MATH 555-COMBINATORIAL COMMUTATIVE ALGEBRA

HOMEWORK 1

Routine Calculations

(1) Compute $H_{S / M}(20)$ for $M=\left\langle a^{2} b c, a d^{2} e, c d e\right\rangle$ using a different tree of choices of variable than the one given in class, and check that you get the same answer.
(2) What is the Hilbert polynomial of $I=\left\langle a^{3} b^{2}, a c^{4}, b c^{3}\right\rangle$?
(3) Find an irredundant minimal primary decomposition for $I=$ $\left\langle a^{3} b^{2}, a c^{4}, b c^{3}\right\rangle$.

Gaps from class

(1) Show that I is a monomial ideal if and only if for every $f \in I$ every term of f lies in I.
(2) Show that the minimal monomial generators of a monomial ideal are unique.
(3) Show that the characterization of irreducible monomial ideals given in class is correct (ie show that if I is generated by powers of the variables, then $I \neq J \cap K$ for J, K properly containing I but not necessarily monomial).
(4) Recall that every associated prime of a monomial ideal is monomial, so if M is a monomial ideal and $f \in S$, then if $M: f$ is prime it must be monomial. If $M: f$ is not prime, must it still be a monomial ideal?

Broader questions

(1) When does $I J=I \cap J$ for I and J monomial ideals?
(2) How many bishops can be placed on a 5×5 chess-board with no two attacking each other? (This is an easier question than the knight one to do directly. I really mean "mimic the algebraic proof from the first class for knights").
(3) Given a monomial ideal M in a polynomial ring in n variables generated by monomials of degree at most d, give a bound on the number N such that the Hilbert function $H_{S / M}(n)$ agrees with the Hilbert polynomial for $n>N$.
(4) Generalize our proof that the Hilbert polynomial exists to modules. Hints: Every finitely generated S-module is the quotient of a free S-module. For Gröbner reasons you may assume that the quotient is by a module generated by "monomials". What is the corresponding short exact sequence here?
(5) Show that there is a canonical primary decomposition of a monomial ideal in the following sense: Every monomial ideal has a unique minimal primary decomposition $I=\cap Q_{\sigma}$ for which each Q_{σ} is a monomial ideal that is P_{σ}-primary, and Q_{σ} is maximal among all possible P_{σ}-primary components. (Eisenbud, exercise 3.11, attributed to Bayer, Galligo and Stillman).

