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1. Introduction

One reason for the recent success of tropical geometry is that tropical varieties
are easier to understand than classical varieties. This is largely because they are
discrete, combinatorial objects having the structure of a polyhedral complex. The
purpose of these expository notes is to give the Gröbner perspective on the origin of
this polyhedral complex structure.

We begin by setting notation. Throughout we work with a fixed field K with
a nontrivial valuation val : K∗ → R. We denote by R the valuation ring of K:
R = {a ∈ K : val(a) ≥ 0}. The ring R is a local ring with maximal ideal m = {a ∈
K : val(a) > 0} and residue field k = R/m. For a ∈ R we denote by a the image
of a in k. We denote by Γ ⊆ R the image of the valuation val. If Γ 6= {0} then we
assume 1 ∈ Γ; this can be guaranteed by replacing val by a positive multiple.

We do not assume that K is complete, but will sometimes require that it be
algebraically closed. Given an ideal over a field K without a nontrivial valuation (for
example, K = C), we can extend scalars to work over the field of generalized power
series with coefficients in K.

Definition 1.1. For f =
∑

u∈Zn cux
u ∈ K[x±1

1 , . . . , x±1
n ] the set trop(V (f)) is the

non-linear locus of the piecewise linear function trop(f) given by trop(f)(w) =
min(val(cu) + w · u). Let X ⊆ T n ∼= (K∗)n. The tropical variety is

trop(X) =
⋂

f∈I(X)

trop(V (f)),

where I(X) ⊆ K[x±1
1 , . . . , x±1

n ] is the ideal of X.

The fundamental theorem of tropical algebraic geometry is the following:

Theorem 1.2. For a variety X ⊆ T n ∼= (K∗)n, where K = K, the set trop(X)
equals the closure in the Euclidean topology on Rn of the set

val(X) = {(val(x1), . . . , val(xn)) : x = (x1, . . . , xn) ∈ X}.
See, for example, [MS, Section 3.2] for a proof. Theorem 1.2 says that the tropical

variety trop(X) may be regarded as a “combinatorial shadow” of the variety X. We
now describe a third, Gröbner, way to understand the tropical variety.

We assume now that there exists a splitting of the valuation. This is a group
homomorphism Γ → K∗ sending w ∈ Γ to tw ∈ K∗ with val(tw) = w. If K is the
field of Puiseux series C{{t}} with coefficients in C, we may take the splitting that
sends w ∈ Q to tw ∈ C{{t}}. If K = Qp, we may take the splitting that sends
w ∈ Z to pw. If K is algebraically closed, then such a splitting always exists; see
[MS, Lemma 2.1.13].
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Definition 1.3. Fix w ∈ Γn. For a polynomial f =
∑

u∈Zn cux
u ∈ K[x±1

1 , . . . , x±1
n ],

let W = trop(f)(w) = min(val(cu) + w · u). We set

inw(f) = t−Wf(tw1x1, . . . , twnxn)

=
∑
u∈Zn

tw·u−W cux
u

=
∑

val(cu)+w·u=W

t− val(cu)cux
u ∈ k[x±1

1 , . . . , x±1
n ].

Example 1.4. Let f = 6x2 + 5xy + 7y2 ∈ Q[x±1, y±1], where val is the 2-adic
valuation on Q. For w = (1, 2), we have W = min(3, 3, 4) = 3, so

inw(f) = 1/8(6(2x)2 + 5(2x)(4y) + 7(4y)2)

= 3x2 + 5xy + 14y2

= x2 + xy ∈ Z/2Z[x±1, y±1].

Definition 1.5. Let I be an ideal in K[x±1
1 , . . . , x±1

n ]. The initial ideal of I is

inw(I) = 〈inw(f) : f ∈ I〉 ⊆ k[x±1
1 , . . . , x±1

n ].

A subset {g1, . . . , gr} of I is a Gröbner basis for I with respect to w if inw(I) =
〈inw(g1), . . . , inw(gr)〉.

This generalizes the notion of Gröbner bases for ideals in a polynomial ring with
no valuations considered. An excellent elementary reference for that case is [CLO07].
As in that situation, a generating set for I need not be a Gröbner basis.

Example 1.6. Let I = 〈x + 2y, x + 4z〉 ⊆ Q[x±1, y±1, z±1], where Q has the 2-adic
valuation. For w = (1, 1, 1), we have inw(I) = 〈x, y〉 ⊆ Z/2Z[x±1, y±1, z±1], even
though inw(x+ 2y) = inw(x+ 4z) = x.

Remark 1.7. For f ∈ K[x±1
1 , . . . , x±1

n ], the non-linear locus of the function trop(f) is
the locus where the minimum is achieved at least twice, and thus is the closure of the
collection of w for which inw(f) is not a monomial. This means that, if the valuation
on K is nontrivial, trop(X) is the closure of those w ∈ Γn for which inw(I(X)) 6= 〈1〉.

