
NOTES ON HILBERT SCHEMES

DIANE MACLAGAN

Introduction

These notes are for lectures on Hilbert schemes in the Summer School on
Introduction to explicit methods in algebraic geometry, run September 3–7,
2007 at the University of Warwick as part of the Warwick EPSRC Sympo-
sium on Algebraic Geometry. They likely contain many errors, both mathe-
matical and typographical; please send any you notice to me at the address
D.Maclagan@warwick.ac.uk. Many thanks to those who have already done
so.

I make no claim for comprehensiveness, and many important areas of this
subject are not covered here. Some other references on Hilbert schemes
include: The Geometry of Schemes, by Eisenbud and Harris [EH00], Ra-
tional Curves on Algebraic Varieties, by János Kollár [Kol96], the appen-
dix by Iarrobino and Kleiman [IK99] to Power Sums, Gorenstein Alge-
bras, and Determinantal Loci by Iarrobino and Kanev, the section on the
Hilbert scheme of points in Combinatorial Commutative Algebra by Miller
and Sturmfels [MS05], the paper t, q-Catalan numbers and the Hilbert scheme
by Haiman [Hai98], and the paper Multigraded Hilbert schemes by Haiman
and Sturmfels [HS04]. My treatment has been heavily influenced by these
works.

1. Lecture 1: Introduction to the Hilbert scheme

The Hilbert scheme HilbP (Pn) is a parameter space whose closed points
correspond to subschemes of Pn with Hilbert polynomial P . The topology
on HilbP (Pn) gives a notion of when two subschemes are “close”. Many
other moduli spaces are constructed by realizing them as subschemes of the
Hilbert scheme.

In this lecture we first review the basics of subschemes of Pn and Hilbert
polynomials, then give the functorial definition of the Hilbert scheme.

1.1. Algebraic preliminaries. Let S = k[x0, , . . . , xn], where k is a com-
mutative ring, and let its irrelevant ideal be m = 〈x0, . . . , xn〉. A homoge-
neous ideal I ⊆ S not containing m determines a closed subscheme of Pn

k
from the surjection S → S/I (see [Har77, Exercises II.2.14, II.3.12]).

In the opposite direction, given a subscheme X ⊂ Pn
k , the correspond-

ing ideal sheaf IX is the kernel of the map OPn
k
→ OX . The direct sum

I = ⊕l≥0H
0(Pn

k , IX(l)) is then a homogeneous ideal of S, because S ∼=
⊕l≥0H

0(Pn
k ,O(l)).
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It is important to note that this correspondence between subschemes of
Pn

k and ideals of S is not a bijection. Essentially this is because the irrelevant
ideal m does not correspond to a subscheme of Pn

k . More specifically, two
ideals I and J correspond to the same subscheme of Pn

k if and only if the
saturations of I and J with respect to m coincide, so (I : m∞) = (J : m∞),
where (I : m∞) := 〈f ∈ S : fmk ⊆ I for some k > 0〉. Note that if
(I : m∞) = (J : m∞) then Ik = Jk for k � 0. Note also that I ⊆ (I : m∞).
An ideal I is called saturated if I = (I : m∞). The saturation of I is
the largest ideal corresponding to the same subscheme as I, and there is a
one-to-one correspondence between homogeneous saturated ideals of S and
subschemes of Pn

k . Thus to parameterize subschemes of Pn
k , it suffices to

parameterize homogeneous saturated ideals of S.
If k is an algebraically closed field, and the ideal I is prime, then the

subscheme of Pn
k determined by I is the variety V (I) determined by I, which

has closed points {x ∈ Pn
k : f(x) = 0 for all f ∈ I}.

Example 1.1. Let n = 3, and let I = 〈x0x3 − x1x2, x0x2 − x2
1, x1x3 − x2

2〉.
Then I is a prime ideal whose variety is the twisted cubic in P3. Let I ′ =
〈x2

2x3 − x1x
2
3, x1x2x3 − x0x

2
3, x

2
1x3 − x0x2x3, x

3
2 − x0x

2
3, x1x

2
2 − x0x2x3, x0x

2
2 −

x0x1x3, x
2
1x2 − x0x1x3, x0x1x2 − x2

0x3, x
3
1 − x2

0x3, x0x
2
1 − x2

0x2〉. Then (I ′ :
m∞) = (I ′ : m3) = I, as I ′ = I ∩ m3. Thus I and I ′ determine the same
subscheme of P3.

The Hilbert polynomial of a homogeneous ideal of S, or a subscheme of
Pn

k , is an invariant of an ideal/subscheme that will determine the connected
components of the Hilbert scheme. For simplicity, we assume that k is a
field from now on. The Hilbert polynomial is determined from the Hilbert
function of the ideal. This is the function HS/I : N → N given by

HS/I(t) = dimk(S/I)t,

where (S/I)t is the tth graded piece of the S-module (and thus vector space
over k) S/I. The key fact is that the function HS/I agrees with a poly-
nomial PS/I for large t, so HS/I(t) = PS/I(t) for t � 0. The polynomial
PS/I(t) is called the Hilbert polynomial of S/I. If X is the subscheme of Pn

corresponding to I, then PS/I(t) = χ(OX(t)).
There are many different proofs of the fact that PS/I exists. The one we

give here, while not the shortest, contains some important ideas that we will
return to often. The key idea is to first reduce to the case where I is a
monomial ideal, and then give a combinatorial proof in the monomial case.
This will be a repeated theme. The reduction to the monomial case uses the
theory of Gröbner bases, and we now summarize the facts we need. Anyone
unfamiliar with Gröbner bases is urged to spend an evening or two with the
first few chapters of the classic [CLO07]. More geometric details are found
in [Eis95, Chapter 15].

Fix w ∈ Nn+1. For f =
∑

u∈Nn+1 cux
u, set the initial term of f to be

inw(f) =
∑
cux

u, where the sum is over those u ∈ Nn+1 with w · u maximal
among those u with cu 6= 0. For example, if n = 3, w = (1, 0, 0, 1), and
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f = x0x3 − x1x2, then inw(f) = x0x3. The initial ideal of I is the ideal
inw(I) := 〈inw(f) : f ∈ I〉. We warn that inw(I) is almost never generated
by the initial terms of a minimal generating set for I. A set G = {g1, . . . , gs}
of polynomials in I is a Gröbner basis for I with respect to w if inw(I) =
〈inw(g1), . . . , inw(gs)〉.

A geometric description of this is as follows. For f =
∑

u∈Nn+1 cux
u, set

f̃ = td(f)
∑

u∈Nn+1 cux
ut−w·u, where d(f) = maxcu 6=0w · u. By construction

f̃ ∈ S[t], with at least one term containing no power of t. Set It = 〈f̃ : f ∈ I〉.
Again, It is almost never generated by {f̃ : f is a minimal generator of I}.
The S[t]-module S[t]/It is in fact a flat k[t]-module. In geometric language
this says that

Spec(S[t]/It) ⊂ An+1 × A1

��
A1

is a flat family over A1. If I is homogeneous, we can replace Spec(S[t]/It)
by Proj(S[t]/It) ⊂ Pn × A1, where t has degree zero. By construction the
fiber over t = 1 is Spec(S/I) (or Proj(S/I)), and the fiber over t = 0 is
Spec(S/ inw(I)) (respectively Proj(S/ inw(I))). This says that there is a flat
degeneration from an ideal to its initial ideal, and thus from the correspond-
ing affine or projective scheme to the one determined by the initial ideal.
Such a degeneration is called a Gröbner degeneration.

Even more geometrically, consider the (k∗)n+1-action on An+1 given by
scaling the coordinates. This action extends to an action on ideals in S or
equivalently to subschemes of An+1. Consider the one-parameter subgroup of
(k∗)n+1 which is the image of φ : k∗ → (k∗)n+1 where φ(t) = (t−w1 , . . . , t−wn).
Then the subscheme corresponding to inw(I) is limt→0 φ(t) ·X, where X is
the subscheme of An+1 corresponding to I. When I is homogeneous we can
replace affine space by projective space throughout.

For sufficiently generic w the ideal inw(I) is generated by monomials. The
initial ideal then coincides with one coming from a monomial term order.
This is a total order on the monomials in S compatible with multiplication.
The most common of these are the lexicographic term order, where xu ≺ xv

if the first nonzero entry of v−u is positive, or the reverse lexicographic term
order, where xu ≺ xv if the degree of xu is smaller than that of xv or if the
degrees are the same, and the last nonzero entry of v− u is negative. When
working with a term order, the initial term of a polynomial is the largest
monomial occurring in the polynomial. A term order can be obtained from
a vector w ∈ Nn+1 by setting xu ≺ xv if w · u < w · v, breaking ties with the
lexicographic order if necessary.

The monomials not lying in inw(I), called standard monomials, form a
vector-space basis for S/I. To see this, note that for every monomial xu ∈
inw(I) there is a polynomial xu − fu ∈ I with fu =

∑
xv 6∈inw(I) cvx

v, which

shows that the standard monomials span S/I. If there was a choice of cv
not all zero with

∑
v 6∈inw(I) cvx

v = 0 in S/I, then g =
∑

v 6∈inw(I) cvx
v ∈ I, so
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inw(g) ∈ inw(I). From this contradiction we see that the standard monomials
are linearly independent in S/I, so form a basis.

