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In this journal a year ago [6] an analogy was suggested between Piaget’s
transitional phase into concrete operational thinking and a later stage in formal
operations when students experience difficulties with mathematical proofs. It is
the purpose of this article to explain the catastrophe theory model in greater
detail and also to report the results of a test performed on first-year university
students at Warwick University in collaboration with Rolph Schwarzenberger. I
wish also to record thanks to lan Stewart, Robert Zimmer and Elizabeth
Hitchfield for helpful discussions and incisive comments. The lesson of
catastrophe theory has wide ramifications which enhance the notion of
schematic learning theory [5] whilst warning against too rigid an interpretation
of a schema as some sort of ordered graph of concepts. Rather it suggests that a
schematic structure is a dynamical flow involving attractors and repellers.
Roughly speaking we may classify much of the “new mathematics” as a
genuine attempt to explain the concepts in a thoughtful and consistent manner
with understanding. This might be considered the positive side of the picture.
Despite the care and enthusiasm involved, the approach has not been a hundred
per cent success. The catastrophe theory approach suggests strongly that we
should look at the negative side as well. This involves considering not only the
attractors formed in the brain’s dynamical system, building up new concepts in
a coherent schema, but the repellers which prevent suitable linkages from being
made. At a time of national (and international) concern over the inability of
adults to understand seemingly simple mathematical concepts, we should be
devoting a large part of our energies to searching for a more balanced and
complete learning theory.

A simple conflict model

Let us begin with the simplest of mathematical models, a one-dimensional
system with two attractors on a line and the resultant flow.
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Between the two attractors A and B we have a repeller C from which the flow
emanates.
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If we consider the gravitational action of the earth and the moon as attractors,
then the repeller between them is just a mathematical fiction marking the
balancing point of zero gravity. In other instances we may conceive C as being
a genuine repellent source. Mathematically there is no distinction between these
since we are concerned with the flow and what happens to a movable point P on
the line under the influence of the flow. Near A the point P will be drawn into A,
near B it will be drawn into B. If P were placed at C it might stay there,
uncomfortably balanced under opposing forces. All three points A, B, C, are
equilibrium positions, with the difference that whilst A and B are stable, C is
unstable. A small displacement of P from A or B will see a return to that
position under the imposed forces but a small displacement from C will lead to
a movement either to A or B.

 Now let us vary the picture with time and let C move towards B in such a
way that the two coincide and annihilate each other, leaving just a single
attractor A.
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We can consider this variation in reverse via sequence (iii), (ii), (i), where we
see initially an attractor A alone, then a coincident attractor B and repeller C
created elsewhere, which separate, giving the system consisting of two
attractors A, B with a repeller C in between. Let us take this reverse process and
follow it by the coincidence of attractor A with the repeller C as in the following
sequence:
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Think of this transition occurring smoothly, starting with a single attractor A,
the creation of another attractor B and repeller C, with the eventual annihilation
of A by C leaving the new attractor B. Now what happens to a variable point P
under the action of the dynamical flow? In stage 1 it blissfully homes into
attractor A and stays there. Any slight disturbances and it returns happily to
home. At stage 2 a blot appears on the horizon, as yet too small to cause any
problems, but by stage 3 the conflicting tensions are more evident. A small
displacement of P from A and it is drawn back again, but a large displacement
in the appropriate direction leads to a jump to B. Even if the variable point stays
at A, the inexorable march of time towards stage 4 makes A less and less
tenable. As C moves ever closer to A, a small and smaller displacement is
necessary to cause the jump to B until, beyond stage 4, A becomes no longer an
equilibrium position, only the attractor B remains to draw in the variable point.

An interpretation in cognitive development

This simple dynamic model may be considered as a qualitative description of
mental activity which can happen in forming new concepts.

The learner at stage 1 of development has a concept A available. As he
develops, new situations occur for which A becomes less tenable; an alternative
concept B appears and with it is born the conflict C between the two. He is now
in the transition phase between stages 2 and 4. In situations close to A he homes
in on it but a change in context displacing him nearer B and he may be drawn to
that. In this transition phase he is therefore likely to come to differing
conclusions depending on the approach and context which force him towards A
or B. This may be accompanied by a state of confusion which in extremes may
manifest itself as anger on the one hand or docile submission on the other. By
being subjected to suitable disturbances he may suddenly jump in his decision
making processes from A to B (or vice versa).