2. Gröbner complex

In this section we develop the theory of the Gröbner complex of an ideal, which
leads to a polyhedral structure on trop(X). We first restrict to the case that I is a
homogeneous ideal in the (non-Laurent) polynomial ring K[x0, . . . , xn]. We assume
here that Γ = im val is a dense subset of R containing Q. This follows from the
assumption that 1 ∈ Γ if K is algebraically closed. If I is defined over a field with
a trivial valuation, choose K to be any extension field with a nontrivial valuation,
and consider I ⊗ K; the results do not depend on the choice of K. For w ∈ Γn+1,
the initial form inw(f) of a polynomial f ∈ K[x0, . . . , xn] is defined as in the Laurent

polynomial case: inw(f) = t− trop(f)(w)f(tw1x1, . . . , twnxn). The initial ideal of an ideal
is similarly the ideal generated by all initial forms of polynomials in the ideal.
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Figure 1.

Definition 2.1. Fix w ∈ Γn+1. Define

CI [w] = {w′ ∈ Γn+1 : inw′(I) = inw(I)}.

We denote by CI [w] the closure of CI [w] in the usual Euclidean topology on Rn+1.

Example 2.2. Let f = 3x+ 8y + 6z ∈ Q[x, y, z], where Q has the 3-adic valuation,
and let I = 〈f〉. Fix w = (1, 1, 1). Then trop(f)(w) = min(2, 1, 2) = 1, so inw(f) =

1/3(9x+ 24y + 18z) = 2y ∈ Z/3Z[x, y, z]. Then

CI [w] = {w′ ∈ Γ3 : inw′(I) = 〈y〉}
= {w′ ∈ Γ3 : w′

1 + 1 > w′
2, w

′
3 + 1 > w′

2}.

The closure CI [w] is then {w′ ∈ R3 : w′
1 +1 ≥ w2, w

′
3 +1 ≥ w′

2}. To visualize this, we

note that if w′ ∈ CI [w], then so is w′ + λ(1, 1, 1) for any λ ∈ R, so we may quotient

by the span of (1, 1, 1) to draw pictures. The region CI [w] is the shaded region on the
left of Figure 1, where we have chosen the representatives for cosets in R3/R(1, 1, 1)
with last coordinate zero.

The picture on the right of Figure 1 shows the other possible initial ideals of I,
and the corresponding regions CI [w].

Remark 2.3. Note that if I is a homogeneous ideal inK[x0, . . . , xn], then inw+λ1(I) =
inw(I) for any λ ∈ R, where 1 = (1, . . . , 1).

Recall that a polyhedral complex is a collection of polyhedra which contains all
faces of any polyhedron in the collection, and for which the intersection of any two
polyhedra is either empty or a common face. The key result of this section, which
is proved in the following section, is that there are only finitely many of the sets
CI [w] as w varies over Γn+1, and these sets are polyhedra that fit together to form a
polyhedral complex.

Every polyhedron in Rn+1 can be written in the form P = {x ∈ Rn+1 : Ax ≤ b}
where A is an s × (n + 1) matrix and b ∈ Rs. We say that P is Γ-rational if the
entries of A are rational, and b ∈ Γs. This means that all facet normals of P are
vectors in Qn+1, and all vertices of P are elements of Γn+1. A polyhedral complex Σ
is Γ-rational if all polyhedra in Σ are Γ-rational.
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Figure 2.

Theorem 2.4. Fix a homogeneous ideal I ⊆ K[x0, . . . , xn]. Then {CI [w] : w ∈ Γn+1}
forms a finite Γ-rational polyhedral complex.

The polyhedral complex of Theorem 2.4 is called the Gröbner complex. In the case
that the residue field k is a subfield of K, and I is defined over k (such as when
I ⊆ C[x0, . . . , xn], where it is standard to take K = C{{t}}), the Gröbner complex is
a rational polyhedral fan, which is known as the Gröbner fan. This is well studied in
the usual Gröbner literature; see [MR88] or [BM88] for the original works, or [Stu96,
Chapter 2] or [MT07, Chapter 2] for expositions.

The lineality space of a polyhedral complex Σ is the largest subspace L for which
if u ∈ σ for any σ ∈ Σ, and l ∈ L, then u + l ∈ σ. Remark 2.3 thus says that R1 is
in the lineality space of the Gröbner complex. The support of a polyhedral complex
Σ ⊆ Rn+1 is the collection of vectors w ∈ Rn+1 with w ∈ σ for some σ ∈ Σ.

Example 2.5. Let I = 〈y2z − x3 − x2z − p4z3〉 ⊆ Q[x, y, z], where Q has the p-adic
valuation for some prime p. For f = y2z − x3 − x2z − p4z3, we have trop(f) =
min(2y + z, 3x, 2x+ z, 3z + 4). The Gröbner complex is illustrated in Figure 2.

The relevance of Theorem 2.4 in the tropical context is that it gives the structure
of a polyhedral complex to trop(X).