Thus when I is homogeneous we have HS/I = HS/ inw(I). This shows that it
suffices to prove the existence of the Hilbert polynomial for monomial ideals.
To do this, we first note that the Hilbert function of the polynomial ring S
is HS(t) =

(
t+n
n

)
for t ≥ 0, which is a polynomial of degree n. This shows

the existence of the Hilbert polynomial for polynomial rings. We next show
that the standard monomials of a monomial ideal can be partitioned into
translates of the monomials in smaller polynomial rings.

Definition 1.2. Let I be a monomial ideal. A Stanley decomposition for
S/I is a finite decomposition of the standard monomials of I into disjoint
sets of the form (xu, σ) = {xu+v : supp(xv) ⊆ σ}, where σ ⊆ {0, 1, . . . , n},
and supp(xv) = {i : vi > 0}.

Example 1.3. Let I = 〈x2
0x1〉 ⊂ k[x0, x1]. Then one Stanley decomposition

for S/I is {(1, {0}), (x1, {1}), (x0x1, {1})}. Another Stanley decomposition
is {(1, {1}), (x0, {0}), (x0x1, ∅), (x0x

2
1, {1})}.

Recall that if f ∈ S and I is an ideal in S then (I : f) = {g ∈ S : gf ∈ I},
and (I : f∞) = {g ∈ S : gfk ∈ I for some k ≥ 0}.

Lemma 1.4. Let I be a monomial ideal. Then a Stanley decomposition for
S/I exists.

Proof. Let ki = min{k : (I : xk
i ) = (I : x∞i )}, and let k =

∑n
i=0 ki. The

proof is by induction on n and k. When n = 0 we must have I = 〈xl
0〉 for

some l. Then ∪l−1
j=0(x

j
0, ∅) is a Stanley decomposition for S/I. If k = 0 then

I = Pσ = 〈xi : i 6∈ σ〉 is a monomial prime ideal, and {(1, σ)} is a Stanley
decomposition for S/I.

Consider the short exact sequence

0 → S/(I : xi) → S/I → S/(I, xi) → 0.

Note that S/(I, xi) is isomorphic to the quotient of a smaller polynomial ring,
missing xi, by a monomial ideal, so by induction a Stanley decomposition
{(xuj , σj) : 1 ≤ j ≤ s} for S/(I, xi) exists. Also, the invariant ki for (I : xi) is
smaller than that for I, while all other kj are no larger, so again by induction
a Stanley decomposition {(xvj , τj) : 1 ≤ j ≤ t} for S/(I : xi) exists. Then
{(xuj , σj) : 1 ≤ j ≤ s} ∪ {(xix

vj , τj) : 1 ≤ j ≤ t} is a Stanley decomposition
for S/I. �

If {(xuj , σj) : 1 ≤ j ≤ s} is a Stanley decomposition for S/I, then

HS/I(t) =
s∑

j=1

HSσj
(t− |uj|),

where Sσj
is the polynomial ring k[xi : i ∈ σj], and |uj| =

∑n
i=0(uj)i. The

fact that the Hilbert function of S/I eventually agrees with a polynomial
thus follows from the fact that the Hilbert function of a polynomial ring
agrees with a polynomial for nonnegative values.
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Example 1.5. Let S = k[x0, x1, x2, x3], and let I = 〈x0x3 − x1x2, x0x2 −
x2

1, x1x3−x2
2〉. To compute the Hilbert polynomial of S/I, we first compute a

Gröbner basis for I and thus compute an initial ideal. For w = (1, 0, 0, 1) the
given generating set is a Gröbner basis, so J = inw(I) = 〈x0x3, x0x2, x1x3〉.
A Stanley decomposition for S/J is {(1, {2, 3}), (x1, {1, 2}), (x0, {0, 1})}, so
for t ≥ 1 we have HS/I(t) = Hk[x2,x3](t) +Hk[x1,x2](t− 1) +Hk[x0,x1](t− 1) =
t+ 1 + t+ t = 3t+ 1. Thus PS/I(t) = 3t+ 1.

1.2. Functorial definition. It is natural to worry that there might be many
ways of constructing a scheme (or variety) whose closed points correspond to
subschemes of Pn. This is taken care of by requiring that the Hilbert scheme
be a fine moduli space, which thus carries a universal bundle.

To define a fine moduli space, we need the notions of a representable
functor and of the functor of points of a scheme. The key idea is that a
scheme is determined by its morphisms to other schemes.

Definition 1.6. Let X be a scheme. The functor hX from the opposite of
the category of schemes to the category of sets is given by

hX(Y ) = Mor(Y,X),

and if f : Y → Z is a morphism of schemes, then

hX(f) : Mor(Z,X) → Mor(Y,X)

is the induced map of sets. The functor hX is the functor of points of the
scheme X.

Note that if Y = Spec(k) for k a field then hX(Y ) is the set of k-valued
points of X.

Definition 1.7. A functor F : (schemes)◦ → sets is representable if F ∼= hX

for some scheme X. The scheme X is unique if it exists. This follows from
the categorical result known as Yoneda’s lemma.

Lemma 1.8 (Yoneda’s Lemma). Let C be a category and let X,X ′ be objects
of C.

(1) If F is any contravariant functor from C to the category of sets, the
natural transformations from Mor(−, X) to F are in natural corre-
spondence with the elements of F (X).

(2) If the functors Mor(−, X) and Mor(−, X ′) from C to the category
of sets are isomorphic, then X ∼= X ′. More generally, the maps of
functors from Mor(−, X) to Mor(−, X ′) are the same as maps from
X to X ′; that is the functor

h : C → Fun(C◦, (sets))
sending X to hX is an equivalence of C with a full subcategory of the
category of functors.

The second part of this lemma immediately proves that if F is repre-
sentable then the scheme representing it is unique.

The functor F is in fact determined by its values on affine schemes.
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Lemma 1.9. If R is a commutative ring, then a scheme over R is deter-
mined by the restriction of its functor of points to affine schemes over R.
Specifically,

h : (R-schemes) → Fun((R-algebras), (sets))

is an equivalence of the category of R-schemes with a full subcategory of the
category of functors.

Example 1.10. The Grassmann functor G(d, n) takes a ring R to the set
of rank d direct summands of Rn. This functor is represented by a scheme
G(d, n). One way to show this is to define G(d, n) to be Proj(Z[xI ]/Id,n),
where the variables xI are indexed by the

(
n
d

)
sets of size d subsets of [n] :=

{1, . . . , n}, and Id,n is the ideal generated by the Plücker relations. See, for
example, [EH00, Section III.2.7 and Exercise VI.18]. By looking at local
charts one can show that this scheme does represent the functor G(d, n).
Note that if k is a field, then the set of k-valued points of G(d, n) is the set
of closed points of the familiar Grassmannian of d-planes in affine n-space.

A major reason to work with representable functors is that the functorial
language makes many proofs easier. Geometrically, this means that corre-
sponding scheme is a fine moduli space for the moduli problem. Specifically,
if F is a moduli functor, for example taking a scheme B to the set of families
over B with all fibers having a prescribed form, a scheme X representing F
is called a fine moduli space for this moduli problem.

Let Ψ be the isomorphism from F to hX . Then a family over B with
appropriate fibers is taken by Ψ to a morphism from B to X, so each such
family gives a map to X. Conversely, let 1X be the identity morphism from
X to itself. This is taken by Ψ−1 to a family U → X whose fibers all have
the prescribed property. The scheme U is called the universal family over X.
If G→ B is a family over B with appropriate fibers, then we can pull back
the family U over X by the induced map of π : B → X. The uniqueness
implies that U ×X B ∼= G:

G ∼= U ×X B //

��

U

��
B // X

.

Remark 1.11. We are lucky that the Hilbert functor, defined below, is
representable. There are many naturally occurring moduli functors that are
not representable. A prominent example of this is the moduli problem of
parameterizing all curves of genus g, which does not have a fine moduli
space. One partial solution is to ask for the existence of a coarse moduli
space. A scheme Y is a coarse moduli space for a moduli functor F if there
is a natural transformation ΨY from F to Mor(−, Y ) with the property
that the map ΨSpec(C) from F (Spec(C)) to the C-valued points of Y is a
bijection of sets, and given another scheme Y ′ and a natural transformation
ΨY ′ : F → Mor(−, Y ′), there is a unique morphism π : Y → Y ′ such that the
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induced map Π : Mor(−, Y ) → Mor(−, Y ′) satisfies ΨY ′ = Π◦ΨY . Such a Y
is then unique up to canonical isomorphism. The disadvantage, though, is
that we do not get a nice universal family as for a fine moduli space. Another
possibility, beyond the reach of these notes, is use a stack description.

We now describe the moduli problem defining the Hilbert scheme.

