
MULTIGRADED HILBERT SCHEMES

DIANE MACLAGAN

These are lecture notes for my lectures at the School on Hilbert schemes,
McKay correspondence, and singularities, held in Paris, 16–18 December 2019.

The goal of these lectures is to introduce the multigraded Hilbert scheme,
originally introduced by Haiman and Sturmfels in [HS04], and explain some of
what is known about it.

These are lecture notes, and thus are not polished. Please let me know of
any typos or mathematical errors!

1. Lecture 1: Definitions

The multigraded Hilbert scheme parameterizes all ideals in a polynomial
ring that are homogeneous and have a fixed Hilbert function with respect to
a grading by an abelian group. Examples include the Grothendieck Hilbert
scheme HilbP (Pn) of subschemes of Pn with Hilbert polynomial P , the Hilbert
scheme Hilbd(An) of points in affine space, Nakamura’s G-Hilbert scheme that
arises in the McKay correspondence for abelian G [Nak01], and the toric Hilbert
scheme [PS02].

We now introduce these Hilbert schemes more formally.
Let S = R[x1, . . . , xn] be the polynomial ring with coefficients in a com-

mutative ring R. We can view S as the monoid algebra R[Nn]. A grading
of S by an abelian group A is induced from a semigroup homomorphism
deg : Nn → A. This induces a direct sum decomposition S ∼= ⊕a∈ASa, where
Sa is the R-module spanned by monomials of degree a. This decomposition
satisfies SaSb ⊆ Sa+b.

Example 1.1. (1) deg : Nn → Z given by u 7→ |u| =
∑n

i=1 ui. This is the
standard grading on the polynomial ring: deg(xi) = 1 for 1 ≤ i ≤ n.

(2) deg : N2 → Z/3Z given by deg((1, 0)) = 1 mod 3, deg((0, 1)) = 2 mod 3,
so deg(x1) = 1 mod 3, and deg(x2) = 2 mod 3. Note that we have
S0 = R[x31, x1x2, x

3
2] = R[x1, x2]

S3 .
(3) deg : Nn → 0, given by u 7→ 0 for all u ∈ Nn.

Definition 1.2. A homogeneous ideal I in S is admissible if (S/I)a = Sa/Ia
is a locally free R-module of finite rank, constant on Spec(R), for all a ∈ A.
This means that Sa/Ia is an R-module with (Sa/Ia)⊗RRP

∼= Rh
P for all primes

P ⊆ R, where h does not depend on the choice of prime P .
1
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Example 1.3. (1) When K is a field, and S = K[x1, . . . , xn] has the
standard grading, then any homogeneous ideal is admissible.

(2) Consider the standard grading on S = Z[x1, x2]. Then I = 〈x1 + 3x2〉
is admissible, as (Z[x1, x2]/I)d is locally free of rank 1 forall d > 0.
Indeed,

(Z[x1, x2]/〈x1 + 3x2〉)d ⊗ Z〈p〉 ∼= (Z〈p〉[x1, x2]/〈x1 + 3x2〉)d ∼= Z〈p〉
is a free Z〈p〉-module with basis xd2.

However J = 〈2x1 + 4x2〉 is not admissible, as

Z[x1, x2]/〈2x1 + 4x2〉 ⊗ Z〈2〉 ∼= Z〈2〉[x1, x2]/〈2x1 + 4x2〉

is not a free Z〈2〉-module, since it is torsion: 2(x1 + 2x2) = 0, but
x1 + 2x2 6= 0.

(3) Under the trivial grading deg : N2 → 0, I = 〈x2, xy〉 ⊆ C[x, y] is not
admissible, as C[x, y]/I is a free C-module, but is not of finite rank.
The ideal J = 〈x2, y2〉 is admissible, as C[x, y]/J is free of rank 4.

Definition 1.4. The Hilbert function of an admissible ideal I in S is

hI : A→ N

given by

hI(a) = rkR(S/I)a.

Informally, given a function h : A → N, the multigraded Hilbert scheme
Hilbh

S parameterizes all admissible ideals I in S with hI = h.
We now give a form formal definition. Fix a commutative ring K. We

construct a functor Hh
S : K-algebras→ Sets given by setting, for a commutative

ring R,

Hh
S(R) = { homogeneous ideals I ⊆ R[x1, ,̇xn] such that (R[x1, . . . , xn]/I)a

is a locally free R−module of rank h(a) for all a ∈ A}.
Recall that a scheme Z over K represents a functor F : K − algebras →

Sets if F ∼= Hom(−, Z), so there is a natural bijection between F (R) and
Hom(Spec(R), Z). We say that F is the functor of points of Z, and that Z
represents F .