Given an ideal I ⊂ K[x±1
1 , . . . , x±1

n ], we denote by Ih ∈ K[x0, . . . , xn] the homoge-

nenization of I ∩ K[x1, . . . , xn]. This is the ideal Ih = 〈f̃ : f ∈ I ∩ K[x1, . . . , xn]〉,
where f̃ = x

deg(f)
0 f(x1/x0, . . . , xn/x0) is the homogenization of f .

Corollary 2.6. Let X be a subvariety of T n. Then there is a finite Γ-rational poly-
hedral complex Σ whose support |Σ| equals trop(X).

Proof. Let I = I(X) ⊆ K[x±1
1 , . . . , x±1

n ] be the ideal of polynomials vanishing on X,
and let Ih be its homogenization. It is straightforward to check that for w ∈ Γn we
have in(0,w)(I

h)|x0=1 = inw(I), where the equality is as ideals in k[x±1
1 , . . . , x±1

n ]; see
[MS, Proposition 2.5.1] for details. Thus inw(I) = 〈1〉 if and only if in(0,w)(I

h) ⊆
k[x0, . . . , xn] contains a monomial. Let Σ be the subset of the Gröbner complex

defined by {CIh [(0, w)] : in(0,w)(I
h) does not contain a monomial}. This is a subset
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of a Γ-rational polyhedral complex, so the slice w0 = 0 is also a Γ-rational polyhedral
complex. Since the polyhedra in Σ intersect correctly, to show that Σ ∩ {w0 = 0} =

trop(X), it only remains to check that if w′ ∈ CIh [(0, w)] \ CIh [(0, w)], then inw′(Ih)

also contains a monomial. This follows from Corollary 3.4, as if w′ ∈ CIh [(0, w)]
then there is v ∈ Γn for which w′ + εv ∈ CIh [(0, w)] for all ε sufficiently small. Thus
inw(Ih) is an initial ideal of inw′(Ih), so if inw′(Ih) contains a monomial then so does

inw(Ih). Thus if CIh [(0, w)] ∈ Σ, we also have CIh [w′] ∈ Σ as required.
�

A drawback of the definition of a tropical variety given in Definition 1.1 is that
a priori it requires taking the intersection over infinitely many tropical hypersur-
faces trop(V (f)). A second tropical consequence of Theorem 2.4 is that this infinite
intersection is in fact a finite intersection.

Definition 2.7. Let I ⊆ K[x±1
1 , . . . , x±1

n ] be an ideal. A collection {f1, . . . , fr} ⊆ I
is a tropical basis for I if

trop(V (I)) =
r⋂

i=1

trop(V (fi)),

and I = 〈f1, . . . , fr〉.

Theorem 2.8. Let I ⊆ K[x±1
1 , . . . , x±1

n ] be an ideal. Then a tropical basis for I
always exists.

Proof. The Gröbner complex Σ(I) of Ih is a polyhedral complex in Rn+1 with lin-
eality space containing R1. For each of the finitely many polyhedra σ(i) in that
complex, we select one representive vector (0, w(i)) ∈ Γn+1. For each index i such
that inw(i)(Ih) contains a monomial we we select a polynomial f (i) ∈ Ih such that
inw(i)(f (i)) is a monomial xui . Choose vi with invi

(inw(i)(Ih)) a monomial ideal;
this is possible by Lemma 3.2. By Corollary 3.4 we can find ε > 0 such that
invi

(inw(i)(Ih)) = inw(i)+εvi
(Ih). By Lemma 3.3 there is a polynomial g(i) ∈ I of

the form xui +
∑
caix

a, where cai 6= 0 implies that xa 6∈ invi
(inw(i)(Ih)). Then

for every w ∈ Γn+1 with inw(Ih) = inw(i)(Ih) we claim that inw(g(i)) = xui . Indeed,
invi

(inw(g(i))) ∈ invi
(inw(i)(Ih), and every monomial occuring in this polynomial must

occur in g(i), but also be in the monomial ideal invi
(inw(i)(Ih)), so must be xui . Thus

inw(g(i)) = xui +
∑
bax

a where xa 6∈ invi
(inw(Ih)). Since xui ∈ inw(Ih), this means

that
∑
bax

a ∈ inw(Ih), and thus invi
(
∑
bax

a) ∈ invi
(inw(Ih)), which would contra-

dict xa 6∈ invi
(inw(Ih)) unless

∑
bax

a = 0. Thus inw(g(i)) = xui .
Now we define a tropical basis T by taking any finite generating set of I and

augmenting it by the polynomials g(i)|x0=1 where g(i) is as constructed above. Then
T is a generating set of I. The intersection

⋂
f∈T trop(V (f)) contains trop(V (I)) by

the definition of trop(V (I)). Consider an arbitrary weight vector w ∈ Γn\trop(V (I)).
There exists an index i such that in(0,w)(I

h) = inw(i)(Ih), and this initial ideal must
contain a monomial since w 6∈ trop(V (I)). Thus the above argument shows that
in(0,w)(g

(i)) = xui , so w 6∈ trop(V (g(i))). Thus w 6∈
⋂

f∈T trop(V (f)) and so T is a
finite tropical basis as required. �
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Remark 2.9. Hept and Theobald show in [HT09] that if X ⊆ T n is an irreducible
d-dimensional variety, then there always exist f0, . . . , fn−d ∈ I(X) with trop(X) =⋂n−d

i=0 trop(V (fi)). This means that if we drop the ideal generation requirement then
a tropical basis with n − d + 1 elements always exists. Note, however, that the
degrees of the fi may be very large. There are classical complete intersections which
are not the intersection of the tropicalizations of any generating set of cardinality the
codimension.