Definition 1.12. Fix a base scheme S. The Hilbert functor is the functor
hP : (schemes)◦ → (sets) that associates to any scheme B over S the set of
subschemes Y ⊆ Pn

B flat over B whose fibers over points of B have Hilbert
polynomial P .

We will assume here for simplicity that S = Spec(k) for k a field. Taking
S = Spec(Z) allows great generality.

Theorem 1.13. There is a scheme HilbP (Pn) that represents hP .

We sketch the proof in the next lecture.

Remark 1.14. One can also consider the Hilbert scheme Hilb(X) where X
is a projective scheme. Loosely, one embeds X into some projective space,
and constructs Hilb(X) as a subscheme of Hilb(PN). One then shows that
this construction also represents some functor, thus showing that it is in-
dependent of the choice of embedding into projective space. In Lecture 4
we will consider the Hilbert scheme of points in affine space, which is an
analogous construction.

1.3. Exercises 1. The following are more exercises than any of you would
want to do this week. So before beginning, look at your notes and decide
which aspect you would like to understand better. Then read through all
the exercises, before choosing which one to start with. Hopefully there is
something for everyone!

(1) Let S = k[x0, x1, x2, x3], where k is a field. Compute the saturation
of I = 〈x2

3, x2x3, x1x3, x0x3, x1x2, x
3
0〉.

(2) (a) Show that (I : m∞) = (I : mk) for some k > 0, and that if
(I : mk) = (I : mk+1) for some k > 0, then (I : mk) = (I : m∞).
Here (I : mk) = {f ∈ S : fg ∈ I for all g ∈ mk}.

(b) Show that (I : m∞) = ∩n
i=0(I : x∞i ).

(c) (For those who know more about Gröbner bases) Show that a
generating set for (I : x∞i ) is obtained by computing a Gröbner
basis for I with respect to the reverse lexicographic order with
xi smallest, and then dividing out any power of xi dividing an
element. This explains how saturation can be computed in a
computer algebra system.

(3) Show that the Hilbert polynomial of Pn is P (t) =
(

n+t
n

)
.

(4) Let S = k[x0, x1, x2]. Compute the Hilbert polynomial of S/I for the
following ideals.
(a) I = 〈x2

0, x1x2〉,
(b) I = 〈x3

0, x
2
0x

3
1, x0x1x2, x0x

4
2, x

4
1x

3
2, x

6
1, x

7
2〉,
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(c) I = 〈x2
1 − x0x2〉,

(d) I = 〈3x0x1 − 2x2
1 − 3x0x2 + x1x2 + x2

2, 9x
2
0 − 4x2

1 − 18x0x2 +
8x1x2 + 5x2

2, x
3
1 − 3x1x

2
2 + 2x3

2〉. (Hint: You’ll probably want to
use a computer algebra package).

(5) Show that I and (I : m∞) have the same Hilbert polynomial.
(6) In this exercise we sketch a more straight-forward proof of the exis-

tence of the Hilbert polynomial, assuming the existence of finite free
resolutions. We can extend the definition of the Hilbert function to
arbitrary S-modules by setting HM(t) = dimkMt.
(a) Show that the Hilbert function is additive on short exact se-

quences, in the sense that if

0 →M ′ →M →M ′′ → 0

is a short exact sequence of S-modules, then HM = HM ′ +HM ′′ .
(b) The S-module S[a] is the polynomial ring S with the grading

shifted, so S[a]t = Sa+t. Thus the 1 of S[a] has degree −a. Show
that the Hilbert function of S[a] agrees with a polynomial for
t� 0.

(c) Deduce the existence of the Hilbert polynomial for any finitely
generated S-module from the existence of a finite free resolution

0 → ⊕jS[−bnj]
βnj → · · · → S[−b1j]

β1j → S[−b0j]
β0j →M → 0.

(7) Prove Yoneda’s lemma
(8) Give a direct argument that hSpec(Z) is not isomorphic to any functor

of points of a different scheme.
(9) Flesh out the details of the construction of the Grassmannian. What

are the Plücker relations? Why does the given scheme represent the
Grassmann functor?

2. Lecture 2: Construction

In this lecture we outline the construction of the Hilbert scheme. The
proof comes in two parts. First, one constructs a scheme X whose closed
points correspond to subschemes of Pn. This is essentially combinatorial
commutative algebra. One then shows that X satisfies the desired universal
property, and thus represents the functor hP . We will only give details on
the first of these steps.

The scheme X is constructed as a subscheme of a Grassmannian. The key
to the construction of the Hilbert scheme is the fact that there is a uniform
degree D = D(P ) for which all ideals I ⊆ S of Hilbert polynomial P are
generated in degree at most D. This follows from Gotzmann’s regularity
theorem, which uses the notion of Castelnuovo-Mumford regularity. A good
reference for the commutative algebra from this lecture is [BH93]. Recall that
for a homogeneous ideal the degrees of the minimal generators, and also the
degrees of minimal generators for higher syzygy modules, is well-defined. See
[Eis95, Chapter 20] for details.
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Definition 2.1. Given a homogeneous ideal I ⊆ S, we say S/I is k-regular
if

H i
m(S/I)j = 0 for j + i > k,

whereH i
m is the ith local cohomology functor, or equivalently ifH i

m(S/I)k−i+1 =
0 for i ≥ 0. Equivalently (in the case that I is saturated), in sheaf-theoretic
language, I is k-regular if

H i(Pn, I(k − i)) = 0,

for i > 0. By [EG84] we have the following reformulation in terms of free
resolutions. Let

0 → ⊕iS[−βli] → · · · → ⊕iS[−β1i] → S → S/I → 0

be the minimal free resolution of S/I, where S[−β] is the polynomial ring
S with the grading shifted so that 1 has degree β. Then S/I is k-regular if
k ≥ maxij(βij − i).

Remark 2.2. Note that the β1i are the degrees of the minimal generators
of I, so in particular if S/I is k-regular, then I is generated in degree at
most k + 1. Also, if S/I is k-regular, then HS/I(k) = PS/I(k). This follows
from, for example, [BH93, Theorem 4.4.3], or the proof of the existence of
the Hilbert polynomial using free resolutions given in Exercise 6.

There is a uniform bound on the regularity of all ideals with a given Hilbert
polynomial, which we now present. We first detour with a definition that
secretly motivates the following theorem, and will be useful in the following
lecture.

Definition 2.3. The lexicographic, or dictionary, order on the monomials
of degree d is defined by setting xu ≺lex x

v if the first nonzero entry of v− u
is positive. A monomial ideal I is lexicographic if whenever xu ∈ I and
deg(xu) = deg(xv) with xu ≺lex x

v we have xv ∈ I.
The following proposition is essentially due to Macaulay.

Proposition 2.4. There is exactly one lexicographic ideal with a given Hilbert
function. There is exactly one saturated lexicographic ideal with a given
Hilbert polynomial.

Theorem 2.5. Let P be a Hilbert polynomial, and write

P (t) =
D∑

j=1

(
t+ ai − i+ 1

ai

)
,

where a1 ≥ a2 ≥ · · · ≥ aD ≥ 0. Then if I is a saturated ideal with Hilbert
polynomial PS/I(t) = P then S/I is D − 1-regular.

For a concise proof of Gotzmann’s regularity theorem, see [BH93, Theorem
4.3.2]. See also [MS05, Theorem 5.2] for a proof that generalizes to the
multigraded case. The number D is called the Gotzmann number of P .

Theorem 2.5 means that every saturated ideal with Hilbert polynomial P
is generated in degree at most D. Note that (I≥D : m∞) = (I : m∞), and
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if I is generated in degree at most D then I≥D is generated in degree D.
Thus we can consider ideals generated in degree D. Let GD be the Grass-
mannian Gr(

(
n+D

n

)
−P (D), SD). Saturated ideals I with Hilbert polynomial

P correspond to closed points in G, where an ideal I corresponds to the k-
subspace ID of SD. We now show that the closed points in Gr(N−P (D), N)
corresponding to such ideals are the closed points of a subscheme H of G.

This relies on Gotzmann’s persistence theorem, which gives a criterion for
the Hilbert function of an ideal to agree with its Hilbert polynomial. This
relies on a curious numerical function from N to N depending on a parameter
d ∈ N.

Definition 2.6. Given n, d ∈ N, we can write n uniquely as

n =
t∑

j=0

(
kj

d− j

)
,

where kj > kj+1 ≥ 0. The Macaulay upper boundary of n with respect to d
is then

n〈d〉 =
t∑

j=0

(
kj + 1

d− j + 1

)
.

We note that this is very closely related to the description of the Hilbert
polynomial in Theorem 2.5.

Theorem 2.7. Let k ∈ N be such that all minimal generators of I are in
degrees less than k. If HS/I(k+1) = HS/I(k)

〈k〉, then HS/I(t+1) = HS/I(t)
〈t〉

for all t ≥ k.

Note that in particular that the Hilbert polynomial satisfies PS/I(t+ 1) =

PS/I(t)
〈t〉 for all t � 0, so a particular corollary of Theorem 2.7 is that if

an ideal J is generated in degrees at most D, and if HS/J(D) = P (D) and
HS/J(D + 1) = P (D + 1) then PS/J = P .

