HOMEWORK 5, MATH 114, SPRING 2003

DUE TUESDAY MAY 20

(1) Find the Jordan canonical forms of the following matrices. What are their minimal polynomials? Also find the change of basis matrix S which transforms each matrix into its Jordan canonical form. You may use a computer to help compute generalized eigenvectors. Do not use a "Find the Jordan canonical form" command except to check your answer. (a)

$$A = \begin{pmatrix} 3 & -1 & -1 \\ 1 & 1 & -1 \\ 2 & -1 & 0 \end{pmatrix}.$$

(b)

$$A = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 & 0 \\ -9 & 4 & 0 & 0 & 0 & 0 \\ -1 & 7 & -2 & 1 & 0 & 0 \\ 57 & 1 & -9 & 4 & 0 & 0 \\ -76 & -8 & 15 & -5 & 1 & 0 \\ 188 & 30 & -42 & 14 & 1 & 2 \end{pmatrix}.$$

- (2) What is the rational canonical form of the first matrix above? (3) Show that if $\ker(A \lambda I)^k = \ker(A \lambda I)^{k+1}$ then $\ker(A \lambda I)^r = \ker(A \lambda I)^k$ for all $r \ge k$. Use this to describe an algorithm to compute $N(\lambda)$.