Alessandrini and Nesci give in [AN09] a uniform bound on the degrees of polyno-
mials fi in a tropical basis for an ideal I that depends only on the Hilbert polynomial
of a homogenization of I. Thus we can bound either the size, or the degrees, of ele-
ments of a tropical basis. However at the time of writing a truly effective and efficient
algorithm to compute tropical bases does not exist.

Remark 2.10. We warn that the polyhedral complex structure constructed here
on trop(X) is not canonical, but depends on the choice of embedding of T n into
Pn (or, algebraically, on the choice of coordinates for the Laurent polynomial ring).
As an explicit example of this phenomenon, let I = 〈a + b + c + d + e, 3b + 5c +
7d + 11e〉 ⊆ C[a±1, b±1, c±1, d±1, e±1], and consider the plane X = V (I) ⊆ (C∗)5.
The Gröbner fan of I has a one-dimensional lineality space, spanned by (1, 1, 1, 1, 1).
Modulo the lineality space, the Gröbner fan structure on the tropical variety of X
five rays, and ten two-dimensional cones, which are the span any two of the rays.
Let φ∗ : C[a±1, b±1, c±1, d±1, e±1] → C[a±1, b±1, c±1, d±1, e±1] be the automorphism
given by φ∗(a) = ab, φ∗(b) = bc, φ∗(c) = cd, φ∗(d) = de and φ∗(e) = e, and let
φ : (C∗)5 → (C∗)5 be the corresponding morphism. Let Y = φ(X) = V (φ∗−1(I)).
The set trop(Y ) is the image of trop(X) under the change of coordinates given by
trop(φ−1), but the Gröbner fan structure on trop(Y ) has seven rays and twelve cones,
as two of the two-dimensional cones are subdivided. This can be verified using the
software gfan [Jen].

A possible objection to this example is that the polyhedral structure on trop(Y )
refines the polyhedral structure on trop(X), so that is a more natural polyhedral
structure. However such a coarsest polyhedral structure does not always exist; see
[ST08, Example 5.2].

Remark 2.11. Our construction of initial ideals depended on the choice of a splitting
w 7→ tw of the valuation map val : K∗ → R. This is necessary to be able to compare
initial ideals with respect to different choices of w, as this choice makes our initial
ideals into ideals in k[x±1

1 , . . . , x±1
n ] or k[x0, . . . , xn].

The more invariant choice recognizes that the Laurent polynomial ring is the group
ring K[M ], where M is a lattice with dual lattice N = Hom(M,Z), and val(X)
more naturally lives in N ⊗ R, since T n ∼= N ⊗ K∗. We then consider the tilted
group ring R[M ]w = {f =

∑
cux

u : val(cu) + w · u ≥ 0}, which contains the ideal
m = {f =

∑
cux

u ∈ R[M ]w : val(cu) + w · u > 0}. We can then define inw(I) =
(I ∩R[M ]w) + m ∈ R[M ]w/m. See [Pay09] for this approach.

We note, though, that the choice of of splitting is not a very serious one. Suppose
φ1, φ2 : Γ → K∗ are two different splittings of val, so val ◦φ1 = val ◦φ2 = id :
Γ → Γ. These homomorphisms induce isomorphisms φj : K[M ] → K[M ] by xi 7→
φj(wi)xi for j = 1, 2, which restrict to isomorphisms φj : R[M ]w → R[M ] as we have
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φj(
∑
cux

u) =
∑
cuφj(w · u)xu, so if val(cu) +w · u ≥ 0, we have val(cuφj(w · u)) ≥ 0.

Thus ψ = φ1 ◦ φ−1
2 : R[M ] → R[M ] is an automorphism. Since ψ is the restriction of

the automorphism of K[M ] given by xi 7→ φ1(wi)/φ2(wi)xi, ψ maps the ideal m to
itself, so induces an automorphism ψ : k[M ] → k[M ].

This means that the two initial ideals of I with respect to w obtained using the
splittings φ1 and φ2 are related by the automorphism ψ, so all invariants of the initial
ideal such as dimension are independent of the choice of splitting. We also emphasize
that such a choice is necessary to do computations. One could view (parts of) tropical
geometry as the computational arm of rigid analytic geometry and Berkovich theory,
so it is important not to ignore the computational aspects.

