
INTUITIONS OF 

INFINITY 
by David Tall, Mathematics Education Research Centre, University of Warwick 

What is infinity? It is an extrapolation of our finite experience. 
As such our intuitions of infinity depend very much on the 
kind of experience which is extrapolated. For instance, if we 
consider the "samesize" property of sets which have a bijection* 
between them then we get the kind of infinity called a cardinal 
number. This is the most widely considered notion of infinity 
amongst. mathematicians ,yet it has properties which usually 
seem most unintuitive to the uninitiated. If we look at the 
experiences of pupils in school, they rarely concern the "same· 
size" aspect of sets so this lack of intuitive appeal is hardly 
surprising. Secondary pupils have different ·experiences of 
infinity which give them a totally different feel for the idea. 

For instance, in drawing the graph of 

/(x)""' 1/(1-x) 

they find that as x approaches 1 from the left,/(x) gets very large 
and positive but as x approaches 1 from the right, f(x) gets very 
large and negative. The expression 

(x2 + 4)/(2x3 + 3) 
approaches 0 as x grows large, so although x2 + 4 and 2x3 + 3 
both grow without limit as x gets large, 2x3 + 3 grows even 
faster than x 2 + 4: 

How can one reconcile these two examples? Id the first case 
f(x) tends to a "plus infinity" from one side and a "minus 
infinity" from the other. Is "plus infinity" the same as "minus 
infinity"? In the second case if x2 + 4 tends to "plus infinity" 
as x grows large, how can 2x3 + 3 tend to something even larger? 
Can w.e have something that is even bigger than infinity? 
. One thing is certain. Talking about cardinal infinity, the 

"samesize" of sets, will not resolve this problem in ':i" natural 
way. These ideas of "growing large", "tending to infinity" and 
so on have absolutely nothing to do with comparing the size of 
sets. 

As another example, consider that hoary character the decimal 
expansion 

0.999 ... 999 ... 

"nought point nine recurring''. Does it equal one, or is it just 
less? Ask school pupils this question and the vast majority will 
say "less". I suspect that the majority of teachers would say 
the same. Mathematicians assert that this decimal expansion 
equals one. For them the decimal expansion means the actual 
real number which is the limit' of the decimal approximations. 
The decimal expansion 

0.333 ; .. 333 ... 

equals a third. (On that matter most pupils and teachers might 
agree.) Multiplying this expression by three gives the proverbial 
"nought point nine recurring" which therefore should equal 
one. 
* A b1j'tction is a one-one, onto function. 
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But for many this leaves a bitter taste in the mouth. Some· 
thing has gone wrong somewhere. How can "nought point nine 
recurring" equal one? Surely when we subtract it from one we 
get a single digit left over, way off in the "infinitieth ):>lace": 

1-0.999 ... 999 ... =0.000 ... 000 ...... 1.· 

These problems are usually explained away by quoting the 
current mathematical dogma relating to the appropriate .situ· 
ation. In handling the limit of 1/( 1 �x) as x tends to 1 we might 
say that the limit from the left is + oo and from the right is � oo 
and 1/(1-x) is "not defined at x = 1". The problem as to 
whether 2oo 3 + 3 is a bigger infinity than oo 2 + 4 is responded 
to by a rap over the knuckles "don't do arithmetic with infinity, 
it leads to contradictions,, "a symbol like oo/oo is meaningless" 
and so on. The problem of the "infinitieth place" argument also 
has a slick response. "Let 

sn = 0. 999 ... 9 (to n decimal places), 

so that s1 =0.9, s2=0.99, and so on. Then 

1-sn = 1/1011 

and taking the limit as n tends to infinity gives 

1-lims11=0, 
n-+Oll 

so 
1 -0.999 ... 999 ... = 1 - lim S11 = 0 ,.-.eo . 

and there is no digit left over in the inflnitieth place." · 

We often learn riot to "understand" these arguments but we 
do "get used to them". So we become enlightened in the true 
wRys of mo!1ern mathematics. 

However, there are two fundamental problems with this 
eventual acceptance of the wisdom of our elders and betters. 
The first is why do we so persistently obtain these early 
intuitions of infinity as a direct product of school experience? 
The second is a more fundamental one. If everyone seems to 
get such wild ideas, in what sense is the accepted mathematical 
definition so utuch better? 