We say that a grading deg : Nn → A is positive if deg−1(0) = 0. The
standard grading on the polynomial ring is positive, but the other two gradings
of Example 1.1 are not.

Theorem 1.5. (Haiman-Sturmfels [HS04]). There is quasi-projective scheme
Hilbh

S over K that represents Hh
S . This scheme is projective if the grading is

positive.
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Example 1.6. Let deg : N2 → Z be given by deg((1, 0)) = 1, and deg((0, 1)) =
2. Consider the function h : Z → N given by h(0) = h(1) = h(2) = 1, and
h(d) = 0 for all other d. Then admissible ideals with Hilbert function h have the
form 〈ax2 + by, x3, xy, y2〉 ⊆ R[x, y], for a, b ∈ R with ab 6= 0, so Hilbh

S
∼= P1.

Example 1.7. Let deg : Nn → 0 be the trivial map, and let h : 0 → N to
be given by h(0) = d for some d ∈ N. Then Hilbh

S
∼= Hilbd(An) is the

Hilbert scheme of d points in An. When K is a field, admissible ideals
in K[x1, . . . , xn] with Hilbert function h are ideals I ⊆ K[x1, . . . , xn] with
dimK K[x1, . . . , xn]/I = d.

Example 1.8. Let A be a finite abelian group, and let h : A→ N be given by
h(a) = 1 for all a ∈ A. Then Hilbh

S is Nakamura’s G-Hilbert scheme [Nak01]
for G = A. This is a key player in the McKay correspondence.

Example 1.9. Let A = Zr, and let deg : Nn → A be a grading with deg(ei) ∈
Nr for 1 ≤ i ≤ n. LetA+ be the submonoid of Nr generated by {deg(e1), . . . , deg(er},
and let h : A → N be given by h(a) = 1 if a ∈ A+ and h(a) = 0 otherwise.
Then Hilbh

S is the toric Hilbert scheme of Peeva and Stillman [PS02].

Example 1.10. Let deg : Nn → Z be the standard grading, and fix P ∈ Q[t]
with P (m) ∈ N for all m ∈ N. Fix D � 0. Define h : Z→ N by

(1) h(d) =


dimK(Sd) =

(
n+d−1

d

)
for 0 ≤ d ≤ D − 1

P (d) d ≥ 0

0 otherwise

Then Hilbh
S is HilbP (Pn−1), which is Grothendieck’s Hilbert scheme parame-

terizing subschemes of Pn−1 with Hilbert polynomial P .
This is not the standard description of this Hilbert scheme. A more usual

version of the Hilbert function HP takes a scheme Z to the set of flat families

X

��
Z

where X ⊆ Z×Pn−1, with the Hilbert polynomial of every fiber Xz := X×Zκ(z)
for z ∈ Z equal to P .

To see that this is the same scheme, first note that we can restrict to affine
schemes Z = Spec(R) by standard Yoneda arguments (see [EH00, Proposition
VI.2]. So we need only consider X ⊆ Pn

R. There is a bijection between such X
and saturated homogeneous ideals I ⊆ R[x0, . . . , xn] with Hilbert polynomial
P , where an ideal is saturated if I = Isat = (I : m∞) := {f ∈ S : fxmi ∈
I for some m > 0}. There is a uniform bound on the degree D � 0 for
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which saturated ideals with Hilbert polynomial P have hI(d) = P (d) for all
d ≥ D. An explicit description of this bound is given by the Gotzmann number
associated to P ; see [Got78], [Bru98, Chapter 4, §3], and Lecture 3 below. This
means that there is a map from X ⊆ Pn

R with the Hilbert polynomial of fibers
equal to P , and ideals with the Hilbert function h given in (1), with the map
given by taking I ⊆ R[x0, . . . , xn] to I≥D. Furthermore, if Id = Jd for d� 0,
then Isat = Jsat, so the map is an injection, and all ideals with Hilbert function
h have Hilbert polynomial P .