LetD be the Gotzmann number of P , and letHP be the scheme {(L,M) ∈
GD × GD+1 : xiL ⊆ M for all i} with the natural induced closed subscheme
structure on GD × GD+1.

Theorem 2.8. The scheme HP represents the functor hP .

Remark 2.9. One can also describe HilbP (Pn) directly as a subscheme of GD,
by writing S1L ⊂ SD+1 in terms of the coordinates on GD, and demanding
that dimk(S1L) ≤

(
n+D+1

n

)
−P (D+1), which gives determinantal equations.

This works because Macaulay’s theorem guarantees the reverse inequality, so
such L must actually have dimk(S1L) =

(
n+D

n

)
− P (D + 1). See also [HS04]

and [DB82].

2.1. Exercises 2.

(1) Compute the Gotzmann number for the Hilbert polynomial of I =
〈x2

0, x1x2〉 ⊂ k[x0, x1, x2]. Repeat for the Hilbert polynomial of I =
〈x0x3, x0x2, x1x2〉 ⊂ k[x0, x1, x2, x3].
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(2) Let I = 〈x0x3 − x1x2, x0x2 − x2
1, x1x3 − x2

2〉. Compute saturated
lexicographic ideal with the same Hilbert polynomial as I. Verify
that it is generated in degrees at most the Gotzmann number of
PS/I .

(3) Let S = k[x0, x1, x2], and let P (t) = 2. Write down equations de-
scribing HilbP (P2).

(4) Describe the equations for the Hilbert scheme Hilb3t+1(P3).
(5) Assuming Macaulay’s theorem (Proposition 2.4), show that every

Hilbert polynomial can be written in the form of Theorem 2.5. Hint:
What do Stanley decompositions of lexicographic ideals look like?
Show that such a decomposition is unique. Hint: This is a purely
numerical property. Fix a large t, and look at the corresponding
decomposition of P (t). Can you identify a1 in this case?

(6) Show that there is no bound on the regularity of S/I with Hilbert
polynomial P if I is not assumed to be saturated.

(7) This question outlines a proof of Theorem 2.5.
(a) Note first that it suffices to show that the bound given in Theo-

rem 2.5 bounds the regularity of saturated monomial ideals with
Hilbert polynomial P . (Hint: Gröbner degeneration and upper
semicontinuity - skip this part if you don’t know these words).

(b) A Stanley filtration for S/I, where I is a monomial ideal, is a
Stanley decomposition {(xui , σi) : 1 ≤ i ≤ s} with the extra
property that {(xui , σi) : 1 ≤ i ≤ j} is a Stanley decomposition
for S/(I, xuj+1 , . . . , xus) for 1 ≤ j ≤ s. Show that if I is a
monomial ideal then a Stanley filtration for S/I exists.

(c) What can you say about regularity in short exact sequences?
Deduce that if {(xui , σi) : 1 ≤ i ≤ s} is a Stanley filtration for
S/I, where I is a saturated ideal, then reg(S/I) ≤ maxi |ui|,
where the sum is over all i with |σi| > 0.

(d) Show that there is always a Stanley decomposition {(xui , σi) :
1 ≤ i ≤ s} for S/I with |ui| ≤ i− 1, and max{i : σi 6= ∅} ≤ D.
Conclude Gotzmann’s theorem.

(e) It is an open question whether the upper bound on the regularity
of S/I given in (7c) is ever not sharp for some Stanley filtration,
and (weaker) whether there always a Stanley decomposition for
which the maximum |ui| is at most the regularity.

3. Lecture 3: Connectedness and Pathologies

3.1. Connectedness. Little is known about the global structure of the
Hilbert scheme. The one uniform fact that is known is Hartshorne’s the-
orem that the Hilbert scheme is always connected. We now outline the proof
of this result. The key idea of the proof is to first reduce to showing that
all monomial ideals in HilbP (Pn) live on the same connected component.
This can be done, for example, by using a Gröbner degeneration. This re-
duces connectedness to a more combinatorial problem, as monomial ideals
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are essentially combinatorial objects, and there are only a finite number of
monomial ideals in the Hilbert scheme. We make repeated use of the ele-
mentary topological fact that if f : X → Y is a map from an irreducible
variety to a scheme Y , and x1, x2 ∈ X, then f(x1) and f(x2) live on the same
connected component of Y . In particular, we construct a sequence of maps
from A1 to HilbP (Pn) sending 0 to one monomial ideal and 1 to another. In
this fashion we can walk between monomial ideals staying within the same
connected component of the Hilbert scheme. The connectedness is proven
by showing that we can walk from any monomial ideal to the lex-segment
ideal.

Remark 3.1. A curious aspect of this proof is that one does not need to
know the construction of the Hilbert scheme to show that it is connected.
Indeed, this can be thought of as a relative result “if the Hilbert scheme
exists, it must be connected”. To quote Hartshorne [Har66], “It also appears
that the Hilbert scheme is never actually needed in the proof”.

We reduce the size of the resulting combinatorial problem of dealing with
all monomial ideals by restricting to the smaller set of Borel-fixed ideals.

Definition 3.2. Let B be the Borel-subgroup of GL(n + 1,k) consisting
of upper-triangular matrices. The group B acts on S by sending b · xi =∑n

j=0 bjixj. Since the action preserves the grading of the ring, we get an

induced action on the set of homogeneous ideals, and thus on HilbP (Pm).
An ideal I is Borel-fixed if b · I = I for all b ∈ B.

Since the torus (k∗)n is a subgroup of B, it is straightforward to check that
a Borel-fixed ideal must be monomial. We have the following characterization
(see [Eis95, Theorem 15.23]) of Borel-fixed ideals when the characteristic
of the field k is zero. A slightly more complicated result holds when the
characteristic is positive.

Proposition 3.3. An ideal I is Borel-fixed if and only if

(1) I is monomial, and
(2) whenever xu ∈ I, i < j, and xj divides xu, we have xix

u/xj ∈ I.
We now show that every ideal lives in the same connected component as

a Borel-fixed ideal. This uses the notion of a generic initial ideal.

Definition/Proposition 3.4. Fix a generic vector w ∈ Nn+1. There is
a Zariski-open set U ⊆ GL(n + 1,k) and a monomial ideal J for which
inw(g · I) = J for all g ∈ U . The ideal J is called the generic initial ideal
of I with respect to w, and is written J = ginw(I). The generic initial ideal
can also be defined with respect to a monomial term order ≺. The most
commonly used here is the reverse lexicographic term order (revlex).

Proposition 3.5. Every ideal I with Hilbert polynomial P lives on the same
connected component of HilbP (Pn) as a Borel-fixed ideal.

Proof. By [BS87] the revlex gin is Borel-fixed, so it suffices to check that I
lives on the same connected component as each of its gins. Fix the reverse
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lexicographic term order ≺ and let g ∈ GL(n + 1,k) lie in the Zariski open
set U for computing the revlex gin. Pick a map ψ from A1 to GL(n + 1,k)
that has g and the identity in its image. This shows that I and gI lie in
the same connected component. Then in≺(gI) lies in the same irreducible
component as gI by the Gröbner degeneration, so I lies in the same connected
component as the Borel-fixed ideal gin≺(I). �

This proof can be refined to show that I actually lives in the same irre-
ducible component as a Borel-fixed ideal. Proposition 3.5 reduces the prob-
lem of showing connectedness to showing that all Borel-fixed ideals live on
the same connected component, by showing we can “walk” from each one to
the lex-segment ideal.

We now sketch a proof of the fact that the Hilbert scheme is connected.
We follow the paper of Alyson Reeves [Ree95], who analyzed Hartshorne’s
approach to prove the stronger result that the radius of the component-
graph of the Hilbert schemes is at most d + 1, where d is the degree of the
Hilbert polynomial (and thus the dimension of the subschemes of Pn

k being
parameterized). We restrict here the base field k being algebraically closed
of characteristic zero.

Definition 3.6. The component graph of the Hilbert scheme HilbP (Pn) has
vertices the irreducible components of HilbP (Pn), and an edge connecting two
vertices if and only if the corresponding components intersect. The radius
of the Hilbert scheme is the minimum over all vertices v of the component
graph of the maximum distance from v to any other vertex.

By a result of Reeves and Stillman [RS97] the saturated lexicographic ideal
is a smooth point of HilbP (Pn), so lies on exactly one irreducible component,
which we call the lexicographic component.

Theorem 3.7. [Ree95] Let d be the degree of the Hilbert polynomial P . Then
the distance from any vertex to the vertex of the lexicographic component is
at most d+1, so the radius of the Hilbert scheme HilbP (Pn) is at most d+1.

The key idea of the proof is to do a construction known as the distraction
which takes a Borel-fixed ideal to another Borel-fixed ideal that is closer to
the lexicographic ideal.

Definition 3.8. Let I ⊂ S be a monomial ideal. The polarization of I is the
following monomial ideal p(I) in the polynomial ring k[zij : 0 ≤ i ≤ n, j ≥ 0]
in infinitely many variables:

p(I) = 〈
n∏

i=0

ui∏
j=1

zij : xu is a minimal generator of I〉.

