Computer Graphics , Ph.D. thesis, Warwick University.

Tall D.O. 1986c: ‘A graphical approach to integration and the fundamental theorem’,
Mathematics Teaching, 113, 48-51.

Tall D.O. 1986d: ‘Lies, Damned Lies ... and Differential Equations’, Mathematics Teaching ,
115, 54-57.

Waddingham J. & Wigley (editors) 1985 : Secondary Mathematics with Micros : Inservice Pack,
M.E.P.

-11 -