The fact that Hilbh
S represents the functor Hh

S means that we have a universal
family

U

��

Hilbh
S

where U ⊆ Hilbh
S ×An with the property that if

F

��
B

is a family with F ⊆ B × An invariant under the Hom(A,Gm)-action corre-
sponding to the grading and every fiber has Hilbert function h, then there is a
unique morphism φ : B → Hilbh

S with F = φ∗(U).

Example 1.11. With the grading and Hilbert function of Example 1.6, the
universal family is Proj(Z[a, b, x, y]/〈ax2 + by, x3, xy, y2〉) ⊆ P1 ×A2. Here the
grading for the Proj has deg(a) = deg(b) = 1, and deg(x) = deg(y) = 0.

2. Lecture 2: Constructions

We now discuss the construction of the multigraded Hilbert scheme. We will
show that Hilbh

S is a subscheme of a product of Grassmannians.
We first roughly sketch this construction. If I is an admissible ideal with

hI = h, then Ia defines a point in the Grassmannian Gr(h(a), rkSa). Thus I
corresponds to a point in the (possibly infinite) product

∏
a∈A Gr(h(a), rk(Sa)).

In fact finitely many a suffice to determine I, and if this selection of a is
large enough, then any ideals with prescribed Hilbert function in these degrees
has Hilbert function h. Equations in this product come from the conditions
xuIa ⊆ Ia+deg(xu) for monomials xu.

Example 2.1. Let S = C[x, y] have the standard grading deg(x) = deg(y) = 1.
Set h(0) = 1, h(1) = h(2) = 2, h(3) = 1, and h(d) = 0 for all d ≥ 4. If
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hI = h, then Id = Sd for d ≥ 4, and I1 = 0, so I is determined by I2 and
I3. Since h(2) = 2, while dimC(S2) = 3, and h(3) = 1 while dimC(S3) = 4, I2
corresponds to a point in Gr(1, 3) ∼= P2, while I3 corresponds to a point in
P3∨. Let the coordinates on P2 be denoted by a0, a1, a2, corresponding to the
monomials x2, xy, y2, and the coordinates on P3∨ be denoted by b0, b1, b2, b3,
corresponding to the monomials x3, x2y, xy2, y3. The equations come from the
fact that a0x

2 + a1xy + a2y
2 ∈ I implies that a0x

3 + a1x
2y + a2xy

2 ∈ I and
a0x

2y + a1xy
2 + a2y

3 ∈ I, so

a0b0 + a1b1 + a2b2 = a0b1 + a1b2 + a2b3 = 0.

Thus Hilbh
S is the subscheme of P2 × P3∨ cut out by the ideal 〈a0b1 + a1b1 +

a2b2, a0b1 + a1b2 + a2b3〉. The universal family is defined by the ideal

〈a0x2+a1xy+a2y
2, b1x

3−b0x2y, b2x3−b0xy2, b3x3−b0y3, b2x2y−b1xy2, b3x2y−b1y3,

b3xy
2 − b2y3, a0b1 + a1b1 + a2b2, a0b1 + a1b2 + a2b3〉

in C[a0, a1, a2, b0, b1, b2, b3, x, y], which defines a subscheme of P2 × P3∨ × A2.

We now provide some more detail on this construction.
Given a multigrading deg : Nn → A and a Hilbert function h : A → N, we

consider the following conditions on a finite set D ⊆ A:

(1) (g). Every monomial ideal with Hilbert function H is generated by
monomials of degrees belonging to D.

(2) (h) Every monomial ideal I generated in degrees in D satisfies: if
hI(a) = h(a) for all a ∈ D, then hI(a) = h(a) for all a ∈ A.

(3) (h′) Every monomial ideal I generated in degrees in D satisfies: if
hI(a) = h(a) for all a ∈ D, then hI(a) ≤ h(a) for all a ∈ A.

(4) (s) Every monomial ideal I with hI = h has the property that the
syzygy module of I is generated by syzygies xuxv

′
= xvxu

′
= lcm(xu, xv)

among generators xu, xv of I with deg(lcm(xu, xv)) ∈ D.

A set D ⊆ A is called supportive if it satisfies g and h′, and very supportive
if it satisfies g, h, and s.