Note that p(I) is a squarefree monomial ideal, and thus radical.
Define σ : k[zij] → S by σ(zij) = xi−αijxn, where αij ∈ k. The distraction

of I is then σ(p(I)).
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Lemma 3.9. For sufficiently generic choice of αij the distraction σ(p(I))
has the same Hilbert function as I. In fact, there is a Gröbner degeneration
from σ(p(I)) to I.

We note that the second sentence of the lemma follows from the first, as
it is straightforward to observe that the lexicographic initial ideal of σ(p(I))
contains I, so if they have the same Hilbert function they must be equal.

The plan to show connectedness is then to start with an arbitrary ideal,
take the gin, take the distraction of the gin with a sufficiently general choice
of αij, take its revlex gin, and then repeat, taking distractions and then revlex
gins. All ideals obtained in this fashion are clearly in the same connected
component of the Hilbert scheme, so it suffices to check that after a finite
number of steps we obtain the lexicographic ideal. This finite number will
be bounded by d+ 1, proving Theorem 3.7.

This is accomplished by analyzing the irreducible components of σ(p(I).
For sufficiently generic αij these are linear subspaces of Pn.

Definition 3.10. An irreducible component of σ(p(I)) is in lexicographic
position if it is an irreducible component of σ(p(L)), where L is the lexico-
graphic ideal with the same Hilbert polynomial as I.

To prove the d+ 1 bound, the key of Reeves’ argument is:

Proposition 3.11. Let I be a saturated Borel-fixed ideal such that all irre-
ducible components of σ(p(I)) of dimension at least i+1 are in lexicographic
position. Let J be the saturation of ginrevlex(σ(p(I))). Then σ(p(J)) has all
irreducible components of dimension at least i in lexicographic position.

This proves the radius bound, since any saturated Borel-fixed ideal with
Hilbert polynomial P has all components of σ(p(I)) of dimension at most
d, so trivially satisfies the hypotheses of the proposition for i = d. Thus
after d + 1 iterations of the (ginrevlex(σ(p(I))) : m∞) procedure we have an
ideal whose distraction has all components in lexicographic position. This
means its distraction equals the distraction of the lexicographic ideal (as
containment would imply a smaller Hilbert polynomial), and thus that the
ideal equals the lexicographic ideal.

Remark 3.12. We note that there are many other proof of this result.
Reeves’ proof outlined above assumes that the base scheme is a field of
characteristic zero. The characteristic assumption was removed in the Keith
Pardue’s thesis [KP94]. A substantially different proof with the characteristic
assumption, appears in the work of Peeva and Stillman [PS05], which is also
related to the work of Daniel Mall [Mal00]. See [Fum05] for extensions of
Mall’s work.

3.2. Pathologies. It is somewhat expected that connectedness is the only
positive geometric property to be shared by all Hilbert schemes. This belief
is expressed in the book [HM98] by the following law.
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Law 3.13 (Murphy’s Law for Hilbert schemes [HM98]). There is no geo-
metric possibility so horrible that it cannot be found generically on some
component of some Hilbert scheme.

An early piece of evidence for this is the following result of Mumford [Mum62].

Theorem 3.14. Let P (t) = 14t − 23. Then HilbP (P3
k) has an irreducible

component that is nonreduced. This component parameterizes curves of de-
gree 14 and genus 24 contained in a cubic surface that are linearly equivalent
in S to 4H + 2L where H is a hyperplane section and L is a line in S.

The Law has been made precise for singularities by the following result
of Ravi Vakil. Define an equivalence relation on pointed schemes generated
by: If (X, p) → (Y, q) is a smooth morphism, then (X, p) ∼ (Y, q). We
call the equivalence classes singularity types, and will call pointed schemes
singularities.

Theorem 3.15. [Vak06] Every singularity of finite type over Z appears in
some Hilbert scheme. This can be taken to be a Hilbert scheme of surfaces
in P4.

Vakil’s result extends to many other moduli spaces, such as stable maps
to projective space and the Chow variety, showing that this bad behaviour
is almost ubiquitous. The key idea of the proof is again combinatorial, and
we outline it here.

An incidence scheme of points and lines in P2 is a locally closed subscheme
of (P2)m × (P2∗)n = {p1, . . . , pm, l1, . . . , ln} parameterizing m ≥ 4 marked
point and n marked lines as follows.

(1) p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], p4 = [1 : 1 : 1].
(2) For each pair (pi, lj) either pi is required to lie on lj, or pi is required

not to lie on lj.
(3) The marked points pi are required to be distinct, and the marked

lines are required to be distinct.
(4) Given any two marked lines, there is a marked point required to be

on both of them.
(5) Each marked line contains at least three marked points.

Theorem 3.16 (Mnëv’s Universality Theorem). Every singularity type of
finite type over Z appears on the some incidence scheme.

We note that this theorem is constructive, so given a singularity type we
can construct an incidence scheme with that singularity type. The idea of
the proof of Theorem 3.15 is then to fix a particular type of singularity over
Z, and construct a smooth morphism from the incidence scheme containing
that singularity to a particular Hilbert scheme.

3.3. Exercises 3.

(1) In this exercise you will construct two Hilbert schemes that “do what
you expect”, unlike the pathologies we discussed.
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(a) Let P (t) = t + 1 be the Hilbert polynomial of a line. What is
HilbP (P3)?

(b) Let P (t) = 2t+ 1 be the Hilbert polynomial of a conic. What is
HilbP (P2)?

(c) Explain geometrically why you expect these answers.
(2) Let P (t) = d be a constant polynomial. List the saturated monomial

ideals in HilbP (P1). Which of these are Borel-fixed? What does this
tell you about HilbP (P1)? What is HilbP (P1)?

(3) Show that an ideal I is fixed by the T ∼= (k∗)n action on HilbP (Pn) if
and only if I is monomial. Conclude that Borel-fixed ideals are mono-
mial. Finish the proof of the “only if” direction of Proposition 3.3
by showing that the conditions of the second part of that proposition
are satisfied by a Borel-fixed ideal.

(4) Show that the lexicographic ideal is Borel-fixed.
(5) Check that the saturation of a Borel-fixed ideal is Borel-fixed.
(6) Let ≺ be the reverse-lexicographic term order. Compute by hand

the generic initial ideal of I = 〈x0x1〉 ⊂ k[x0, x1] with respect to ≺.
What is the corresponding set U ⊂ GL(2,k)?

(7) It is essentially never possible to compute the generic initial ideal
exactly by adding extra variables for the elements of GL(n + 1,k),
as the complexity of Gröbner basis calculations increases with the
number of variables. In practice one chooses a “random” element
g ∈ GL(n + 1,k), and computes inw(g · I). Do this for I = 〈x0x3 −
x1x2, x0x2−x2

1, x1x3−x2
2〉 ⊂ k[x0, x1, x2, x3] using a computer algebra

system, and verify that the result is Borel fixed. Warning: Random
g chosen with small entries may well not be sufficiently generic. One
implemented algorithm to compute gins is to try 50 different g, and
take the most common answer.

(8) Let P (t) = 3. List all Borel-fixed ideals in HilbP (P2). Compute
the distraction of each. What does Reeves’ walk do on this Hilbert
scheme?

4. Lecture 4: Hilbert schemes of points on surfaces

We saw in the previous lecture that we should generally expect the Hilbert
scheme to be as nasty as we can imagine. This result does not, however, cover
absolutely all Hilbert schemes, and there are still some that are nice (meaning
smooth and irreducible). In particular, Hilbert schemes of points on smooth
surfaces are always smooth and irreducible, by a result of Fogarty [Fog68].
By a Hilbert scheme of points we mean one where the Hilbert polynomial
is that of a finitely collection of points, so P (t) = d for all t, where d is a
constant.

We will consider the related local picture of the Hilbert scheme of d points
in the affine plane Hilbd(A2). This parameterizes all artinian ideals I in the
polynomial ring S = k[x, y] with dimk(S/I) = d. Note that these ideals need
no longer be homogeneous. In this lecture we will show that Hilbd(A2) is
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smooth and irreducible, following the proof of Haiman [Hai98]. It is impor-
tant to emphasize that this is only scratching the surface of what is known
about Hilbert schemes of points on smooth surfaces, and we could spend
more than the entire week on this topic alone. In particular, we will not
touch on the description of the Betti numbers of Hilbd(A2) for all d, and the
Heisenberg algebra action on the homology of Hilbd(A2). See [Nak99] for an
introduction to these topics.

The proof that Hilbd(A2) is smooth and irreducible has four steps:

(1) Show that Hilbd(A2) is connected by showing that every ideal lives in
the same irreducible component as a monomial ideal, and all mono-
mial ideals live in the same irreducible component (the “good com-
ponent” of the Hilbert scheme of points).

(2) Reduce to showing that all monomial ideals on Hilbd(A2) are smooth
points.

(3) Show that the dimension of the good component of Hilbd(A2) is at
least 2d.

