
TROPICAL GEOMETRY

DIANE MACLAGAN

Abstract. This is lecture notes and exercises for my course at
the LMS Undergraduate Summer School at Manchester in July
2017.

1. Lecture 1

Definition 1.1. The tropical semiring is

R = (R ∪ {∞},⊕, ◦· ),
where ⊕ is the usual minimum, and ◦· is the usual addition.

For example,

3 ⊕ 5 = 3, 5◦· 7 = 12

3◦· (5 ⊕ 7) = 3◦· 5 ⊕ 3◦· 7
0◦· 3 = 3 ∞ ⊕ 7 = 7.

Thus 0 is the multiplicative identity (playing the role of 1 in the
usual real numbers) and ∞ is the additive identity (playing the role of
0 in the usual real numbers).

In fact (check!) R obeys the associative and distributive rules. Sub-
traction is the only part of the ring axioms that is missing. (Technically:
addition is a monoid, not a group).
In these lectures: We will redo some algebra and geometry here
with R replacing fields such as R or C.
Why?

Tropical mathematics is about 40 years old, and has been reinvented
several times.

One place it naturally occurs is in optimization. For example, sup-
pose the trains in a region are set up so that there are two routes from
town A to town E: via town B and D, or via C and D, with travel
times as in the diagram. Then the shortest travel time from A to E is
min(a+ b, c+ d) + e, which equals (a◦· b ⊕ c◦· d)◦· e.

In the last fifteen years there have been increasing connections to
algebraic geometry and related fields. We’ll touch lightly on this in
these lectures. There have also been new connections to other areas,
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Figure 1. A sample train network
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Figure 2. The graph of min(2x+ 2, x, 3)

such as economics, biology, and physics. In addition, there is a lot of
interplay with (polyhedral) combinatorics.
Polynomials in one variable

Note: A tropical polynomial in one variable is a piecewise linear
function p : R→ R.

Example 1.2. Let p = 2◦· x2 ⊕ 0◦· x ⊕ 3. This is the function
min(2x+ 2, x, 3), and has the graph shown in Figure 2.

Note that p = 2◦· (x ⊕ −2)◦· (x ⊕ 3).

Definition 1.3. The roots of a tropical polynomial p are the real num-
bers where the graph of p is not differentiable.

Example 1.4. The roots of 2◦· x2 ⊕ 0◦· x ⊕ 3 are x = −2 and x = 3.

Exercise 1.5. What are the roots of:

(1) x2 ⊕ x ⊕ 2?
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Figure 3. The graph of a tropical quadratic

(2) x2 ⊕ 2◦· x ⊕ 4?
(3) x2 ⊕ 3◦· x ⊕ 4?

Exercise 1.6. Show that tropical polynomials factor into linear factors
as functions but not necessarily as polynomials.

Quadratic formula:
Let p = a◦· x2 ⊕ b◦· x ⊕ c, where a, b, c ∈ R.

The roots of p are:

{
b− a, c− b if 2b ≤ a+ c

(c− a)/2 if b > a+ c

Exercise 1.7. Work out the tropical cubic formula. What about the
quartic formula, or the quintic?

Connection with “usual” equations.

Definition 1.8. A valuation on a field K is a function val : K →
R ∪ {∞} such that

(1) val(ab) = val(a) + val(b),
(2) val(a+ b) ≥ min(val(a), val(b)), and
(3) val(a) =∞ if and only if a = 0.

Example 1.9. (1) Any K, val(a) = 0 if a 6= 0.
(2) K = Q. valp(p

na/b) = n if p does not divide a or b. For
example, val2(12) = 2, and val3(5/6) = −1.

(3) K = C(t). val(f/g) = lowdeg(f)− lowdeg(g), where lowdeg(f)
is the lowest exponent of a power of t that occurs in f .

Exercise 1.10. Show that for any valuation we have val(1) = 0,
val(−a) = val(a), and val(a+b) = min(val(a), val(b)) if val(a) 6= val(b).
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Definition 1.11. Fix a field K with a valuation val. The tropicaliza-
tion of a polynomial f =

∑m
i=0 aix

i ∈ K[x] is

trop(f) =⊕m
i=0 val(ai)◦· xi = min(val(ai) + ix).