3. Proofs

This section contains the technical details needed to prove Theorem 2.4.

Lemma 3.1. For all f ∈ K[x0, . . . , xn] there is ε > 0 such that inv(inw(f)) =
inw+ε′v(f) for all ε′ ∈ Γ with 0 < ε′ < ε.

Proof. Let f =
∑

u∈Nn+1 cux
u. Then inw(f) =

∑
u∈Nn+1 cutw·u−Wxu, where W =

trop(f)(w). Let W ′ = min(v · u : val(cu) + w · u = W ). Then

inv(inw(f)) =
∑

v·u=W ′

cutw·u−Wxu.

For all sufficiently small ε > 0, we have W + εW ′ = trop(f)(w + εv) and

{u : val(cu) + (w + ε′v) · u = W + εW ′} = {u : val(cu) + w · u = W, v · u = W ′}.
This implies inw+ε′v(f) = inv(inw(f)) for all ε′ ∈ Γ with 0 < ε′ < ε. �

In standard Gröbner bases most attention is paid to initial ideals that have a
monomial generating set. Such monomial ideals are useful because their properties
only depend on the set of monomials in the ideal. For example, a polynomial f =∑
cux

u lies in a monomial ideal if and only if every xu with cu 6= 0 lies in the ideal.
We next check that in this modified Gröbner theory monomial initial ideals still exist.

Lemma 3.2. Let I be a homogeneous ideal in K[x0, . . . , xn], and fix w ∈ Γn+1. Then
there is v ∈ Qn+1 and ε > 0 for which both inv(inw(I)) and inw+εv(I)d are monomial
ideals, and inv(inw(I)) ⊆ inw+εv(I).

Note that in Corollary 3.4 we will show that for sufficiently small ε > 0 these two
initial ideals are equal.

Proof. Given any v ∈ Qn+1, let Mv denote the ideal generated by all monomials in
inv(inw(I)), and let M ε

v denote the ideal generated by all monomials in inw+εv for
some ε > 0. Choose v ∈ Qn+1 for which there is no v′ ∈ Qn+1 with Mv ( Mv′ , which
is possible since the polynomial ring is Noetherian. If inv(inw(I)) is not a monomial
ideal, then there is f ∈ I with none of the terms of inv(inw(f)) lying in Mv. Choose
v′ ∈ Qn+1 with inv′(inv(inw(f))) a monomial; any v′ for which the face of the Newton
polytope of inv(inw(f)) is a vertex suffices. By Lemma 3.1 there is ε′ > 0 for which
inv+ε′v′(inw(f)) is this monomial. By choosing ε′ sufficiently small we can guarantee
that inv+ε′v′(inw(I))d contains all generators of Mv, as a generator xu is inv(inw(f))
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for some f ∈ I so this follows from applying Lemma 3.1 to inw(f). Thus contradicts
the choice of v, so we conclude that inv(inw(I)) = Mv.

Choose f1, . . . , fs for which inv(inw(fi)) = xui , where the xui generate Mv. By
Lemma 3.1 there is ε > 0 for which inw+εv(fi) = xui for all i, so for this ε we
have inv(inw(I)) ⊆ inw+εv(I). Suppose that v has been chosen from those v with
inv(inw(I)) monomial to maximize M ε

v. Again, if inw+εv(I) is not monomial then
there is f ∈ I with no term of inw+εv(f) ∈ M ε

v, and we can choose v′ as above
so that M ε

v ( M ε
v+ε′v′ . From this contradiction we conclude that inw+εv(I) is also

monomial, so we have constructed the desired v ∈ Qn+1. �

We denote by SK the polynomial ring K[x0, . . . , xn], and by Sk the polynomial
ring k[x0, . . . , xn].

Lemma 3.3. Let I ⊆ K[x0, . . . , xn] be a homogeneous ideal, and let w ∈ Γn+1 be such
that inw(I)d is the span of {xu : xu ∈ inw(I)d}. Then the monomials not in inw(I) of
degree d form a K-basis for (S/I)d. This implies that if w ∈ Γn+1 is arbitrary then
the Hilbert function of I and inw(I) agree:

dimK(SK/I)d = dimk(Sk/ inw(I))d for all degrees d.

Proof. Suppose first that inw(I)d is the span of {xu : xu ∈ inw(I)d}. Let Bd be the
set of monomials of degree d not contained in inw(I). We first show that, regarded
as elements of (S/I)d, the set Bd is linearly independent. Indeed, if this set were
linearly dependent there would exist f =

∑
cux

u ∈ Id, with xu 6∈ inw(I) whenever
cu 6= 0. But then inw(f) ∈ inw(I)d, which would mean that every term of inw(f) is
in inw(I)d, contradicting the construction of f . Since |Bd| =

(
n+d

n

)
− dimk inw(I)d,

this linear independence implies that dimk inw(I)d ≥ dimK Id.
For all monomials xu ∈ inw(I)d, choose polynomials fu ∈ Id with inw(fu) = xu. We

next note that the collection {fu : xu ∈ inw(I)d} is linearly independent. If not, there
are au ∈ K not all zero with