(4) Give a combinatorial description of the tangent space to a monomial
ideal in Hilbd(A2), and show that the dimension of this space is at
most 2d.

Together these steps show that Hilbd(A2) is smooth and connected, and
thus smooth and irreducible. The last of these steps has the most content.
Most of this plan generalizes to Hilbd(An), with the exception of the last
step showing an upper bound on the dimension of the tangent space. We
can thus use this outline to give examples of smooth and singular Hilbd(An)
for n > 2.

4.1. Step 1: Connectedness. Let I be an ideal in Hilbd(A2), so dimk(S/I) =
d. For any term order ≺, the ideal J = in≺(I) satisfies dimk(S/J) =
dimk(S/I) = d, and lives on the same irreducible component of Hilbd(A2) as
I, since the Gröbner degeneration from I to J is a flat family, so gives rise to
a map from A1 to Hilbd(A2), the image of which must lie in one irreducible
component. Thus every ideal lives on the same irreducible component of
Hilbd(A2) as a monomial ideal.

To show that all monomial ideals live in the same connected component,
we will show that they all live in the same connected component as the
ideal J = 〈x, yd〉. Let I = 〈yv1 , . . . , xuiyvi , . . . , xul〉 be a monomial ideal in
Hilbd(A2), where we set u1 = vl = 0. Let xayb be a socle element for S/I with
b 6= 0, so xa+1yb and xayb+1 both live in I. If no such element exists, we must
have I = J . Consider the ideal I ′ = 〈xuiyvi : 1 ≤ i ≤ l − 1〉 + 〈xayb − xul〉.
One can check (using Buchberger’s S-pair criterion) that I = inw(I ′) for any
w ∈ N2 with aw1 +bw2 < ulw1. Let w′ = N(b, ul−a)−w for N � 0, and set
I2 = inw′(I ′). We can repeat this construction for I3, I4, . . . . The exponent
of the minimal generator of the form xc increases at each step, since xul 6∈ I2
in the formulation above, so this procedure must terminate at some ideal Ij,
at which point we must have Ij = J . Since each step is a pair of Gröbner
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degenerations, we conclude that I lives in the same connected component as
J . We note that this argument can be strengthened to show that in fact all
monomial ideals live in the same irreducible component. Since this argument
shows that every ideal I ⊂ S with dimk(S/I) = d lives in the same connected
component of Hilbd(A2) as J , we conclude that Hilbd(A2) is connected.

4.2. Step 2: Smoothness - reduction to the monomial case. To show
that it suffices to check that every monomial ideal in Hilbd(A2) is a smooth
point, we consider the (k∗)2 torus action on Hilbd(A2). The (k∗)2-action on
S = k[x, y] induces a (k∗)2-action on the set of ideals I ⊂ S with dimk(S/I) =
d. The fixed points of this action are the monomial ideals of colength d. To
see this, note first that since the (k∗)2 action scales each monomial in S,
monomial ideals are fixed by this action. For the other inclusion, fix w ∈ N2,
and let φw : k∗ → (k∗)2 be given by φw(t) = (tw1 , tw2), so φw(t)x = t−w1x
and φw(t)y = t−w2y. Then limt→0 φw(t)I = inw(I) for any ideal I. If w is
chosen sufficiently generically then inw(I) is a monomial ideal, so for I not
a monomial ideal we have limt→0 φ(t)I 6= I, so I is not fixed by the (k∗)2

action. Thus the monomial ideals are the fixed point of the (K∗)2 action on
Hilbd(A2).

The singular locus of Hilbd(A2) fixed by the (k∗)2-action, so consists of a
union of (k∗)2-orbits. In addition it is Zariski-closed, so if it is nonempty,
the singular locus must contain a (k∗)2-fixed point, and thus a monomial
ideal. Thus showing that every monomial ideal in Hilbd(A2) is a smooth
point shows that Hilbd(A2) is smooth.

4.3. Step 3: Smoothness - lower bound on dimension. We next show
that dim(Hilbd(A2)) ≥ 2d. This is done using the Hilbert-Chow morphism.
The 0-cycle of an element I ∈ Hilbd(A2) is

∑
i cipi, where the pi are the

points of A2 occurring in the support of the subscheme of A2 determined by
the ideal I, and ci is the multiplicity of point pi, so

∑
i cipi = d. The set of

0-cycles of A2 is parameterized by the points of (A2)d/Sd, where Sd is the
symmetric group on d elements permuting the coordinates of (A2)d. The
Hilbert-Chow morphism is the surjective morphism

Hilbd(A2) → (A2)d/Sd

which takes an ideal I to its 0-cycle. Since (A2)d/Sd is 2d-dimensional, this
shows that Hilbd(A2) is at least 2d-dimensional.

4.4. Step 4: Smoothness - combinatorial construction of the tan-
gent space. The previous steps reduce the problem of showing that Hilbd(A2)
is smooth to showing that the tangent space to Hilbd(A2) at a monomial ideal
is at most 2d-dimensional. We do this by giving a combinatorial description
of the tangent space to a monomial ideal and giving a spanning set of size
2d for this space.

Given a monomial ideal M ∈ Hilbd(A2), let UM be the subscheme of
Hilbd(A2) whose closed points consist of those ideals I for which the stan-
dard monomials of M form a k-basis for S/I. Technically this set describes
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a subfunctor of the Hilbert functor that is represented by UM . Since the
standard monomials of an initial ideal of I form a k-basis for S/I, the set of
all UM cover Hilbd(A2).

The scheme UM is affine, and we now describe its defining equations. Let
S = {xu1 , . . . , xud} be the set of standard monomials of M . Let B be the
set of monomials xu ∈ M for which xu/xi 6∈ M for some i with ui > 0. The
set B is the border of M . Set b = |B|. Let I be an ideal in UM . Since S is
a basis for S/I, for each xu ∈ B, there is a unique polynomial fu ∈ I of the
form

fu = xu −
∑
v∈S

γu
vx

v,

where γu
v ∈ k. Let R = k[zu

v : xu ∈ B, xv ∈ S] be the coordinate ring of Abd.
Each point in UM gives a point in Abd by taking the ideal to the vector γu

v .
Form the d× d multiplication matrix Xi with rows and columns indexed

by S with the (xu, xv)th entry equal to zv+ei
u if xix

v ∈ M , equal to 1 if
xu = xix

v 6∈ M , and equal to zero otherwise. Then the fact that x1 and x2

commute mean that we must have X1X2 −X2X1 = 0. This is also sufficient
to guarantee that the ideal generated by the fu for specific values of the zv

u

has colength d. So the ideal IM generated by the entries of the commutator
X1X2 −X2X1 defines the affine scheme UM ⊂ Abd.

Example 4.1. For convenience we set S = k[x, y] here, and use the notation

zx
y for z

(1,0)
(0,1) . Let d = 3, and let M = 〈x2, xy, y2〉. Then the matrices X1 and

X2 are

X1 =

 0 zx2

1 zxy
1

1 zx2

x zxy
x

0 zx2

y zxy
y

 , X2 =

 0 zxy
1 zy2

1

0 zxy
x zy2

x

1 zxy
y zy2

y

 ,

so X1X2 −X2X1 equals 0 zx2

1 z
xy
x + zxy

1 zxy
y − zxy

1 zx2

x − zy2

1 z
x2

y zx2

1 z
2
x + zxy

1 zy2

y − zxy
1 zxy

x − zy2

1 z
xy
y

0 zxy
1 + zxy

x zxy
y − zx2

y z
y2

x zy2

1 + zx2

x z
y2

x + zxy
x zy2

y − (zxy
x )2 − zy2

x z
xy
y

0 zx2

y z
xy
x + zxy

y2 − zx2

1 − zxy
y zx2

x − zy2 − yzx2

y zx2

y z
y2

x − zxy
1 − zxy

x zxy
y

 .

Thus UM is the subscheme of A9 defined by the ideal 〈zx2

1 z
xy
x + zxy

1 zxy
y −

zxy
1 zx2

x − zy2

1 z
x2

y , z
x2

1 z
2
x + zxy

1 zy2

y − zxy
1 zxy

x − zy2

1 z
xy
y , zxy

1 + zxy
x zxy

y − zx2

y z
y2

x , z
y2

1 +

zx2

x z
y2

x +zxy
x zy2

y −(zxy
x )2−zy2

x z
xy
y , zx2

y z
xy
x +zxy

y2 −zx2

1 −zxy
y zx2

x −zy2−yzx2

y , z
x2

y z
y2

x −
zxy
1 − zxy

x zxy
y 〉 ⊂ k[zx2

1 , z
x2

x , z
x2

y , z
xy
1 , zxy

x , zxy
y , zy2

1 , z
y2

x , z
y2

y ].

