## HOMEWORK 5, MATH 114, SPRING 2003

## DUE TUESDAY MAY 20

(1) Find the Jordan canonical forms of the following matrices. What are their minimal polynomials? Also find the change of basis matrix $S$ which transforms each matrix into its Jordan canonical form. You may use a computer to help compute generalized eigenvectors. Do not use a "Find the Jordan canonical form" command except to check your answer.
(a)

$$
A=\left(\begin{array}{rrr}
3 & -1 & -1 \\
1 & 1 & -1 \\
2 & -1 & 0
\end{array}\right)
$$

(b)

$$
A=\left(\begin{array}{rrrrrr}
-2 & 1 & 0 & 0 & 0 & 0 \\
-9 & 4 & 0 & 0 & 0 & 0 \\
-1 & 7 & -2 & 1 & 0 & 0 \\
57 & 1 & -9 & 4 & 0 & 0 \\
-76 & -8 & 15 & -5 & 1 & 0 \\
188 & 30 & -42 & 14 & 1 & 2
\end{array}\right)
$$

(2) What is the rational canonical form of the first matrix above?
(3) Show that if $\operatorname{ker}(A-\lambda I)^{k}=\operatorname{ker}(A-\lambda I)^{k+1}$ then $\operatorname{ker}(A-\lambda I)^{r}=$ $\operatorname{ker}(A-\lambda I)^{k}$ for all $r \geq k$. Use this to describe an algorithm to compute $N(\lambda)$.