Example 1.12. Let f = 4x2− 33x+ 8 ∈ Q[x], where Q has the 2-adic
valuation. Then trop(f) = 2◦· x2 ⊕ 0◦· x ⊕ 3.

Definition 1.13. A field K is algebraically closed if every nonconstant
polynomial f in K[x] has a root in K. In other words, there is a ∈ K
with f(a) = 0.

An example of an algebraically closed field is C.

Theorem 1.14. Fix f ∈ K[x], where K is an algebraically closed field
with a valuation. The valuations of the roots of f equal the roots of
trop(f).

Example 1.15. Let f = 4x2− 33x+ 8 = (4x− 1)(x− 8). Then f has
roots 1/4 and 8, which have 2-adic valuations −2 and 3. We’ve already
seen that the roots of trop(f) = 2◦· x2 ⊕ x ⊕ 3 are −2 and 3.

2. Exercises

(1) Show that tropical multiplication distributes over addition. More
generally, check all the axioms to show that R is a semiring.

(2) Check that the tropical semiring is isomorphic as a semiring to
the one where addition is given by maximum instead of mini-
mum.

(3) Show that every tropical polynomial f ∈ R[x] factors “as a
function”. For example x2 ⊕ 3◦· x ⊕ 0 = (x ⊕ 0)2 as a function.

(4) What is the tropical cubic formula? What about the quartic
formula? Quintic?

(5) What is the 3-adic valuation of the following numbers:
(a) 9;
(b) 6/12;
(c) 6/5;
(d) −7/18.

(6) Show that for any valuation we have val(1) = 0, val(−a) =
val(a), and val(a+ b) = min(val(a), val(b)) if val(a) 6= val(b).

(7) For each of the following polynomials f in Q[x], where Q has the
2-adic valuation, compute the tropicalization of f , then com-
pute the roots of trop(f), and verify Theorem 1.14 for these
examples. You will secretly work over the algebraic closure of
Q for this question; ask after you have done the first one if you
don’t know what this means.
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Figure 4. The tropical line

(a) f = x2 − 3x+ 2;
(b) f = x2 − 4x+ 3;
(c) f = x3 − 7x2 + 14x− 8;
(d) f = x2 − 5x+ 2;

(8) Prove Theorem 1.14.

3. Lecture 2

In the first lecture we studied tropical polynomials in one variable;
now we will expand to more variables.

We write R[x1, . . . , xn] for the semiring of tropical polynomials in
the variables x1, . . . , xn. For u = (u1, . . . , un) ∈ Nn we write xu for
the product xu1

1 ◦· xu2
2 ◦· . . . ◦· xun

n = u1x1 + · · · + unxn. An element of
R[x1, . . . , xn] is then a polynomial of the form

⊕
u∈Nn cu◦· xu, where

cu ∈ R, and all operations are tropical operations.
Fix a tropical polynomial f =

⊕
cux

u ∈ R[x1, . . . , xn]. Note that
as a function we have f = min(cu + x · u), so, f restricted to Rn is a
piecewise linear function from Rn to R.

Definition 3.1. The tropical hypersurface V (f) of a tropical poly-
nomial f =

∑
cux

u is the locus in Rn where the graph of f is not
differentiable.

Example 3.2. f = x ⊕ y ⊕ 0 = min(x, y, 0). This is illustrated in
Figure 4

Example 3.3.

f = 0 ⊕ 2◦· x ⊕ 3◦· y ⊕ 4◦· xy.
This is illustrated in Figure 5.
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Figure 5. The tropical hypersurface for Example 3.3

Exercise 3.4. Draw the tropical hypersurface for f = 0 ⊕ 1◦· y ⊕
2◦· xy ⊕ 7◦· x2.

Write S = K[x1, . . . , xn] for the polynomial ring in n variables with
coefficients in K. Recall that an ideal I ⊂ S is a subset of S satisfying
that if f, g ∈ I, then f + g ∈ I, and if f ∈ I, h ∈ S, then hf ∈ I. We
write I = 〈f1, . . . , fr〉 for the smallest ideal containing f1, . . . , fr ∈ S,
and call this the ideal generated by I. This is I = {

∑r
i=1 gifi : gi ∈ S}.

Definition 3.5. An affine variety is a subset of Kn of the form

V (I) = {a ∈ Kn : f(a) = 0 for all f ∈ I}.