The generators for IM are of the form

fp
q =

∑
xu∈S

zx1xp

xu zx2xu

xq −
∑
xv∈S

zx2xp

xv zx1xv

xq ,

where p, q ∈ N2 with xp = xp1

1 x
p2

2 and xq = xq1

1 x
q2

2 ∈ S. Note that fp
q = 0

when both x1x
p, x2x

p 6∈M . The dimension of the cotangent space of UM at
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Figure 1. Two equivalent arrows

the origin of Abd (representing the point M ∈ Hilbd(A2)) is given by

dimk m/m2,

where m = 〈zu
v : xu ∈ B, xv ∈ S〉. This is equal to

dimk〈zu
v 〉/〈(zu

v )2 + IM〉 = dimk〈zu
v 〉/〈(zu

v )2 + f̃p
q : xu ∈ B, xv, xp, xq ∈ S〉,

where f̃p
q is the degree one part of fp

q . Now f̃p
q = zxpx1

xq−e2
+ zxpx1x2

xq − zxpx2

xq−e1
−

zxpx1x2
xq , where the first term only shows up if x2 divides xq and xpx1 ∈ M ,

the second only shows up if xpx1 6∈M , the third only shows up if x1 divides
xq and xpx2 ∈ M , and the last term only shows up if xpx2 6∈ M . We thus
see that f̃p

q has either one or two variables, and the variables zc
d occurring

have c− d constant. If f̃p
q = zc

d − zc′

d′ then c′ = c± ei.

We draw the variable zu
v as an arrow in Z2 with tail u and head v. The

degree one part of the polynomial ring has k-basis the set of all arrows with
tail in B and head in S. The relations coming from f̃p

q are that two arrows
are equivalent if one can be obtained from the other by moving the first
horizontally or vertically keeping the tail in M and the head in S. This is
illustrated in Figure 1

There is a distinguished representative for each nonzero equivalence class
of arrows consisting of an arrow zu

v where either xu/x1 6∈ M and x2x
v ∈ M ,

or the equivalent statement with 1 and 2 reversed. Given such an arrow, let
φ(zu

v ) = gcd(xu, xv) ∈ S. Note that the map from distinguished arrows to
S is two-to-one, so we conclude that the number of distinguished arrows is
at most 2|S| = 2d. This shows that the dimension of the tangent space to
a monomial ideal is at most 2d. Combined with the lower bound from the
previous subsection, we conclude that the dimension of the tangent space is
the dimension of Hilbd(A2), so Hilbd(A2) is smooth.

4.5. Exercises 4.

(1) List all monomial ideals I in k[x, y] with dimk(k[x, y]/I) = 4. Ver-
ify that for each of these the tangent space to Hilb4(A2) at I is 8-
dimensional. Repeat if desired with 4 replaced by 5.

(2) Compute the equations for UM for each of the monomial ideals M
from your answer to the previous question.

(3) Show that every monomial ideal in Hilbd(A2) lives in the same irre-
ducible component.

(4) When d = 2, the variety (A2)2/S2 is the quotient of affine space by
an abelian group, and is thus a toric variety. Can you describe it?
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(5) In fact, Hilb2(A2) is a toric variety. Can you describe it?
(6) The combinatorial description of the tangent space to a monomial

ideal generalizes to artinian monomial ideals in more variables, so to
points of Hilbd(An). Write down the definition of this when n = 3.

(7) Use your answer to Question 6 to show that Hilb4(A3) is singular.
(8) (Hard) The smallest d for which Hilbd(A3) is reducible is not known,

though 8 ≤ d ≤ 78 by work of Iarrobino. Cartwright, Erman, Velasco
and Viray have shown (work in progress) that Hilb8(A4) is reducible,
with another 24 dimensional component as well as the good compo-
nent of dimension 32. The intersection of these two components is
24-dimensional. Show that the ideal 〈x2

1, x
2
2, x

2
3, x

2
4, x1x2, x3x4, x2x3−

x1x4〉 ⊂ k[x1, x2, x3, x4] does not lie on the main component. To give
the straightforward proof of this you will need to learn how to com-
pute the tangent space to any point on the Hilbert scheme. The ideal
〈x1x3, x1x4, x2x3, x2x4, x

2
3, x3x4, x

2
4〉 lies on both components. Can

you show this directly?
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5. Lecture 5: Multigraded Hilbert schemes

The multigraded Hilbert scheme, introduced by Haiman and Sturmfels [HS04]
is a moduli space parameterizing all ideals in a polynomial ring with a given
multigraded Hilbert function. One of the original motivations for its con-
struction was as a common generalization of the Hilbert scheme of points in
affine space and the toric Hilbert scheme (defined below). The “classical”
Hilbert scheme described in the first three lectures is also a special case of a
multigraded Hilbert scheme.

Throughout this lecture we will use the following notation. Let S =
k[x1, . . . , xn], where k is an arbitrary commutative ring. We fix an abelian
group A and a homomorphism deg : Zn → A. We may assume that deg is
surjective (by replacing A by the image of deg). The homomorphism deg
induces a grading of S by A, by setting deg(xi) = deg(ei), where ei is the
ith standard basis vector of Zn, so S = ⊕a∈ASa, where Sa is the degree a
part of S, and Sa · Sa′ ⊆ Sa+a′ . We call this a multigrading of S. Let A+ be
the semigroup of elements a ∈ A for which Sa 6= 0.

Example 5.1. (1) Let S = k[x1, . . . , xn], and let deg(xi) = 1 for all i.
Then A = Z, and A+ = N. This is the standard grading of the
polynomial ring.

(2) Let S = k[x1, x2, x3, x4], and let deg(x1) = (1, 0), deg(x2) = (1, 1),
deg(x3) = (1, 2), deg(x4) = (1, 3). Then A ∼= Z2, and A+ is the sub-
semigroup consisting of those elements (a, b) ∈ Z2 with a ≥ 3b ≥ 0.
The degree (3, 4) part of S, for example, has basis {x1x2x4, x1x

2
3, x

2
2x3}.

(3) Let S = k[x1, x2], and deg(x1) = 1, deg(x2) = −1. Then A = A+ =
Z. The graded pieces of S are infinite-dimensional in this case. For
example, S0 has basis {xiyi : i ≥ 0}.

(4) Let S = k[x1, x2], and deg(x1) = 1 mod 3, deg(x2) = 2 mod 3.
Then A = A+ ∼= Z/3Z. The graded pieces of S are again infinite-
dimensional.

Definition 5.2. An ideal I ⊆ S is admissible if (S/I)a = Sa/Ia is a locally
free k-module of finite rank for all a ∈ A. The multigraded Hilbert function
of an admissible ideal I is

hI : A→ N, hI(a) = rkk(S/I)a.

Note that hI(a) = 0 for a 6∈ A+.

Example 5.3. (1) Let S = k[x1, x2] with deg(x1) = 1 and deg(x2) =
−1. Then I = 〈x1x2〉 is admissible, and gives h(a) = 1 for all a ∈ Z.
By constrast the ideal J = 〈x2

1〉 is not admissible, as rkk(S/J)0 is
infinite.

(2) Let S = k[x1, x2] with deg(x1) = 1 mod 3 and deg(x2) = 2 mod 3.
Then I = 〈x2

1, x1x2, x
2
2〉 is admissible, with h(a) = 1 for all a ∈ A.

Given the multigraded Hilbert function hI of an admissible ideal I, the
multigraded Hilbert schemeHh

S parameterizes all ideal of S with multigraded
Hilbert function hI . More formally, it represents the following functor.
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Definition 5.4. The Hilbert functor Hh
S : (k− algebras) → (sets) is defined

as follows. For a k-algebra R, Hh
S(R) is the set of homogeneous ideals I ⊆

R⊗kS such that (R⊗Sa)/Ia is a locally free R-module of rank h(a) for each
a ∈ A.

Theorem 5.5 (Theorem 1.1 of [HS04]). There is a quasiprojective scheme
Hh

S over k that represents Hh
S .

Before giving some idea of the construction of Hh
S we first observe that the

Hilbert schemes considered in the previous sections are examples of multi-
graded Hilbert schemes.

Example 5.6. If A = 0 is the trivial group, and h : A → Z is given by
h(0) = d for some d > 0 then Hh

S is the Hilbert scheme Hilbd(An) of d points
in affine n-space.

Example 5.7. Fix a Hilbert polynomial P , and let A = Z with deg(xi) = 1
for 1 ≤ i ≤ n. Let D be the Gotzmann number of P . Define h : A → N
by setting h(a) = 0 for a < D, and h(a) = P (a) for a ≥ D. Then Hh

S =
HilbP (Pn−1). To see this, note that ideals in S with Hilbert function h are
in bijection with subschemes of Pn−1 with Hilbert polynomial P .

Example 5.8. Let the grading given by A be positive, in the sense that
1 is the only monomial in S of degree zero, and torsion free. See [MS05,
Theorem 8.6] for many equivalent definitions of the notion of a positive
grading. Define h : A→ N by h(a) = 1 for a ∈ A+ and h(a) = 0 otherwise.
Then Hh

S is by definition the toric Hilbert scheme HA of A. The toric Hilbert
scheme was introduced by Peeva and Stillman [PS02] based on earlier work
of Sturmfels [Stu94]. See also [PS00], [MT02], [MT03], [SST02] for more
work on the toric Hilbert scheme.