The sudden jump from A to the (more suitable) concept B (when “the penny
drops”) may be accompanied by a sense of pleasure and achievement.
Nevertheless, until the contradiction C is removed together with A, regression to
the previous concept A remains a possibility. In the model the elimination
occurs at stage 4 and beyond. Here the contradiction C is brought squarely up to
concept A. The learner resolves the conflict by seeing the inappropriateness of
concept A in the enlarged context and A and C are eliminated, leaving the new
concept B. The conflict C which initially acted at stage 2 and just afterwards to
prevent access to B now moves over to annihilate the old concept A.

Incidentally, in this description the word “concept” may be replaced
throughout by “schema”. It was Dr. R. Zimmer who first pointed out to me that
a schema may be considered globally as a concept and a concept may be
dissected to reveal a schema. In this context we see a schema A at first an
adequate course of action, then in an enlarged context it proves no longer
appropriate. The development of an alternative schema B and the conflict
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between them is only resolved when the learner finally comes to terms with the
situation and resolves the conflict by realising where A is inadequate
eliminating the conflict and the inappropriate use of A.

At this stage our simple one-dimensional model is becoming simplistic. For
instance, we may require a flow on a subset of a higher dimensional space
involving many attractors and repellers. This dynamical flow will vary with
time, attractors and repellers being both annihilated and generated. Furthermore
the attractors and repellers that occur need not be points but may themselves be
stable flow cycles, as in the solution to the Van der Pol differential equation [3]
where there is a stable circular cycle and stream lines spiral into it from inside
and outside.

Towards a general theory

The search for such a model has been suggested by E. C. Zeeman [7] as a
“medium scale” model of brain activity midway between small-scale neurology
and large scale psychology. It would involve catastrophe theory and its most
vital factor is that it suggests that at least some of the changes in brain activity
can be modelled by elementary catastrophes. One of these, the cusp catastrophe,
has already proved useful in applications and we shall see shortly that the model
we have just explained can be visualised as a path through the control space of
the cusp catastrophe.

Before considering any of these ramifications, we begin to get a picture of
how a changing dynamical flow might represent the accommodation of schema.
If such a flow represented the current state of mental schema and a new concept
were introduced, the existence of repellers may bar the way to latching it on to
an appropriate attractor and deflect it to an unsuitable one. The resultant
dynamical flow may generate other attractors and repellers in a way highly
unsuitable for new tasks.
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A number of standard phrases graphically illustrate the general ideas: “the
penny drops” as the mind jumps to an attractor, “there’s a mental block” as the
existence of a repeller prevents access to a desired attractor. Indeed these would
also tie up with why a student in difficulty cannot put his finger on the precise
nature of his problem. The student may be at attractor A, the teacher attempts an
explanation of attractor B but the student is unable to pass beyond repeller C
which lies in between.

A local explanation of B will not help the student, he cannot get there, the
conflict C must be resolved before a lasting understanding is possible.
Meanwhile he cannot say what his problem is. The analogy is with a fixed
magnetic pole as one approaches it with a moving pole. If the moving pole is
unlike the fixed one, there is an attractive situation and we know where it will
end up. However, if the moving pole is like, there will be repulsion and the
moving pole will be pushed somewhere away from the fixed one. In an
analogous manner we might expect an attractor to produce a precise feeling of
understanding when it is reached, but a repeller to cause a vague feeling of
unease.

Flow Schemas

Suppose that the total activity of the brain is represented by a changing
dynamical system in a large dimensional space M. Portions of this activity will
represent coherent schemas, in fact we will define a flow schema to be a subset
S of M closed under the dynamical flow. This simply means that if x ∈  S, then

under the flow x remains in S. In the Van der Pol picture there are three such
subsets which can be clearly seen, the stable circular cycle C, the disc D
including its boundary C, and E, which is the exterior of D together with C.
Using Bob Zimmer’s idea that “a schema is a concept is a schema” we can now
concentrate on particular aspects of the picture. The idea is crystallised by
Richard Skemp’s excellent word “varifocal”. If we consider any flow schema F,
then it may have other flow schemas within it: F1, F2, … . We simply form the
quotient space formed by collapsing any of F1, F2, … to a point. For example,
in the Van der Pol flow we have C ⊂  D and collapsing D to a point, C/D is