∑
aufu = 0. Write fu = xu +

∑
cuvx

v. Let u′ minimize
val(au)+w·u for all u ∈ Nn+1 with xu ∈ inw(I)d. Then au′+

∑
u 6=u′ aucuu′ = 0, so there

is u′′ 6= u′ with val(au′′)+val(cu′′u′) ≤ val(au′). But then val(au′′)+val(cu′′u′)+w ·u′ ≤
val(au′) + w · u′ ≤ val(au′′) + w · u′′, which contradicts inw(fu′′) = xu′′

. This shows
dimK Id ≥ dimk inw(I)d. This means that when inw(I) is a monomial ideal we have
dimK(SK/I)d = dimk(Sk/ inw(I))d, and Bd is a K-basis for (SK/I)d.

If inw(I)d is not spanned by the monomials it contains, by Lemma 3.2 there is
v ∈ Qn+1 and ε > 0 for which both inv(inw(I))d and inw+εv(I)d are spanned by the
monomials they contain.

By the previous calculation the monomials not in inw+εv(I)d span (S/I)d, so if
xu ∈ inw+εv(I)d \ inv(inw(I))d there is fu ∈ Id with fu = xu +

∑
cvx

v with cv 6= 0
implying that xv 6∈ inw+εv(I)d. But then inw(fu) is supported on monomials not in
inv(inw(I))d, so inv(inw(fu)) 6∈ inv(inw(I))d. From this contradiction we conclude
that inw+εv(I)d = inv(inw(I))d.

Again, by the previous calculation we have dimk(Sk/ inw(I))d = dimk(Sk/ inv(inw(I)))d,
and dimK(SK/I)d = dimk(Sk/ inw+εv(I))d, so we conclude that for any w ∈ Γn+1 we
have dimK(SK/I)d = dimk(Sk/ inw(I))d for all degrees d.

�
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Corollary 3.4. Let I be a homogeneous ideal in K[x0, . . . , xn], and let w,v ∈ Γn+1.
Then there is ε > 0 such that for all 0 < ε′ < ε with ε′ ∈ Γn+1 we have

inv(inw(I)) = inw+εv(I).

Proof. Let {g1, . . . , gs} ⊂ k[x0, . . . , xn] be a generating set for inv(inw(I)), with each
generator gi of the form inv(inw(fi)) for some fi ∈ I. We choose ε to be the minimum
of the εi from Lemma 3.1. Then gi = inv(inw(fi)) = inw+ε′v(fi), so inv(inw(I)) ⊆
inw+ε′v(I), for any ε′ < ε. But by Lemma 3.3 both inv(inw(I)) and inw+ε′v(I) have
the same Hilbert function as I, so this containment cannot be proper. �

Proposition 3.5. Let I be a homogeneous ideal in K[x0, . . . , xn]. There are only a
finite number of different monomial initial ideals inw(I) as w varies over Γn+1.

Proof. If this were not the case, by [Mac01, Theorem 1.1] there would be w1, w2 ∈
Γn+1 with inw2(I) ( inw1(I), where both initial ideals are monomial ideals. Fix
xu ∈ inw1(I)\ inw2(I). By Lemma 3.3 the monomials of degree deg(xu) not in inw1(I)
form a K-basis for S/I, so there is fu ∈ I with fu = xu +

∑
cvx

v where whenever
cv 6= 0 we have xv 6∈ inw1(I). But then inw2(fu) ∈ inw2(I), and since inw2(fu) is a
monomial ideal this means that all of its terms lie in inw2(I). However all monomials
appearing in inw2(fu) appear in fu, so this is a contradiction, and thus there are only
a finite number of monomial initial ideals of I. �

Fix a homogeneous ideal I ⊆ K[x0, . . . , xn]. Proposition 3.5 guarantees that there
are only finitely many different monomial initial ideals. Let D be the maximum
degree of a minimal generator of any monomial initial ideal of I.

For any fixed degree d let s = dimK(Id), and choose a basis f1, . . . , fs for Id. Let Ad

be the corresponding s×
(

n+d
n

)
matrix recording the coefficients of the polynomials fi.

This matrix has columns indexed by the monomials Md in K[x0, . . . , xn] of degree d,
so (Ad)iu is the coefficient of xu in fi. Note that the maximal minors of this matrix
are independent of the choice f1, . . . , fs of basis, as they are the Plücker coordinates
of the element Id in the Grassmannian Gr(s, Sd). For J ⊆ Md with |J | = s, we
denote by AJ

d the s× s minor of Ad indexed by columns labelled by those monomials
in J .

Let gd ∈ K[x0, . . . , xn] be given by

gd =
∑

I⊆Md,|I|=s

det(AI
d)

∏
u∈I

xu.