Our assumptions on the grading by A mean that we can identify A ∼= Zd

for some d > 0, and set A ⊂ Zd to be the collection of n vectors {a1, . . . , an},
where ai = deg(ei). The toric Hilbert scheme has a distinguished irreducible
component containing the toric ideal of A. This is the ideal IA = 〈xu − xv :
deg(xu) = deg(xv)〉 defining the semigroup algebra k[ta1 , . . . , tan ]. The name
“toric ideal” comes from the fact that Spec of this semigroup algebra is a
not-necessarily-normal affine toric variety. The other closed points on the
irreducible component containing IA are of the form λ inw(IA), where w ∈ Rn

is a weight vector, and λ inw(IA) is the corresponding scaled initial ideal of
IA.

When n−d ≤ 2 the toric Hilbert scheme HA is smooth and irreducible; see
[PS02], [MT03]. For higher codimension this is rarely the case. For example,
when d = 1, n = 4, and A = {1, 3, 4, 7} the scheme HA is reducible. This is
most easily seen by exhibiting monomial ideals with Hilbert function h that
are not initial ideals of IA; see [Stu96, Theorem 10.4]. Unlike the classical
Hilbert scheme, the toric Hilbert scheme need not be connected. In [San05]
Santos constructed a several configurations A for which HA is disconnected.
The smallest of these has d = 6 and n = 26, and HA has at least thirteen
connected components.
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Example 5.9. When A is a finite group, and h : A→ N is given by h(a) =
1 for all a ∈ A, then Hh

S is the A-Hilbert scheme of Nakamura [Nak01].
When n = 2 or n = 3 and deg(x1x2x3) = 0 this scheme is smooth and
irreducible [Kid01], [Nak01], but Hh

S is often otherwise reducible. See, for
example, [Cra05, Example 4.12].

Example 5.10. When n = 2, so S = k[x1, x2], then for any group A and any
h : A → N the multigraded Hilbert scheme Hh

S is smooth and irreducible.
This generalizes the fact that Hilbd(A2) is smooth and irreducible (though
uses that fact in the proof). This is work in progress with Greg Smith, and
settles a conjecture of Haiman and Sturmfels (see [HS04, Example 1.3] and
[MS05, Conjecture 18.46]).

We now sketch the construction of the multigraded Hilbert scheme. The
idea is again to construct the Hh

S as a closed subscheme of a Grassmannian.
The trick is to first find the multigraded analogue of the Gotzmann number
from Lecture 2.

Definition 5.11. A finite set D ⊂ A is supportive for a multigraded Hilbert
function h if

(1) Every monomial ideal with Hilbert function h is generated by mono-
mials of degree belonging to D.

(2) Every monomial ideal I generated in degrees inD satisfies: ifHS/I(a) =
h(a) for all a ∈ D, then HS/I(a) ≤ h(a) for all a ∈ A.

The setD is very supportive if the first condition above holds, and in addition

(1) Every monomial ideal I generated in degrees inD satisfies: ifHS/I(a) =
h(a) for all a ∈ D, then HS/I(a) = h(a) for all a ∈ A.

(2) For every monomial ideal I with HS/I = h, the syzygy module of I is

generated by syzygies xuxv′ = xvxu′ = lcm(xu, xv) among generators
xu, xv of I such that deg(lcm(xu, xv)) ∈ D.

Let D be the Gotzmann number of a Hilbert polynomial P . Gotzmann’s
regularity and persistence theorems (Theorems 2.5 and 2.7) imply that in
the standard graded case where h(a) = P (a) for a ≥ D, and h(a) = 0 for
a < D, then {D} is supportive for h, and {D,D + 1} is very supportive.

Proposition 5.12. There is a finite set D ⊂ A of degrees that is very
supportive for any multigraded Hilbert function h.

The key to prove Proposition 5.12 is to first note that there are only a
finite number of monomial ideals in S with Hilbert function h. This follows
from the fact (see [Mac01]) that in any infinite collection of monomial ideals
there must be two with one contained in the other. This implies that there
is a finite set of degrees D1 in which all homogeneous ideals with multi-
graded Hilbert function h are generated, and which contains generators for
the syzygies of all monomial ideals with multigraded Hilbert function h. We
then take the bigger set D2 on which monomial ideals generated in degrees
in D1 with Hilbert function h on D2 have Hilbert function H everywhere



NOTES ON HILBERT SCHEMES 25

(which exists, since there are only finitely many monomial ideals generated
in degrees D1). We then repeat with D1 replaced by D2 to construct a et
D2. One can show that this procedure must terminate, which gives the finite
set D.

We now define a more general Hilbert functor Hh
SD

, where D is a finite
subset of A and SD is the k-module consisting of those homogeneous pieces
of S whose degrees lie in D.

Definition 5.13. LetD ⊂ A be a finite set, and let h : D → N be a function.
The Hilbert functor Hh

SD
: (k−modules) → (sets) is defined as follows. For

a k-module R, Hh
S(R) is the set of SD-submodules I ⊆ R ⊗k S such that

(R⊗ Sa)/Ia is a locally free R-module of rank h(a) for each a ∈ A.

To construct the multigraded Hilbert scheme, we first show that the func-
tor Hh

SD
is represented by a quasiprojective scheme over k. This is similar

in philosophy to the construction of the classical Hilbert scheme HilbP (Pn).
The idea is to take the Grassmannian G of locally free k-submodules of SD

with corank h(a) in each degree a ∈ D. The precise definition of G is slightly
technical, since SD may not be a finitely generated k-module. One then
checks that Hh

SD
is a closed subscheme of G, which in particular shows that

the corresponding functor is representable.
The advantage of (very) supportive sets is then seen from the following

proposition.

Proposition 5.14. If D is a supportive set then the natural morphism Hh
S →

Hh
SD

is a closed embedding. If the set D is very supportive then this morphism
is an isomorphism.

Remark 5.15. We note that the paper [HS04] actually provides a broader
framework for constructing Hilbert schemes, in that the entire polynomial
ring is not needed. One place where this is useful is when constructing the
Hilbert scheme of subschemes of a toric variety. By [Cox95] subschemes of a
toric variety correspond to particular homogeneous ideals in a multigraded
polynomial ring. The multigraded Hilbert polynomial of such an ideal only
restricts the Hilbert function in a subset of the possible degrees, so one uses
the partial polynomial ring framework of [HS04] to construct the Hilbert
scheme of all subschemes of a toric variety with a given multigraded Hilbert
polynomial. See [MS05] for details.

5.1. Open questions. We close with a sampling of open questions. The
bias here is to structural questions. There are more in [HS04].

(1) Is the A-Hilbert scheme always connected? Or can one modify San-
tos’ example (or hopefully find a smaller one) for a disconnected toric
Hilbert scheme to give a disconnected A-Hilbert scheme?

(2) Is the toric Hilbert scheme always connected in codimension three
(n − d = 3)? This is motivated by the closely related work on the
bistellar flip graph of triangulations of point configurations by Azaola
and Santos [AS00]. Analogously, is the A-Hilbert scheme connected
when n = 3?
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(3) Give an effective bound on location of a very supportive set D ⊂ A
for a multigraded Hilbert function h. See [MS05] for an algorithm to
construct such a bounding set; a better bound is desired.

(4) Give good necessary and sufficient conditions for a set D ⊂ A to be
very supportive for a multigraded Hilbert function h.

(5) In [MS05] a multigraded version of Gotzmann’s regularity theorem
is given (see Exercise 7). Give a multigraded version of Gotzmann’s
persistence theorem.

5.2. Exercises 5.

(1) Let S = k[x1, x2, x3] be graded by deg(x1) = 3, deg(x2) = 2, deg(x3) =
1. Show that not every ideal in S has the same Hilbert function as a
lex-segment ideal.

(2) Let S = k[x1, x2] have the standard grading (so A = Z), and let
h = HS/I for I = 〈x3

1, x
3
2〉. Find a supportive set for h, and a very

supportive set.
(3) Let S = k[x1, x2] be graded by deg(x1) = 1, deg(x2) = −1. List

all monomial ideals with the same multigraded Hilbert function as
I = 〈x2y2〉.

(4) Let S = k[x1, x2] be graded by deg(x1) = 1, deg(x2) = 2. Let
h(0) = 1, h(1) = 2, h(2) = 2, h(3) = 2, h(4) = 2, h(5) = 1, and
h(6) = 1. List all monomial ideals with the same multigraded Hilbert
function as I. Compute a supportive set and a very supportive set
for h.

(5) Let S = k[x1, x2, x3] be graded by deg(x1) = (1, 0), deg(x2) = (1, 1),
and deg(x3) = (1, 2) and let I = 〈x3

1〉. List all monomial ideals with
the same multigraded Hilbert function as I.

(6) When A = {1, 3, 4, 7} the toric Hilbert scheme is reducible. In partic-
ular, the ideal J = 〈x3

1, x1x2, x
2
2, x2x3, x1x4, x

2
1x

2
3, x1x

4
3, x2x

3
4, x2x

3
3, x

4
4〉

does not lie on the distinguished component. Verify this.
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