For I = 〈f1, . . . , fr〉, V (I) = {a ∈ Kn : f1(a) = · · · = fr(a) = 0}.

Example 3.6. The variety V (x + y + z + 3, x + 2y + 3z) is a line in
K3.

Definition 3.7. The tropicalization of X = V (I) is

trop(X) = ∩f∈IV (trop(f)) ⊆ Rn
.

Warning: In the intersection of Definition 3.7 it is not sufficient to
take just the generators of I.

Definition 3.8. For v1, . . . ,vr ⊂ Rn, the set

pos(v1, . . . ,vr) = {
r∑

i=1

λivi : λi ≥ 0}

is the cone generated by v1, . . . ,vr.
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Example 3.9. Let I = 〈x+y+z+1, x+2y+3z+4〉 ⊆ C[x, y, z], where
C has the trivial valuation. Then X = V (I) is the line (2,−3, 0) +
span(1,−2, 1) in C3. Write e0 = −e1−e2−e3 ∈ R3. The tropicalization
is

trop(X) = pos(e0) ∪ pos(e1) ∪ pos(e2) ∪ pos(e3).

Note that trop(x+y+z+1) = trop(x+2y+3z+4) = x ⊕ y ⊕ z ⊕ 0,
but trop(X) ( V (x ⊕ y ⊕ z ⊕ 0), as (0, 1, 1) ∈ V (x ⊕ y ⊕ z ⊕ 0), but
(0, 1, 1) 6∈ V (trop(y + 2z + 3)), and y + 2z + 3 ∈ I.

Definition 3.10. A polyhedron is a subset of Rn of the form

P = {x ∈ Rn : Ax ≤ b},

where A is a d × n matrix, and b ∈ Rd. In other words, a polyhedron
is the intersection of finitely many half-spaces.

Example 3.11. Familiar examples of polyhedra are polygons in the
plane, and the Platonic solids (tetrahedron, cube, octahedron, dodec-
ahedron, and icosahedron) in R3.

Definition 3.12. The face of a polyhedron P induced by a vector
w ∈ Rn is facew(P ) = {x ∈ P : w · x ≤ w · y for all y ∈ P}.

Example 3.13. Let P be the square

P =

x ∈ R2 :


1 0
0 1
−1 0

0 −1

x ≤


1
1
0
0


 .

Then face(1,0)(P ) is the left edge with vertices (0, 0) and (0, 1). The set
of all faces is the vertices, edges, and the whole square.

Definition 3.14. A polyhedral complex is a collection of polyhedra in
Rn for which the intersection of any two is either empty, or a face of
each. The support |Σ| of a polyhedral complex Σ is the subset of Rn

that is the union of all polyhedra in Σ.

Example 3.15. An example of a polyhedral complex is shown in Fig-
ure 6.

Theorem 3.16. Let I ⊆ K[x1, . . . , xn], and let X = V (I) ⊆ Kn. Then
trop(X) ∩ Rn is the support of a finite polyhedral complex. If I is a
prime ideal, then all maximal polyhedra in this complex have the same
dimension.
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Figure 6. A polyhedral complex

4. Exercises

(1) Draw trop(V (f)) for the following f ∈ Q[x, y]], where Q has
the 2-adic valuation.
(a) f = 8x+ 6y + 5/4;
(b) f = 3x+ 4y + 48;
(c) f = 8x2 + xy + 10y2 + 6x+ y + 1;
(d) f = 16x2 + 6xy + 7y2 + 7x+ 5y + 2;
(e) f = 2x2 + 3xy − 7y2 + 5;
(f) f = 64x3+x2y+xy2+64y3+8x2+1/2xy+8y2+2x+2y+1.

(2) The goal of this exercise is to show the connection between
tropical curves in the plane and triangulations of a certain point
configuration.

Fix d > 0. Let Ad = {(a, b) : a + b ≤ d, a, b ≥ 0}. Fix
a polynomial f =

∑
(a,b)∈Ad

cabx
ayb with cab ∈ K, where K

is a field with a valuation. The regular triangulation of Ad

induced by f is obtained by taking the convex hull of the points
{(a, b, val(cab) : (a, b) ∈ A} and taking the (projections of the)
set of lower faces. These are the faces that you can see if you
look from (0, 0,−N) for N � 0.