Let g =
∏D

d=1 gd. The function trop(g) : Rn+1 → R is piecewise-linear. Let Σtrop(g)

be the coarsest polyhedral complex for which trop(g) is linear on each polyhedron in
Σtrop(g). Note that Σtrop(g) is a Γ-rational polyhedral complex.

Theorem 3.6. Fix a homogeneous ideal I ⊆ K[x0, . . . , xn], and let gd, g and Σtrop(g)

be as above. Fix w ∈ Γn+1 in the interior of a maximal polyhedron σ ∈ Σtrop(g). Then

σ = CI [w].

Proof. We need to show two things: firstly, that if w′ ∈ Γn+1 lies in the interior of σ
then inw′(I) = inw(I), and secondly that if w′ does not lie in the interior of σ then
inw′(I) is not equal to inw(I). Note that Σtrop(g) is the common refinement of the
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polyhedral complexes Σtrop(gd) for d ≤ D, where Σtrop(gd) is the coarsest polyhedral
complex for which trop(gd) is linear on each polyhedron. Thus it suffices to restrict
to a fixed d ≤ D, and let σd be the polyhedron of Σtrop(gd) containing σ. We then
need to show that if w′ ∈ Γn+1 lies in the interior of σd then inw′(I)d = inw(I)d and if
w′ does not lie in the interior of σd then inw′(I)d is not equal to inw(I)d. This suffices
because inw′(I) = inw(I) if and only if inw′(I)d = inw(I)d for all d ≤ D.

For the first of these, note that if w′ lies in the interior of σd then the minimum
in trop(gd) is achieved at the same term for w and for w′. Since σd is a maximal
polyhedron, this minimum is achieved at only one term, which we may assume is the
one indexed by J ∈Md.

Let Ã be the s × s submatrix of Ad containing those columns corresponding to
monomials in J , and consider the matrix A′ = Ã−1Ad. This shifts the valuations of
the minors: val(A′J) = val(AJ

d ) − val(det(Ã)). This has an identity matrix in the
columns indexed by J , so each row of the matrix gives a polynomial in Sd indexed
by xu ∈ J ′. Let f̃u = xu +

∑
xv 6∈J ′ cvx

v be the polynomial indexed by xu. Note that

the minor of A′ indexed by Jv = J \ {xu} ∪ {xv} for xv 6∈ J is cv, up to sign, so

val(A′Jv) +
∑

xu′∈Jv

w · u′ = val(AJv
d )− val(det(Ã) +

∑
xu′∈Jv

w · u′

> val(AJ
d )− val(det(Ã) +

∑
xu′∈J

w · u′

= val(A′J
d ) +

∑
xu′∈Jv

w · u′ + w · u− w · v

= 0 +
∑

xu′∈Jv

w · u′ + w · u− w · v

Thus val(cv) + w · v > w · u for any v with xv 6∈ J , so inw(f̃u) = xu. This means
that xu ∈ inw(I)d, and so, since by Lemma 3.3 dimk inw(I)d = s, J is precisely the
collection of monomials in inw(I)d. Since |J | = s = dimk inw(I)d = inw′(I)d we have
inw(I)d = inw′(I)d as required. Note that this also shows that inw(I) is a monomial
ideal, since in all degrees d up to the bound D on its generators inw(I)d is spanned
by monomials in inw(I)

For the second, suppose that w′ does not lie in the interior of σd. This means that
there is some J ′ ∈ Md with val(AJ ′

d ) +
∑

u∈J ′ w′ · u ≤ val(AJ
d ) +

∑
u∈J w

′ · u, where
J is as above. Choose v ∈ Qn+1 with v · (

∑
u∈J w

′ · u −
∑

u∈J w
′ · u) < 0. Then for

sufficiently small ε > 0 we have val(AJ ′

d )+
∑

u∈J ′(w′ + εv) ·u < val(AL
d )+

∑
u∈Lw

′ ·u
for all L ∈ Md with L 6= J ′. Then as above again we have inw′+εv(I)d = span{xu :
xu ∈ J ′}. By Corollary 3.4 we have inw′+εv(I) = inv(inw′(I)), so this means that
inw′(I)d is not the span of those monomials in J , and thus inw′(I)d 6= inw(I)d. �

Theorem 2.4 is now a straightforward corollary of Theorem 3.6.

Proof of Theorem 2.4. Theorem 3.6 states that all top-dimensional regions of the
Γ-rational polyhedral complex Σtrop(f) are of the form CI [w] for some w ∈ Γn+1
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with inw(I) a monomial ideal. For any w ∈ Γn+1 with inw(I) a monomial ideal by
Corollary 3.4 we have inw+εv(I) = inw(I) for all v ∈ Qn and all sufficiently small

ε. This means that such a CI [w] is full-dimensional, so it must be one of the top-
dimensional regions of Σtrop(f), as for w 6= w′ the regions CI [w] and CI [w