When we look back at the history of mathematics we find a 
new twist. Three hundred years ago when the calculus was 
invented the accepted mathematical notion of infinity was quite 
different from what it is now. In fact it is closer to the notions 
of infinity given by the limiting processes which are discussed 
in school. The joke is that many of the intuitions that we sense 
nowadays would have been perfectly acceptable in the theories 
of three centuries ago. Moreover a moderfi invention called 
''non·standard analysis" permits the use of these old ideas of 
infinity and it is possible to conceive of such ideas in a muc:h 
simpler context, as I tried to demonstrate in a recent article in 
the Matltematital Ga�mel, 

My purpose in discussing these matters is not to suggest to 
readers that they must now learn a revolutionary new piece of 

Mathematic& in School, May 1981 



mathematics so that they may achieve mathemati<;al salvation -
far from it. What I would like to do is to give an explanation 
as to why these intuitions of infinity are produced in school­
work. Then I would like to demonstrate that these intuitions 
are not as stupid as the accepted mathematical defiriTtions make 
out. The formal mathematical definition is perfectly alright in 
a context where number means a comparison of size of sets and 
cardinal number gives a theoretical extension to the counting 
concept. However, in other contexts, such as limiting processes, 
the cardinal concept is singularly inappropriate to explain 
intuitions of infinity which arise. To demonstrate this I shall 
introduce a simple number system which contains infinite 
elements and infinitesimally small elements as well as the usual 
real numbers. I hope the average reader won't be frightened 
by my intention to do this. I guarantee that (s)he will have met 
the number system before but will just have called it by a 
different name. We shall see that it is possible to have a number 
system with infinities of different sizes which can be added, 
multiplied, subtracted and divided in a sensible way, and where 
the multiplicative inverse of an infinite element is an infinitesi­
mal. This is quite different from the case of cardinal numbers 
which can only be added and multiplied. Subtraction and divi­
sion of infinite cardinal numbers cannot be defined, a fact 
which Cantor took as "proof" that infinitesimals could not exist. 
I shall deal with these properties of cardinal infinity first since 
they arc instructive in showing how different kinds of infinity 
have diiierent properties. Then I shall go on to describe the 
simple system which allows a full arithmetic of infinite elements 

' of diiierent sizes. After that I shall look at the way intuitions 
of infinity arise in school and consider which mathematical 
theory is more appropriate for the understanding of these 
intuitions. The problem of "nought point nine recurring" 
requires an allusion to non-standard analysis which I shall briefly 
mention. Once again we shall see that the intuition, though 
incompatible with the modern theory of cardinal infinity does 
fit very well with an alternative mathematical theory. Finally 
I shall consider the consequences of what I have had to say for 
teachers. It will not mean the learning of new mathematics, 
rather a greater respect for the mathematics that is used in 
school today and an even greater respect for the calculus that 
was taught yesterday. 

1. Cardinal Infinities 
Suppose that for each set X we have a symbol called the cardinal 
number of X so that if there is a bijection between X and Y 
then X and Y have the same cardinal number, but if no such 
bijection exists then X and Y have different cardinal numbers. 
For finite sets we can do this straight away by taking the 
cardinal number to be the number of elements in the set. For 
infinite sets we need to invent new symbols. For instance the 
cardinal number of the set IN= (I, 2, 3, ... 1 is usually denoted 
by X 0 ("aleph zero") w�ere X is the first letter of the Hebrew 
alphabet, signifying the first infinite cardinal. 

Let E be the set of even numbers ( 2, 4, 6, . . . I and 0 the 
set of odd numbers ( I, 3, 5, ... 1, then there are bijections 

f: IN ...... E, f(n) = 2n, 
g: IN ...... 0, g(n) = 2n -I, 

so the cardinal number of both E and 0 is X 0• 

If A and B are finite sets with no elements in common and 
have m and n elements respectively, then A U B has m + n 
elements. For general cardinal numbers a, P we choose sets 
X, Y, which have no elements in common, with cardinal 
numbers a, P respectively and define a+ P to be the cardinal 
number of XU Y. 