topologically a sphere, similarly E/D  (collapse D  to a point in E ) is
topologically a cone and (C∪ D)/D is a cone stuck to a sphere by its vertex. The

quotient space has a flow induced on it and we will refer to this system as a
flow schema also. In performing such identifications it is essential that the
spaces collapsed are closed under the flow otherwise there will not be a
coherent flow induced on the quotient space. A change in dynamical flow on F
may therefore render a subset F1 initially closed under the flow no longer stable.
The quotient space F/F1 no longer has a coherent flow and we must return to the
larger flow schema F to consider the revised situation, possibly finding new
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closed subsets G1, G2, … allowing us to form new quotient spaces. This is the
essence of the varifocal theory with the added ingredient of the flow patterns.

The cusp catastrophe

Having entered the realms of speculative visions, it is as well to return to earth
with a specific example of catastrophe theory in action. The cusp catastrophe is
well described in the literature. A popular account occurs in Christopher
Zeeman’s article in the Scientific American [8]. For our purposes we can
picture it in terms of a folded surface in three-dimensional space called the
behaviour surface and a projection down on to a plane called the control plane,
as in the diagram. The bifurcation set is the set of points in the control plane
above which there is more than one point on the behaviour surface.

X
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Given a point in the control plane we look above to see what positions are
possible on the behaviour surface. We suppose that there is a dynamic flow in
space surrounding the behaviour surface, arrows down above the surface and up
below the surface. In the next diagram we have a drawing of the cross-section
XY.

X Y

X1 X2 X3 X4 X5

The flows in the lines above X1, X2, X3, X4, X5, correspond precisely to the flows
(1), (2), (3), (4), (5) mentioned earlier. Above X1 only one position of
equilibrium is possible, but as we move the point in the control plane smoothly
along the line XY, at X2 another equilibrium point appears, separating into two,
giving a total of three equilibrium points over X3, two stable and the middle
unstable. At X4 the two lower ones coalesce and at X5 they have been
annihilated leaving only the higher one. Thus as we move the control point
along the line XY, the behaviour point on the surface above is initially on the
lower part of the behaviour surface, but at the point X4 it must jump to the
higher surface. This is the “catastrophe”. A continuous change in the control
variable forces a discontinuous change in behaviour. In fact if we disturb a point
off the behaviour surface in any of the vertical lines above a given point in the
control plane, we see that the dynamics above X1 force a return to the only
attractor on the behaviour surface. Above X3, however, a major displacement of
a particle on the lower part of the behaviour surface may end up on the higher
part, or vice versa. We can consider the picture to represent a control point on
the control surface and a behaviour point vertically above constrained to move
according to the dynamical flow on the vertical line. The behaviour point is also
subjected to perturbations. As we move from X to Y along the line between X2
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and X4 the perturbations may cause a jump from one part of the surface to the
other. To achieve a jump the perturbation must move the particle beyond the
middle part of the surface. For a given size of perturbation this is more likely to
occur upwards near X4 and downwards near X2. Under such perturbations,
moving along XY from X1 to X5, a jump is bound to occur upwards at X4 or
before and returning from X5 to X1, it must occur downwards at X2 or before.

Different paths in the control plane may result in widely differing
behaviours. For example, paths PQR and PSR both start and end at the same
point but the behaviour in the former ends on the lower surface and in the latter
on the higher surface.

P

Q S

R T

control 
plane

bifurcation set

In neither case is there a catastrophe. However, PQRT has a catastrophic jump
whereas PSRT does not. Both end up in the same place on the higher part of the
catastrophe surface.

Transition to concrete operations

In this phase the child’s visual perception is conflicting with his growing
internal conviction. The former attracts him to non-conservation, the latter to
conservation. In the control plane we put axes measuring his strength of
perception and strength of conviction. The height above in the behaviour space
is a measure of his behaviour in the sense that the lower part of the behaviour
surface indicates the attractor of non-conservation and the upper part indicates
conservation. The far back part of the surface where there is no fold under
indicates the preconceptual thought prior to the transition phase.