′] are either
disjoint or coincide. It thus remains to show that if inw(I) is not a monomial ideal,

then CI [w] is a face of some CI [w′] with inw′(I) a monomial ideal.
This follows from Corollary 3.4 and Lemma 3.2. Indeed, by Lemma 3.2 there is

some v ∈ Qn with inv(inw(I)) a monomial ideal, and by Corollary 3.4 there is ε > 0
for which inw+εv(I) = inv(inw(I)). Let w′ = w+εv. Let g1, . . . , gs be a Gröbner basis
for I with respect to w′, so inw′(I) = 〈inw′(g1), . . . , inw′(gs)〉. Write gi = xui +

∑
civx

v,
where inw(gi) = xui . We may assume, as in the proof of Lemma 3.3, that civ 6= 0

implies that xv 6∈ inw′(I). Then the polyhedron CI [w′] has the following inequality
description:

CI [w′] = {x ∈ Rn+1 : ui · x ≤ val(civ) + x · v : 1 ≤ i ≤ s}.

To see this, note that for any w̃ ∈ Γn+1 properly satisfying all of these inequalities
we have in ew(gi) = xui for 1 ≤ i ≤ n, so inw′(I) ⊆ in ew(I). Since these two initial
ideals have the same Hilbert function by Lemma 3.3, this containment must be an
inequality, so w̃ ∈ CI [w

′]. If w̃ ∈ Γn+1 lies outside this set, there is some gi for which
in ew(gi) does not contain xui in its support. Let b = w̃ · ui − min{w̃ · v : cvi 6= 0}.
By assumption b > 0. If w̃ ∈ CI [w′] then for all ε > 0 there is u′ with |u′| < ε and
w̃ + u′ ∈ CI [w

′]. Choose ε > 0 sufficiently small so that all u′ with |u′| < ε satisfy
u′ · (v − ui) < b/2 for all v with cvi 6= 0. Then in ew+u′(gi) ∈ in ew+u′(I) = inw′(I)
does not contain xui in its support. Since inw′(I) is a monomial ideal, all terms of

in ew+u′(gi) must lie in inw′(I), which is a contradiction, so such w̃ do not lie in CI [w′],

and thus CI [w′] has the claimed description.

The above argument says that CI [w] lies in CI [w′], so we just need to show that it is
a face. Note that {inw(g1), . . . , inw(gs)} is a Gröbner basis for inw(I) with respect to
v. If w̃ ∈ Γn+1 satisfies in ew(I) = inw(I), then we must have in ew(gi) = inw(gi). If not,
in ew(gi) must still have xui in its support, or we would not have inv(in ew(I) equal to
the monomial ideal inw′(I). But then in ew(gi)− inw(gi) ∈ inw(I), and this polynomial
does not contain any monomials from inw′(I), contradicting inv(inw(I)) = inw′(I).
Thus w̃ lies in the polyhedron

{x ∈ Rn+1 : ui·x ≤ val(civ)+x·v, ui·x = v′·x : 1 ≤ i ≤ s, xv′
is in the support of inw(gi)}.

On the other hand, any w̃ ∈ Γn+1 lying in this set has in ew(gi) = inw(I), so inw(I) ⊆
in ew(I), and so by Lemma 3.3 we have equality, so w̃ ∈ CI [w]. Since this polyhedron

is the intersection of C̃I [w′] with a supporting subspace it is a face as required. �

Remark 3.7. The construction of the Gröbner complex as the linear locus of a
tropical function shows that this polyhedral complex is a regular subdivision. This
notion originates in the work of Gelfand, Kapranov, and Zelevinsky [GKZ08, Chapter
7], where such subdivisions were called coherent; see also [DLRS10, Chapter 5]. The
content here is that the piecewise linear function trop(f) is concave.
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Remark 3.8. Note that the polynomial g is homogeneous of degree L =
∑D

d=1 dimK(Id).
Write g =

∑
cux

u, where the sum is over u ∈ Nn+1 with |u| = L. When K has
the trivial valuation, the linear locus of trop(g) is the normal fan of the polytope
conv(u ∈ Nn+1 : cu 6= 0). This polytope is known as the state polytope of I, and was
first described in [BM88]. The construction given above mimics this construction; see
[Stu96, Chapter 2] for an exposition in this case. When K has a nontrivial valuation,
the Gröbner complex agrees with the normal fan to the state polytope of I for large
w, and is the dual complex to a regular subdivision of the state polytope.

Remark 3.9. When K has the trivial valuation we do not need to assume that the
ideal I is homogeneous to define the Gröbner fan. In this case Anders Jensen gave
an example in [Jen07] of an ideal I ⊆ C[x1, x2, x3, x4] for which the Gröbner fan is
not a regular subdivision. However if we take X ⊂ T 4 to be the variety defined by
the ideal IC[x±1

1 , x±1
2 , x±1

3 , x±4
4 ], then trop(X) is the support of a subcomplex of this

Gröbner fan, and also a the support of a subcomplex of a regular subdivision. This
is not a contradiction, as the regular subdivision coming from the Gröbner fan of the
homogenization can be much finer than the nonregular one.
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