For instance E and 0 have no elements in common, so 
X 0 + X 0 is the cardinal number of EU 0 =IN giving 

Xo+ Ko= Ko. (1) 

For any natural number n, the set ( -1, -2, ... , - n) has 
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cardinal number n and has no element in common with IN, so 
K 0 + n is the cardinal number of the set 

IN U ( - 1, -2, ... , -n I 

But the map f: IN ...... IN U ( - 1, - 2, ... , -n I given by . 
f(r)= -r for r�n 
f(r)=r-n for r>n 

is a bijection, so 
K0+n= K0 (2) 

for any finite cardinal n. 
Equations (I) and (2) tell us that it is hopeless to try to define 

a-P for cardinals a, P; subtracting X0 from both sides of(l) 
gives K 0 = 0 and subtracting K 0 from both sides of (2) gives 
n = 0 for any natural number n! 

Analogous definitions and difficulties hold for the product of 
two cardinal numbers a, p. Here we choose sets X, Y with 
cardinal numbers a, P respectively and define the product 
cardinal ap to be the cardinal of the cartesian product X X Y. 
For instance if a= 2, P = X 0, we can take X= ( 0, 1 I ,  Y =IN 
then X X Y is the set of ordered pairs of the form (0, n) or 
(1, n) for n a natural number. The function 

given by 

is a bijection, so 

f:Xx Y--+IN 

/((0, n)) = 2n- I 
/((1, n))=2n 

2 X 0= X o· 

This immediately tells us that we cannot define division in 
general because dividing both sides by X 0 would give 2 = 1. 

In recognising the problems of subtracting and dividing 
cardinals Cantor decreed that infinitesimals (found by dividing 
a finite number by an infinite one) could not exist2• His con­
clusion is incorrect. It should have been that infinitesimals do 
not exist within the context of cardinal numbers. In a similar way 
solutions of the problems 3 + 4 or 5-8 do not exist in the 
context of natural numbers IN. However, we can extend IN 
into a larger number system, the rational numbers for instance, 
in which solutions of both problems exist. For cardinal numbers 
there is no way that the system can be extended to include 
infinitesimals; what is needed is an entirely different system. 

2. The Superrational Numbers 
In this section we introduce a system that has got infinite 
elements and infinitesimals in it, when suitably interpreted. 
The system consists of quotients of polynomials, 

anXn + ... +ao 

bmxm + ... +b0 

with real coefficients and bm ;e 0. These can be added and multi­
plied in the usual way. However there is no apparent system 
of order on them. This we introduce as follows. Let p(x), a(x) 
be two quotients of polynomials. First draw the graphs of p 
and a. For at most a finite number of points each graph is 
defined and has a finite value. The two graphs are equal when 
p(x)'= a(x) which, on simplification, becomes a polynomial in 
x and so has only a finite number of solutions (except of course 
the trivial case when the graphs are identical). Sometimes the 
graph of p may be above that of a and sometimes vice versa. 
It is no good saying one is "bigger" than the other if it has its 
graph always above that of the other, for that rarely happens. 
We make a more modest definition. For p ;ea there is always 
an interval { x E IR I 0 <x < k I in which the graphs do not cross. 
We can find such an interval by finding all the points xi> ... , Xm 

for which p(x,) = a(x;) and taking k to be the smallest strictly 
positive value amongst x1, • • •  Xm- We define p>a if the graph 
of p is entirely above the graph of a in this interval between 
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0 and k. For instance, if p(x) = 1/x and CT(X) = x21 then p is p(x) = (a,x" -r ... + a0)/(l1,x"' + ... + 110) 
defined everywhere but zero, and p(x) = u(x) where can be written as 

1/x = x2 (but x � 0) p = (anen + ... + a0)1(b,.,e'" + ... + b0). 
that is. 

x3 = 1 (but x � 0) 

so x = 1. In the interval from 0 to 1 the graph of p is above 
that of i1 so we have p > u (Fig. 1 ). 

Amongst these quotients of polynomials are the constants of 
the form a0/b0• For any real number a we imagine this to cor· 
respond to the quotient all. Iri this way we can think of the 
Teal numbers as a subset of the set of quotients of polynomials. 
Let e(x) = x then for any positive real number a we have the 
graph of y = e(x) below the graph of y =a for x between 0 and 
a (Fig. 2). 

y=E(X) 

a 
Fig. 2 

Thus we can write a>e. Similarly we have e(x) above 0 for 
positive x, so e > 0. We end up-with the property 

a> e > 0 for all positive real numbers a. 

In this sense we see that e is a positive quantity (that is e > 0) 
which is smaller than every positive real number. This is the 
historical definition of an infinitesimal. By the same token, if 
we write lie for the function 

(lleXx)= llx, 
we find that 

lie> a-for every real nu�ber a. 