Given a finite set D of degrees, and h : D → N, we construct a subscheme
of
∏

a∈D Gr(h(a), rkSa) as follows. Write L = (La)a∈D for an element of∏
a∈D Gr(h(a), rkSa). The equations come from

xuLa ⊆ La+deg(xu)

for all monomials xu with a, a+ deg(xu) ∈ D. These equations are quadratic in
the Plücker coordinates of these two Grassmannians. We call this subscheme
Hilbh

SD
.
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Theorem 2.2. (Haiman-Stumfels) If D is supportive then Hilbh
S is a subscheme

of Hilbh
SD

. If D is very supportive then Hilbh
S
∼= Hilbh

SD
. Finite (very) supportive

sets always exist.

The idea of the proof here is a generalization of Gröbner theory to this
setting.

Example 2.3. When deg is the standard grading, and

h(d) =


dimK(Sd) =

(
n+d−1

d

)
for 0 ≤ d ≤ D − 1

P (d) d ≥ 0

0 otherwise

where D = D(P ) is the Gotzmann bound, then Gotzmann’s theorems imply
that {D} is a supportive set, and {D,D + 1} is a very supportive set.

When |A| <∞, then A is a (very) supportive set.

Challenge: Give explicit descriptions of (very) supportive sets in more
generality. The existence proof given in [HS04] is nonconstructive.

3. Lecture 3: What is known, and open problems

We begin with a summary of what is known in this area.

(1) Let K be a commutative ring. Write SK = K[x1, . . . , xn. Then for any
grading and Hilbert function, we have Hilbh

SK

∼= Hilbh
SZ
×Z Spec(K).

(2) Since HilbP (Pn−1) is a special case, all known pathologies of Hilbert
schemes occur in multigraded Hilbert schemes. For example, there
are non-reduced components [Mum62]. In addition, “Murphy’s Law”
holds [Vak06]: every singularity type defined over Z occurs in some
multigraded Hilbert scheme. Here by a singularity type we mean the
equivalence relation where (X, p) ∼ (Y, q) if there is a smooth morphism
(X, p) → (Y, q). The general philosophy is that whatever bad things
can occur, you should expect.

(3) Fogarty [Fog68] proved that Hilbd(A2) is smooth and irreducible. In
addition, Nakamura’s G-Hilbert scheme is smooth and irreducible when
G ⊆ SL(2,C) (and is a crepant resolution of C2/G. We have the
following generalization of these results.

Theorem 3.1. (M-Smith [MS10]) Let S = K[x, y], where K is a
commutative ring, let deg : N2 → A be any grading, and let h : A→ N
be any Hilbert function. Then Hilbh

S is smooth and irreducible.

The proof involves a combinatorial understanding of the tangent
space, inspired by work of Haiman [Hai98], and an explicit description
of Bia lnicki-Birula cells inspired by work of Evain [Eva04].
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Figure 1. The T -graph of Hilb4(A2).

(4) One consequence (realised in conversations with Rob Silversmith) is
the following (work-in-progress).

The spine of the T -graph of Hilbd(Ad) is independent of characteristic.
The torus T = Gn

m
∼= (K∗)n of An acts on Hilbh

S for any multigraded
Hilbert scheme: t · I = I|xi=tixi

. Fixed points of this T -action are
monomial ideals. The closure of a one-dimensional T -orbit adds either
one or two fixed points, so we can construct a graph where the vertices
the the T -fixed points, and the edges are the one-dimensional T -orbits.

One thing that makes the study of T -graphs of multigraded Hilbert
schemes challenging is that while they only have finitely vertices, they
can have infinitely many edges.

Example 3.2. Let Hilbh
S = Hilb4(A2). The T -graph has five fixed

points, corresponding to the five monomial ideals I in S = K[x, y] with
dimK S/I = 4, or equivalently to the five partitions of 4. The edges are
shown in Figure 1, which is taken from [HM12]. The shaded triangle
represents an infinite number of edges joining the ideals 〈x3, xy, y2〉
and 〈x2, xyy3〉. These form a variety that has the ideal 〈x2, y2〉 in its
closure.

If an ideal lives on a one-dimensional T -orbit, it is homogeneous
with respect to a Zn/c-grading, so every ideal on a T -edge lives in a
smaller multigraded Hilbert scheme. for S = K[x, y], Hilbh

s is smooth
and irreducible for the Zn/c-grading. This result does not have any
field assumptions. It also has a unique “max” and “min” monomial
ideals (being the limit points of the torus action for generic points in
the multigraded Hilbert scheme).