Example: Let d = 2, soA2 = {(2, 0), (1, 1), (0, 2), (1, 0), (0, 1), (0, 0)}.
Let f = 2x2 + xy + 6y2 + x + y + 64, where Q has the 2-adic
valuation. We form the convex hull of the points

{(2, 0, 1), (1, 1, 0), (0, 2, 1), (1, 0, 0), (0, 1, 0), (0, 0, 6)}.

The lower faces of this polytope are illustrated in Figure 7.
(a) Draw the regular triangulation of A2 corresponding to the

polynomial f = 2x2 + xy + 24y2 + x+ 10y + 1.
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(0, 0)

(0, 2)

(1, 1)

(2, 0)

(0, 1)

(1, 0)

Figure 7.

(b) Draw the regular triangulation of A1 corresponding to the
polynomial f = 32x+ 8y + 1024.

(c) Draw the regular triangulation of A3 corresponding to the
polynomial f = 8x3+2x2y−2xy2+8y3+10x2+xy+6y2−
2x+ 2y + 8.

The dual graph to a triangulation has a vertex for every trian-
gle. There are two types of edges. The finite edges join two ad-
jacent triangles, and have direction orthogonal to the common
edge of the triangles. The infinite edges start at the triangles ad-
jacent to the boundary of the large triangle conv((d, 0), (0, d), (0, 0)),
and have direction orthogonal to the external edge. This is de-
fined up to the lengths of the finite edges.

Example: In the example above, a dual graph for the
regular triangulation is shown in Figure 8.

(2, 0)

(0, 1)

(0, 2)

(1, 1)

(0, 0) (1, 0)

Figure 8.
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(d) Draw a dual graph to the regular triangulation of A2 cor-
responding to f = −2x2 + xy + 8y2 + x+ 14y + 3.

(e) Draw a dual graph to the regular triangulation of A1 cor-
responding to f = 32x− 8y + 1024.

(f) Draw a dual graph to the regular triangulation of A3 cor-
responding to f = 8x3 + 2x2y − 2xy2 + 8y3 + 10x2 + xy +
6y2 − 2x+ 2y + 8.

(g) Let f =
∑

(a,b)∈Ad
cabx

ayb with cd0, c0d, c00 6= 0. Show that
the tropical curve defined by f is the image under x 7→ −x
of a dual graph to the regular triangulation defined by f .

(h) Check the previous claim for the examples of the first ques-
tion.

5. Lecture 3

Question 5.1. Let f, g ∈ C[x, y] with gcd(f, g) = 1, and let C =
V (f) ⊂ C2, C ′ = V (g) ⊆ C2. What can we say about |C ∩ C ′|?

Example 5.2. (1) If f = x+ y, g = x− y, then C and C ′ are two
lines that intersect in the one point (0, 0).

(2) If f = y− x2, g = y− x− 2, then |C ∩C ′| = 2, as they meet in
the two points (2, 4) and (−1, 1).

(3) If f = x2 + y2 − 1, and g = 1/4x2 + 4y2 − 1, then |C ∩C ′| = 4.
(4) If f = y − x3 + x and g = y − 1/100x, then |C ∩ C ′| = 3.

In all of these examples, we have |C ∩ C ′| = deg(f) deg(g).
This is not always the case: f = y − x and g = y − x − 1 have

V (f)∩V (g) = ∅ ⊂ C2. However in this case they “intersect at infinity”.
This can be made more precise by introducing the projective plane P2,
but we will not go there today. Another potential counter-example is
f = y−x2, g = y− 2x+ 1. In this case C ∩C ′ is just one point: (1, 1).
However in this case the line V (g) is tangent to the quadratic, and we
say that it intersects “with multiplicity two”. This can also be made
more precise, but again we will not go into all the details here.

The weaker form that we will consider here is:

Theorem 5.3. (Bézout) If f, g ∈ C[x, y] with gcd(f, g) = 1, then
|V (f) ∩ V (g)| ≤ deg(f) deg(g).

Exercise 5.4. Prove this when deg(g) = 1.

We’ll now see how to approach this tropically.
We saw in the exercises for lecture 2 that trop(V (f)) is determined

by a triangulation (or more generally a subdivision). Under this, edges
of the tropical variety are dual to edges of the subdivision. We assign
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a weight we to each edge/ray of the tropical variety by setting it equal
to the lattice length of the edge of the subdivision. This is the number
of lattice points (points with integral entries) in the edge minus one.
For example the lattice length of an edge from (0, 0) to (2, 0) is 2.