Strong perceptual stimulus leads to non-conservation, strong inner
conviction leads to conservation. A path such as Pl would represent a typical
path and on the segment DE strong perturbation could lead to jumps in



– 9 –

behaviour in the transition phase. Path P2 is still at the non-conservation stage
but in transition, path P3 indicates a path that leads straight to conservation
without transition. Are all these paths possible? Are all parts of the surface
accessible? Are the axes in the right sort of position? Such a model has various
compelling facets. It indicates how in different children the transitions may
seem to involve sudden large changes but in others there may be small or even
seemingly continuous changes (path P3?). The essential factor to grasp is the
discontinuous change in behaviour together with the conflicting conclusions
caused by following different paths. Further interesting examples of this
transition may be found in [2].

Incidentally, the theoretical notion of a “grouping” which Piaget uses to
describe the logico-mathematical operations have rightly been attacked as being
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vague and mathematically inconsistent. In the presence of a catastrophe model,
however, we may ask whether a logical description of thought in the transition
phase is a possibility at all. Certainly such a model would not allow logically
contradictory results to follow from given premises just by taking different
routes to the conclusion. The presence of contradictory conclusions
(conservation and non-conservation) found in the transition phase by Piaget
himself suggests that any model of thought in this phase using classical logic is
bound to end up with internal contradictions. It may come as no surprise then to
find that Piaget’s models of concrete operational thought contain such
inconsistencies. The catastrophe theory of the cusp tells us that a given path in
the control space will lead to a preordained result in the behaviour space (at
least when there is no perturbation on the behaviour point occurring).

In the presence of a transition phase we would, therefore, require a
mathematical description of logic where the conclusion of a sequence of
deductions was preordained, yet different paths could lead to different
conclusions, possibly with catastrophic jumps on the way. In a phrase we
require a path-dependent logic, though no such theory seems available at the
moment.

Point nine recurring

As part of a number of questionnaires given to first-year mathematics students
at Warwick, one page was devoted to sequences.

The questions included the following:

(i) Have you been taught the concept of the limit of a sequence
s1, s1, … , sn. in school?

A with precise definition
B informally
C not at all.

(Tick the most appropriate.)

(ii) Whether your answer is A, B or C, try to find the following limits
(if they exist):

(a) lim
n→∞

( 1
2 )n =

(b) lim
n→∞

n2

2n2 +1
=

(c) lim
n→∞

(1 + 9
10 + 9

100 +…+ 9
10n ) =

(d) lim
n→∞

(1 + 1
2 + 1

3 +…+ 1
n ) =

(iii) If you know the definition of the limit of a sequence, write it
down:
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 sn → s as n → ∞ means:

(iv) Is 0 ⋅ 9̇ (nought point nine recurring) equal to one, or is it just less
than one? Explain the reason behind your answer.

As might be expected, out of 36 volunteers completing the test, only 10 claimed
knowing a precise definition and only seven of these gave a suitable definition.
The majority (21) claimed to have met the notion informally and of these only
one could give a definition. The remaining interest in the questions centred on
the answers to part (c) of (ii) and part (iv). Whereas most (29) answered
correctly to (ii) (c):

lim
n→∞

(1 + 9
10 + 9

100 +…+ 9
10n ) =

 
2,

there were a wide variety of answers to part (iv):

0 ⋅ 9̇ = ?

Fourteen said 0 ⋅ 9̇ = 1, two hedged their bets and twenty said it was just less.
Significantly, of the seven who claimed a precise definition and could give one,
only one of these said 0 ⋅ 9̇ = 1. Looking at the answers, clearly there was a
conflict between 0⋅99…9 to a finite number of places and the infinite expansion.

This was not the only problem; infinitesimal ideas insinuated themselves,
typical responses being:

“It is just less than one, but the difference between it and one is
infinitely small.”

“Just less than one, because even at infinity the number though
close to one is still not technically equal to one.”

Both of these answers came from students claiming to know a precise definition
of a limit. Even students claiming 0 ⋅ 9̇ = 1 were troubled by infinity.

“I think 0 ⋅ 9̇ = 1 because we could say ‘0 ⋅ 9̇ reaches one at
infinity’ although infinity does not actually exist, we use this way
of thinking in calculus, limits, etc.”