Definition 3.3. The spine of the T -graph of Hilbd(Ad) has one edge
connecting the max and min vertex of the T -graph of each Hilbh

S.

This is characteristic independent!
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Example 3.4. When d = 4, the spine is the graph shown in Figure 2.

Figure 2. The spine of the T -graph of Hilb4(A2).

(5) One of the few global results about the Hilbert scheme is Hartshorne’s
proof that the Hilbert scheme HilbP (Pn) of subschemes of Pn with a
give Hilbert polynomial is always connected [Har66]. This is not the
case in general for multgraded Hilbert schemes! There exists a toric
Hilbert scheme (h(a) = 1 for all a ∈ deg(Nn) ⊆ A = Zd) that are
disconnected. However the smallest known example has n = 26.
Idea of construction:

Write deg(xi) = ai ∈ Zd.
(a) (Sturmfels) A monomial ideal I with hI = h induces a triangulation

of pos(ai : 1 ≤ i ≤ n) := {
∑n

i=1 λiai : λi > 0 for 1 ≤ i ≤ n}. The
corresponding simplicial complex is the Stanley-Reisner complex of
the radical of I: ∆(

√
I). A cone pos(ai : i ∈ σ) with σ ⊆ {1, . . . , n}

is in the triangulation if and only if there is no monomial in I with
support in σ.

Example 3.5. Let S = C[x1, x2, x2, x4], with deg(x1) = (1, 0, 0),
deg(x2) = (1, 1, 0), deg(x3) = (1, 0, 1), and deg(x3) = (1, 1, 1).
Then I1 = 〈x1x4〉 and I2 = 〈x2x3〉 both have Hilbert function
h(a) = 1 if a ∈ deg(N4), and h(a) = 0 otherwise. The correspond-
ing two triangulations are shown in cross-section in Figure 3.

(b) The two triangulations in Example 3.5 are connected by a bistellar
flip. This is a flip in the sense of Mori theory of the correspond-
ing toric varieties. See [DLRS10] for more on bistellar flips of
triangulations.
Each irreducible component of a toric Hilbert scheme is a not-
necessarily-normal toric variety, and there are torus-fixed points
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4

1 2

3 4

1 2

3

Figure 3. The two triangulations of Example 3.5

in the intersection of any two components. This means that the
Hilbert scheme Hilbh

S is connected if and only if its T -graph is
connected. In [MT02] Maclagan and Thomas showed that two
monomial ideals I, J in Hilbh

S are connected by an edge in the

T -graph if and only if either ∆(
√
I) = ∆(

√
J), or the two triangu-

lations are connected by a bistellar flip.
(c) In [San05], Santos showed that there is a configuration of 26 integer

vectors in R6 (so corresponding to a map deg : N26 → Z6 with
disconnected bistellar flip graph, and triangulations of the form
∆(
√
I) in two different connected components. This shows that

this toric Hilbert scheme is disconnected.
Find a smaller disconnected example!

(6) When the grading is positive (rkS0 = 1), every multigraded Hilbert
scheme is a multigraded Hilbert scheme of points [HM12, Theorem 1.1].

This is a consequence of the construction of the Hilbert scheme.
For example, when Hilbh

S = HilbP (Pn−1), the set {D,D + 1} is a
very supportive set for D sufficiently large. There is then a bijection
between the two sets:
(a) {admissible ideals with Hilbert function h}, and
(b) {admissible ideals with Hilbert function h in degrees ≤ d + 1,

and Hilbert function 0 in degrees ≥ D + 2}.
The bijection takes an ideal I from the first set to I + SD+2, and an
ideal J from the second set to 〈J≤D+1.

This means that every positively graded multigraded Hilbert scheme
also parameterizes collections of points (supported at the origin) invari-
ant under a group action (dual to the grading group) with prescribed
multiplicity of representations in the action on the coordinate ring of
the affine scheme.

We conclude with some open questions.

(1) When are multigraded Hilbert schemes irreducible? Smooth? How
about when A = Zn/c? We expect this nice behaviour to be rare, but
it might be tractable to understand when this occurs.

(2) Find a smaller example of a disconnected multigraded Hilbert scheme.
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(3) Give explicit conditions for Hilbh
S to be nonempty.