For example, for f = x2 + y2 + 0, we have three rays, each of which
have multiplicity two.
Note: If x ∈ V (f) ∩ V (g), then val(f) ∈ trop(V (f)) ∩ trop(V (g)).

The plan is thus:

(1) Bound | trop(V (f)) ∩ trop(V (g))|.
(2) For each w ∈ trop(V (f)) ∩ trop(V (g))| bound the number of

x ∈ V (f) ∩ V (g) with val(x) = w.

Example 5.5. (1) Let f = x + y + 1, and g = x + 4y + 2 be
polynomials in Q[x, y], where Q has the 2-adic valuation. Then
V (f)∩V (g) = {(−2/3,−1/3)} which has valuation (1, 0). This
is the only intersection point of trop(V (f)) and trop(V (g)).

(2) Let f = 2x2 + xy+ 2y2 + x+ y+ 2, and g = x+ 16y+ 4. Then
V (f) ∩ V (g) is two points, as is trop(V (f)) ∩ trop(V (g)), and
these latter two points are the valuations of the first two.

The following example shows that this is not always so straightfor-
ward.

Example 5.6. Let f = x+y+1, and g = x+2y+2. Then V (f)∩V (g) =
{(0,−1)}, but trop(V (f)) ∩ trop(V (g)) is the ray {(λ, 0) : λ ≥ 1}.

Definition 5.7. Let f, g ∈ K[x, y], and let C = V (f), and C ′ =
V (g) ∈ K2. Fix w ∈ trop(C) ∩ trop(C ′). Then trop(C) and trop(C ′)
intersect transversely at w if, locally near w, C looks like w+span(u),
and C ′ looks like w + span(u′), where span(u,u′) = R2.

Theorem 5.8. If f, g ∈ K[x, y] and trop(V (f)) and trop(V (g)) in-
tersect transversely at w, then w ∈ trop(V (f) ∩ V (g)), so there is
x ∈ V (f) ∩ V (g) with val(x) = w.

The following example, however, shows that we cannot simply bound
the number of tropical intersection points.

Example 5.9. Let f = x + y + 1, and g = x2 + 4y − 16. Then
V (f) ∩ V (g) = {(2 ± 2

√
6,−3 ∓ 2

√
6)}, which has size two. However

both points have the same valuation in any extension of the 2-adic
valuation to C, which is (1, 0).

The solution to this is to define a tropical multiplicity to each trans-
verse intersection point.
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Definition 5.10. Suppose f, g ∈ K[x, y] satisfy that trop(V (f)) and
trop(V (g)) meet transversely at w ∈ R2, and, locally near w, trop(V (f))
looks like w + span(u), and trop(V (g)) looks like w + span(u′). The
multiplicity of trop(V (f))∩trop(V (g)) near w is then the absolute value
of the determinant of the matrix with columns |uu′| multiplied by the
weights mf ,mg of the edges of trop(V (f)) and trop(V (g)) containing
w.

Example 5.11. For the polynomials of Example 5.9 the multiplicity

at the point (1, 0) is is (1)(1)| det(

(
1 −1
0 −2

)
)| = 2.

Proposition 5.12. If f, g ∈ K[x, y] and trop(V (f)) and trop(V (g))
intersect transversely at w, then |{x ∈ V (f) ∩ V (g) : val(x) = w}|
equals the tropical multiplicity of trop(V (f)) ∩ trop(V (g)) at w.

Definition 5.13. Let Σ,Σ′ ⊂ R2 be the tropicalizations of two curves
in K2. The stable intersection of Σ and Σ′ is the the limit as ε goes to
zero of the intersection of Σ and εv + Σ′ for a generic vector v. This is
independent of the choice of vector v.

Example 5.14. The stable intersection of the two tropical varieties of
Example 5.6 is the point (1, 0).

The following theorem shows that the multiplicity of the origin in
the stable intersection bounds the number of solutions with all coordi-
nates nonzero. In the statement “general” is in the sense of algebraic
geometry, meaning that there is a finite list of polynomials (hidden in
the proof) in the coefficients such that we only consider f, g where at
least one of these polynomials is nonzero.