The existence of thirteen solutions saying:

lim
n→∞

(1 + 9
10 + 9

100 +…+ 9
10n ) = 2

but 0 ⋅ 9̇ < 1 was a factor which puzzled me, because on the face of it they were
conflicting answers to similar problems. At this stage a catastrophe
interpretation had not occurred to me. Then Rolph Schwarzenberger tried a test
on the students of stunning simplicity.

In a lecture, without warning, he said:

 “I will write down a number of decimals and ask you to express
them as fractions in simplest form. Example: ⋅5 = 1

2 .”
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 He then wrote on the blackboard:

(1) ⋅25

(2) ⋅05

(3) ⋅3

At this stage a member of the audience asked “Is that point three recurring?" to
which Rolph replied: “No, not recurring.” He then wrote down:

(4) ⋅3̇= ⋅333… and said “this is recurring.”

(5) ⋅9̇= ⋅999… and said “recurring”.

The results were dramatic. Twenty-four now said 0 ⋅ 9̇ = 1 or 0 ⋅ 9̇ = 1/1. Only
one who had previously said 0 ⋅ 9̇ = 1 on the earlier paper did not tackle it. (He
was someone with a precise definition of a limit although his justification of
0 ⋅ 9̇ = 1 was at that stage “because there are no possible numbers between”.)

Neither of the students who hedged their bets about 0 ⋅ 9̇ = 1 earlier said that
0 ⋅ 9̇ = 1 on the test. One did not attempt it, the other wrote

0 ⋅ 3̇ = 1/3 (not quite), 0 ⋅ 9̇ = 1 (not quite).

There were 13 students who previously affirmed 0 ⋅ 9̇<1 who now said 0 ⋅ 9̇=1.
More interesting were the answers which, by the manner in which they were
written, exhibited the actual conflict in the mind of the student. Here are the
interesting answers to parts (4) and (5) from students who had earlier claimed
0 ⋅ 9̇<1:

A (4) 0 ⋅ 3̇ = 1
3

 (5) 0 ⋅ 9̇ = 3 ×⋅3̇ = 3 × 1
3  = rubbish

B (4) 0⋅333… = 13  no fraction (this answer was crossed out)

 (5) 0⋅999… =       "      "

C (4) 0 ⋅ 3̇ = 1
3

(5) 0 ⋅ 9̇ = 1 or (none exists)

 D (4) 0 ⋅ 3̇ = 1
3

(5) 0 ⋅ 9̇ = 0⋅999

E (4) 0 ⋅ 3̇= 1
3

 (5) 0 ⋅ 9̇ ≈ 1.

Student A clearly saw the conflict and responded with exasperation. In the case
of student B we cannot be sure in what order he wrote the words from the script,
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but discussion afterwards clearly showed he came to the conflict in question 5
and this forced him back to cross out his answer in question 4. Student C
visualised two possible alternatives, but found it difficult to express, D switched
from 0 ⋅ 3̇ as an infinite decimal to 0 ⋅ 9̇ as a finite decimal whilst E switched
from 0 ⋅ 3̇ as an infinite decimal to 0 ⋅ 9̇ as a number approximately equal to
one.

These illustrate beautifully the path dependence of the decision making
process in the area of conflict. The conflicting factors in some cases seem to be
whether to think of the decimal as being a finite expression on the one hand or a
limit on the other. Since the students mainly had only an informal idea of limit
we should not expect them to be able to resolve the conflict. It is clear that the
concept of infinity as a limit process and infinitesimals as arbitrarily small
numbers also enter into the picture (how strange that these historical difficulties
raise their heads in our emancipated modern mathematics!). Repellent forces are
acting in many students’ minds when infinite processes are involved. The
reasons for these are more subtle. One is that the student may expect infinite
decimals to be in one-one correspondence with real numbers. This would lead
to the interpretation that 0 ⋅ 9̇ is less than 1. Another is the verbal definition of
limit:

sn → s as n → ∞ means that as n gets very large, so sn gets close to s.