For example, if S has the standard grading, for any n, and h : Z→ N
is given by h(1) = 0, h(2) = 3, and any other choices for other d ∈ Z,
then Hilbh

S is empty, as h(1) = 0 implies that every variable is in any
admissible ideal I with this Hilbert function§, and so we should have
h(2) = 0.

In the standard graded case the condition for Hilbh
S to be nonempty

is given by Macaulay’s theorem. Write

h(d) =

(
md

d

)
+

(
md−1

d− 1

)
+ · · ·+

(
mj

j

)
,

where md > md−1 > · · · > mj ≥ j ≥ 1. This expression is unique.
Define

h(d)〈d〉 =

(
md + 1

d+ 1

)
+

(
md−1 + 1

d

)
+ · · ·+

(
mj + 1

j + 1

)
.

Then h(d + 1) ≤ h(d)〈d〉. This bound is sharp, and is achieved for
all d by the lexicographic ideal, which is a canonical smooth point on
the Hilbert scheme. See [Bru98, Chapter 4, §2] for more details on
Macaulay’s theorem.

The question is thus: What is the multigraded version of this story?
One difficulty in generalizing is given by the fact that lexicographic

ideals do not exist for general multigradings: the set of monomials
consisting of the lexicographically largest rk(Sa)− h(a) monomials in
each degree a is not always the set of monomials in a monomial ideal,
as it may not be closed under multiplication by variables. However in
the case n = 2, in [MS10] it is shown that there is always a “lex-most”
ideal (the largest in a partial order induced by the lexicographic order).
Does this result extend to larger n?

(4) Give explicit constructions of supportive and very supportive sets.
In the standard graded case the Macaulay description for h(d) stabi-

lizes for d� 0, and the Gotzmann number is the number j of binomial
coefficients appearing in this description. Gotzmann’s regularity and
persistence theorems [Got78] [Bru98, Chapter 4, §3] imply that the set
{j} satisfies conditions g and h′, and the set {j, j + 1} satisfy g, h, and
s. Generalize this!

4. Exercises

4.1. Basics of multigradings.
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(1) Consider the grading of S = C[x, y] by deg(x) = 1 mod 7, deg(y) =
6 mod 7. What is HI for I = 〈x4, xy, y4〉? What about I = 〈x3, y3〉? Is
the ideal 〈x5, x2y2, xy5〉 admissible?

(2) Consider the grading of S = C[x, y] by deg(x) = 2, deg(y) = 3. Check
that the zero ideal is admissible. What is HI(d) for d ≥ 0?

(3) Consider the grading of S = C[x, y, z] by deg(x) = (1, 2, 3), deg(y) =
(1, 0, 1), and deg(z) = (0, 3, 4). Check that the zero ideal is admissible.
What is HI(u) for u ∈ Z3?

4.2. Examples of Multigraded Hilbert Schemes.

(1) Consider the grading of S = C[x1, x2] by A given by deg(x1) = 2,
deg(x2) = 3. Consider h : Z→ N given by h(0) = h(2) = h(3) = h(4) =
h(5) = h(6) = 1, and h(d) = 0 for all other d. What is Hilbh

S?
(2) With the same grading as in the previous question, consider h : Z→ N

given by h(0) = h(1) = 1, h(2) = h(3) = 2, h(4) = h(5) = 3, h(6) = 2,
and h(d) = 0 for all other d. What is Hilbh

S?

4.3. Construction.

(1) Verify the description of the universal family in the case S = C[x, y]
has the standard grading, and h(0) = 1, h(1) = h(2) = 2, h(3) = 1, and
h(d) = 0 otherwise.

(2) Consider the grading deg(x) = 2, deg(y) = 2 of C[x, y], and the
Hilbert function h(0) = h(2) = h(3) = h(4) = h(5) = h(7) = 1,
h(6) = h(8) = h(9) = h(10) = 2, h(11) = 0, h(12) = 2, and h(d) = 0
otherwise.
(a) Find all monomial ideals with Hilbert function h.
(b) Find a supportive set for h. Find a very supportive set for h.
(c) Compute Hilbh

S.
(3) Consider the grading deg(x) = 1, deg(y) = 2 on C[x, y]. Set h(4) =

h(6) = 2. Compute Hilbh
S4,6

.
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