In this sense lie is an infinite element since it is bigger than 
all real numbers. 

A useful notation is to write f + g for the sum of twa functions 
J, g using the formula 

(f + gXx) = f(x) + g(x) 

wherever both/(x) and g(x) are defined. Similarly we define f- g, 
jxg,flg by 

(f-gXx) = f(x)- g(x) 
(fxgXx) = f(x)g(x) 

(flgXx) = f(x)lg(x) 

wherever the right-hand sides are defined. For example 

(exeXx)=x2 
which will be written as 

e2(x) = x2• 
More generally we shall write 

en(x)=xn. 
In the same way a polynomial function f where 

f(x) = a,xn + .. . + a0 

can be written as 
f(x)=(anen + ... +a0Xx) 

and a quotient of polynomials 

32 

The set of all quotients of polynomials in e will be called the 
superrational numbers. The superrational numbers can be 
thought of as functions or just as formal expressions. They may 
even be imagined as points on a number line (see the article 
"Looking at graphs through infinitesimal microscopes, windews 
and telescopes"' where these ideas are explored geometrically). 
To prevent this article becoming too long we shall be content 
with observing that the superrationals contain infinitesimals 
(such as e) and infinite elements (such as lie). These may be 
added, multiplied, subtracted and divided in the usual arith· 
metic way. It is also easy to see that the inverse of an infinite&· 
imal is an infinite element and vice versa. 

Given a rational function, such as /(x)= l lx, then we may 
compute the value of this function on an infinitesimal, 

f(e) = lie. 
Thus the function takes on infinite values for x infinitesimal. 
More than that, we find that e2 is a smaller infinitesimal than 
e, whilst f(e2) = I/E;2 is a bigger infinite element than /(e)= 1/e. 

Referring back to the examples in the introduction, we now 
see that we still cannot define /( 1) when f(x) = 11( 1 - x ), but if 
we take a number infinitesimally smaller than 1, say 1 - e, we 
find that/(1-e)= lie is a positive infinite element and similarly 

/(1 +e)= -lie is a negative infinite element. The problem of 
the introduction concerning the relative sizes of x2 + 4 and 
2x3 + 3 for arbitrarily large x may be solved by putting an 
infinite superrational instead of x, for instance x = lie. Then 
we find that (1/e)2 + 4 and (2/e3) + 3 are both infinite, but the 
latter is a larger infinite element than the former. 

3. Intuitions of Infinity in Limiting 
Processes 
As I alluded earlier, intuitions of infinity in school tend to arise 
in the consideration of limiting processes rather than comparison. 
of sets. Certain early intuitions concern cardinality. The realis· 
ation that the counting process is unending is perhaps the first 
of these. The young child realises the potential infinity of the 
natural numbers and that the process of counting can never 
cover all of them. It is an interesting fact that much later when 
set theoretic notation is considered and the symbol IN' is intro· 
duced for the natural numbers then there arises the impression 
that one can consider the totality of the natural .numbers. In a 
cognitive sense most students at university are no longer aware 
of the intuitive notion of potential infinity, they believe in the 
actual infinity of the set IN', a belief supported by the intro­
duction of Cantor's theory of infinite cardinals. 

However, with limiting processes the dynamic way in which 
limits are expressed, for instance, the fact that 

lim f(x)= I 
x-+a 

is interpreted as ''f(x) tends to l as x tends to a", leads to a 
cognitive belief that limits are approached but not actually 
reached. I first noticed this strong tendency during joint work 
with Rolph Schwarzenberger3 and have reported it in several 
other contexts during subsequent investigations into students' 
beliefs4. I have also encountered many students who believe 
that an expression like xntn! tends to zero as n tends to infinity 
because the bottom becomes a "larger infinity" than the top. 
Such notions �rise from the mathematical experiences they 
receive in school and university concerning limiting processes. 

It is clear that the theory of infinity which is more con�onant 
with these intuitions is that of section 2 rather than the cardinal 
infinity of section 1. In saying this I am not asserting that the 
students have anything like the superrationals in mind. Far 
from it. But the kind of intuitions that they have are similar in 
kind to those experienced by mathematicians of earlier ages 
who conceived of infinitesimals as ''variables which approached 
zero". 
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What are the infinitesimals in the superrationals? If we regard 
them as functions once more and draw their graphs, it is a 
routine matter to check that an infinitesimal is precisely a 
function which tends to zero as x tends to zero. In the theory 
of T alii an infinitesimal corresponds to the notion of a function 
which tends to zero and in the wider theory of non-standard 
analysis the same property is true (though references to this fact 
are heavily buried in the research literature). 