The phrase “gets close to” is the source of trouble because in colloquial English
this carries the connotation “gets close to, but is not actually coincident with”.
The definition of a limit of a continuous function is even worse in this respect
for when

lim
x→a

f (x) = L

we must keep x distinct from a whereas f(x) may coincide with L. Many
students read into the definition here that f(x) gets close (but not equal) to L. I
have resisted applying the cusp catastrophe to this situation (although a simple
model could be considered with the strength of finite and infinite decimal
concepts as conflicting factors) simply because other repellers may be present in
the student’s mind caused by conflicts over the notion of infinity.

The important facets to note are the existence of a conflict, the path
dependence of decisions and the sudden jumps from one decision to another. It
is interesting to note the paths taken by students to see that 0 ⋅ 9̇ = 1. Some saw
that 0 ⋅ 3̇ = 1

3 , so 0 ⋅ 9̇ = 3 × 1
3  = 1. One said that:

 

10 × 0 ⋅ 9̇ = 9 ⋅ 9̇ (not sure if valid)

⇒ 9 ⋅ 9̇ − 0 ⋅ 9̇ = 9 × 0 ⋅ 9̇

⇒ 9 = 9 × 0 ⋅ 9̇

⇒ 1 = 0 ⋅ 9̇
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The last word on this should be left to a thirteen-year-old child who was asked
about 0 ⋅ 9̇ and thought it was less than I and was told it was equal to 1, but
given no reason. He went away to school and four weeks later wrote:

“A question you asked me sometime ago was whether I thought
0 ⋅ 9̇ was less or equal to one. I now think and know it is equal to

one because if 
a + b

2
= a, then a = b, so if a = 0 ⋅ 9̇ and b = 1, then

a  + b  = 1 ⋅ 9̇ which when divided by two gives you 0 ⋅ 9̇, so
0 ⋅ 9̇=1. (I was told this by my maths master.)”

Note that in this solution, division of two into 1⋅999… by long division gives

0⋅999…, which is a legal operation in the child’s schema. He not only thinks, he

knows.

Suitability of Models

There is always a danger in using models that they will be misinterpreted. The
idea of a schema as a partially ordered lattice is open to such problems. If
concept X is above concepts A, B, C, it may be interpreted that before one can
understand X it is essential to understand A, B, C.

X

BA C

On the contrary it may happen that understanding A, B, then X might fit C
neatly into context. Intelligent learning (for example, using advance organisers
[1]) might well proceed in this way. This is the danger in looking for a simple
“tree of knowledge” for mathematics. Such a notion may be of positive use to
describe what happens in the cognitive development at primary level, but at
higher levels it may not be clear which are roots and which are branches. Given
an ordered field, we can add completeness either by insisting:

A every non-empty set has a least upper bound,
or

B (i) the field is archimedean;
(ii) every cauchy sequence converges.
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Which is a pre-requisite for the other, A or B (i) and (ii)? We can logically
deduce B (i) and (ii) from A, so perhaps A is a prerequisite, on the other hand
we can take B (i) and (ii) as axioms and then deduce A. The examples of two-
way dependence in mathematics are legion, so the tree of concepts need not
even be partially ordered. Surely what we are looking for are sensible ways of
plotting the curriculum and there must be many such paths.

It is vital that a picture takes into account the repellers which hold concepts
and schemas apart as well as attractors which cause linking flows between
them. This is not to say that the catastrophe model is perfect because it too may
be misinterpreted by a lack of understanding of the qualitative nature of
catastrophes and of the variety of other possible catastrophes beside the cusp.
What a catastrophe model does, however, is to reinforce the important role of
the teacher taking the learner through the curriculum. Explanations may be
given to the class as a whole, but the occurrence of conflicts in the mind will be
apparent immediately to the sensitive teacher. The simplest manifestations are
confusion, annoyance, fear, or just a dull lost look in the eyes! Close
investigation may reveal the blockage, sudden catastrophic leaps of thought or
even path-dependent decision-making. Then it is the job of the teacher to find
the conflict and smooth it out in a suitable manner. It may not be close to the
concept, so labouring this may not help. The learner may not even be able to say
where it is. The science of teaching lies in the clear exposition of the main
ideas, but the art lies in seeking the individual difficulties and removing the
conflicts. It is hoped to investigate these ideas further and I would be pleased to
hear from anyone who can give details of catastrophe situations in learning.
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