HOMEWORK 6, MATH 114, SPRING 2003

DUE TUESDAY MAY 27

(1) Give an explicit matrix S such that $A=S A^{\prime} S^{-1}$ (where A^{\prime} is the transpose of A) for the matrix

$$
A=\left(\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)
$$

(2) Give an algorithm to find a matrix S such that $A=S A^{\prime} S^{-1}$ for any matrix A.
(3) Find the rational canonical form J of the matrix

$$
B=\left(\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)
$$

and a matrix S such that $J=S B S^{-1}$.
(4) Show that if A is a matrix for which the minimal polynomial $m_{A}(x)$ has degree r, then there is a vector $v \in k^{n}$ such that $\left\{v, A v, \ldots, A^{r-1} v\right\}$ are linearly independent, but no vector w for which $\left\{w, A w, \ldots, A^{r} w\right\}$ are linearly independent.
(5) Does the rational canonical form of A depend on the field k ? In other words, if $k \subseteq k^{\prime}$, and A has entries in k, is the the rational canonical form of A viewed as a matrix with entries in k the same as the rational canonical form of A viewed as a matrix in k^{\prime} ? You may find it easier to think about if $k=\mathbb{Q}$ and $k^{\prime}=\mathbb{C}$, but your answer should work for any pair of fields $k \subseteq k^{\prime}$.