Theorem 5.15. Let f =
∑
aijx

iyj and g =
∑
bijx

iyj be polynomi-
als in K[x, y]. If aij, bij are sufficiently general, then |V (f) ∩ V (g) ∩
(K \ {0})2| equals the multiplicity of the origin in the intersection of
trop(V (f)) and trop(V (g)).

For “non-general” f, g the number of solutions can only drop. In
addition, given a pair f, g, we can always do a linear change of coor-
dinates (one of the form x′ = ax + by, y′ = cx + dy) to get a pair
where all solutions have all coordinate nonnegative. This means that
to prove Bézout’s theorem it suffices to bound the multiplicity of the
origin in the stable intersection of the tropicalizations of two curves of
given degrees.
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6. Exercises

(1) For each of the following pairs of polynomials, compute trop(V (f)),
trop(V (g)), and the stable intersection of trop(V (f)) and trop(V (g)).
Verify that the sum of the multiplicities of the points in the
stable intersection bounded by deg(f) deg(g). Here Q has the
2-adic valuation.
(a) f = x+ y + 1, g = x+ 2y + 1.
(b) f = x+ y + 1, g = x+ 3x+ 5.
(c) f = 2x2 + xy + 2y2 + x+ y + 2, g = 4x2 + y2 + 4.
(d) f = 8x3 + 2x2y+ 2xy2 + 8y3 + 2x2 +xy+ 2y2 + 2x+ 2y+ 8,

g = x+ 16y + 4.
(2) Work out more details in the sketch proof of Bézout’s theorem

given at the end, assuming Theorem 5.15.
(3) Everything here generalizes to higher dimensions, such as for

the common solutions to three polynomials in three variables.
Do this! (You need to think about the multiplicity of an in-
tersection point in the tropicalization, and what it means to
be transverse. In higher dimensions, we put weights on the
maximal faces, which are still dual to edges).

7. Challenge Problems

(1) Let f =
∑n

i,j=0 aijx
iyj, g =

∑n
i,j=0 bijx

iyj ∈ C[x, y], where

aij, bij ∈ C, and aij, bij = 0 if i2 + j2 > n2. You may as-
sume that aij, bij are otherwise generic, meaning that they do
not satisfy any finite collection of polynomial equations. Let
cn be the multiplicity of the origin in the stable intersection of
trop(V (f)) and trop(V (g)). What is limn→∞ cn/n

2?
To be concrete, when n = 1, f has the form a1x + a2y + a3.

When n = 2, f has the form a1x
2 +a2xy+a3y

2 +a4x+a5y+a6.
(2) Consider the following list of n polynomials in C[x1, . . . , xn]:

fi = x2i + aixixi+1 + bix
2
i+1 + cixixi+2 + dixi+1x

2
i+2 + eix

2
i+2,

where xn+1 = x1, xn+2 = x2, and ai, bi, ci, di, ei are generic com-
plex numbers (meaning that you may impose any polynomial
inequalities you need on them). How many solutions are there
to f1(x) = · · · = fn(x) = 0?

8. What next?

(1) The more standard approach to proving Bézout’s theorem can
be found in many elementary algebraic geometry books, includ-
ing the details about projective space and multiplicities. One
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that I recommend is Hassett, Introduction to algebraic geome-
try, Cambridge, 2007.

(2) One place to learn more about tropical geometry is my book
Introduction to tropical geometry, with Bernd Sturmfels (Grad-
uate Studies in Mathematics, volume 161, AMS, 2015).

(3) An incomplete list of other mathematicians in the UK whose
research touches tropical geometry is: Peter Butkovic (Birming-
ham), Alex Fink (QMUL), Jeff Giansiracusa (Swansea), Mark
Gross (Cambridge), Milena Hering (Edinburgh), James Hook
(Bath), Zur Izhakian (Aberdeen), Marianne Johnson (Manch-
ester), Mark Kambites (Manchester), Johannes Nicaise (Impe-
rial), Sergey Sergeev (Birmingham). Their research interests
range from algebraic geometry to numerical analysis and opti-
mization, via combinatorics, with areas in between.

(4) Tropical geometry touches many areas of algebraic geometry,
so many other UK algebraic geometers work in related areas.

(5) There is also a thriving community world-wide. If you’re con-
sidering doing a PhD, and are open to moving overseas, there
are many exciting options.
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