In this way I claim that the intuitions of modern school­
children who imagine infinitesimal quantities (though they do 
not always use this term) to be quantities which grow very 
small and infinite quantities to be those which grow very large, 
are in a long tradition of mathematics with a notion of infinity 
quite different from that of cardinal infinity. (These differences 
between this intuitive notion of infinity and cardinal infinity 
are explored in greater depth by Tall5.) 

The problem of "nought point nine recurring" being just 
less than one remains to be discussed. That has already been 
touched upon6• First there is the intuition of students that the 
process of approaching the limit is never completed. (Notice 
the contrast between the actual infinity of sets imagined by 
university students and the potential completion of infinite 
processes.) Thus they infer that 0.999 ... 999 . .. is never 
actually equal to I. A phenomenon like this occurs in non­
standard analysis. Here it is noted that 0.99 ... 9 to n places 
equals I- IIIOn. Non-standard analysis guarantees the existence 
of an infinite N so that 0 .999 . .. 999 . .. to N places equals 
1-lflbN. Here l/ loN, being the inverse of an infinite element, 
is an infinitesimal. So in a genuine mathematical sense 0. 999 ... 
999 . . .  to an infinite number of places is infinitesimally smaller 

than 1. The limit of the sequence of decimal approximations 
is defined by removing the infinitesimal part, leaving 1 as the 
limit of the sequence. Thus in non-standard analysis one has it 
both ways. The limit is 1, but to an infinite number of places 
nought point nine recurring is just less than 1. 

4. Consequences for Teachers 
The conclusion that one should draw from the previous discus­
sion is nonhat everyone should rush out and buy books on non­
standard analysis to learn the new gospel. In general the sub­
ject matter hasn't shaken down to a form where it is easily 
digestible, apart from a good textbook by Keisler7• This was 
used for students in America taking a first course in calculus 
and first reports were very encouraging8, though subsequent sales 
of the book indicate that it has failed to really take off. Another 
book 9 intended for instructors on the course gives a self-contained 
account of the theory that is probably the best available. 

The real bonus for teachers is that they should trust their 
well founded intuitions ·more and not be brow-beaten by the 
"correct" mathematics. For years a beautifully serviceable 
version of calculus was taught in schools based on the dynamic 
ideas of variables "becoming small", appealing naturally to 
the intuitions of teacher and pupil alike. For all its logical rigour 
formal analysis is inappropriate for a first course in calculus 
and instead of feeling guilty about "not doing calculus properly", 
the teacher should hold his head up high in the knowledge 
that a calculus based on intuitions of dynamical growth is a 
perfectly viable beginning for an alternative formal theory. 

Perhaps I should come clean about the fact that this article 
was written as an enrichment and a supplement to "One hundred 
and one ways to infinity" by Tony Gardinerwhich has recently 
been serialised in this journal 10• There the author claimed that his 
notes "were written . .. to facilitate the formation of a coherent, 
if incomplete, idea of 'infinity' in their pupils' minds". It 
should be clear from what I have said that there is not a single 
coherent idea of infinity at present available for students to grasp 
and that the kind of infinity purveyed by Tony Gardiner for 
the greater part of his article (cardinal infinity) is quite alien to 
their intuitive notions developed in school. "One hundred and 
one ways to infinity" failed to mention the kind of infinity more 
consonant with their intuitive thoughts. It also gave the impres-· 
sion that Cantor "got it right" when previous generations had it 
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all wrong. That is a perversion of history seen by a generation 
persuaded by the theories of Cantor. Earlier mathematicians 
who developed the calculus were pretty canny fellows too. 

My advice to teachers then is to enjoy your study of calculus 
and your intuitive notions of infinity and don't let these ideas 
be confused by the completely separate theory of infinite 
cardinals. The latter theory is a thing of exquisite mathe­
matical beauty to be studied in depth in its own right. But it 
has no place in the beginning theory of calculus and no rele­
vance in the type of infinity which arises in association with 
the limiting processes of school mathematics. 
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