FACTS ABOUT SHORTEST PATHS

DIANE MACLAGAN

This handout contains some facts about shortest paths in preparation for the Bellman-Ford algorithm. We assume that all digraphs G are simple and there is a directed path from v to all other vertices.

Key facts about shortest paths

(1) If G is a weighted digraph with no negative cost circuits then there is a shortest path from v to any $u \in V$.
(2) In that case the shortest path from v to u is a simple path.

Proof. Fix a vertex $u \in V$. If there were no shortest path from v to u, then for all $W \in \mathbb{R}$ there would be a path of weight less than W from v to u. There are only finitely many simple paths from v to u. Let W_{s} be the smallest weight of a simple path from v to u. Choose $W<W_{s}$. Let $v=v_{0}, v_{1}, \ldots, v_{s}=u$ be a path from v to u of weight $W^{\prime}=\sum_{k=0}^{s-1} w\left(\left(v_{k}, v_{k+1}\right)\right)$ less than W. We may assume the path has been chosen to have as few vertices as possible out of all paths of weight less than W. Since $W<W_{s}$ this path is not simple, so there is $i<j$ with $v_{i}=v_{j}$. Then $v=v_{0}, v_{1}, \ldots, v_{i}, v_{j+1}, \ldots, v_{s}=u$ is a path from v to u with fewer vertices, so has weight $W^{\prime \prime}>W^{\prime}$. But then $W^{\prime}-W^{\prime \prime}=\sum_{k=i}^{j-1} w\left(\left(v_{k}, v_{k+1}\right)\right)<0$, so $v_{i}, v_{i+1}, \ldots, v_{j}=v_{i}$ is a negative cost circuit.

If there is no negative cost circuit and $v=v_{0}, \ldots, v_{s}=u$ is a path from v to u with $v_{i}=v_{j}$ for some $i<j$, then $v=v_{0}, \ldots, v_{i}, v_{j+1}, \ldots, u$ is a path from v to u with at worst the same weight. Thus the shortest path from v to u is simple.

Key facts about the Ford algorithm:

(1) If G has no negative cost circuit then at each stage, if $y_{u} \neq \infty$ then y_{u} is the cost of a simple path from v to u.
(2) If G has a negative cost circuit, then there is always an incorrect edge of the algorithm at each stage.

Proof. Suppose first that G has no negative cost circuit. Let y_{u}^{j} be the value of y_{u} after j steps of the algorithm (so j edges have been corrected). We need to show that if $y_{u}^{j}<\infty$ then y_{u}^{j} is the length of a simple path from v to u. We construct this path backwards as follows. Suppose y_{u}^{j} was last updated at step $j_{0} \leq j$ by correcting
the edge $\left(v_{1}, u\right)$, so $y_{u}^{j}=y_{v_{1}}^{j_{0}}+w\left(\left(v_{1}, u\right)\right)$. Let $j_{1}<j_{0}$ be the step at which $y_{v_{1}}^{j_{0}}$ obtained this value, by correcting the edge $\left(v_{2}, v_{1}\right)$, so $y_{v_{1}}=y_{v_{2}}+w\left(\left(v_{2}, v_{1}\right)\right)$. Iterate. Since j_{k} decreases at each stage we must eventually have $j_{s}=0$. The first edge corrected is always an edge from v, as all other $y_{u}^{s}=\infty$, so it is the only incorrect edge. Thus $v_{s}=v$, and $v=v_{s}, v_{s-1}, \ldots, v_{1}, u$ is a path from v to u.

We now show that if G has no negative cost circuits this is a simple path. Otherwise there is some loop with $v_{i}=v_{j}$ with $i<j$. Note that $y_{v_{k}}^{j_{k}}-y_{v_{k+1}}^{j_{k}}=w\left(\left(v_{k+1}, v_{k}\right)\right)$. So

$$
\begin{aligned}
\sum_{k=i}^{j-1} w\left(\left(v_{k+1}, v_{k}\right)\right) & =\sum_{k=i}^{j-1} y_{v_{k}}^{j_{k}}-y_{v_{k+1}}^{j_{k}} \\
& =\sum_{k=i}^{j-1} y_{v_{k}}^{j_{k}}-y_{v_{k+1}}^{j_{k+1}} \\
& =y_{v_{i}}^{j_{i}}-y_{v_{j}}^{j_{j}} \\
& <0
\end{aligned}
$$

since $i<j$ means that $j_{i}>j_{j}$, so $y_{v_{i}}^{j_{i}}<y_{v_{i}}^{j_{j}}$, as the y_{v}^{j} decreases each time

Thus G has a negative cost circuit.
Now suppose that G has a negative cost circuit $v_{1}, v_{2}, \ldots, v_{s}=v_{1}$ of weight $W<0$. We claim that once one of the $y_{v_{i}}$ is not ∞ then at least one edge $\left(v_{i}, v_{i+1}\right)$ is incorrect at each stage. Otherwise we have $y_{v_{i+1}} \leq y_{v_{i}}+w\left(\left(v_{i}, v_{i+1}\right)\right)$ for all i, so $\sum_{i=1}^{s-1} y_{v_{i+1}} \leq \sum_{i=1}^{s-1}\left(y_{v_{i}}+\right.$ $\left.w\left(\left(v_{i}, v_{i+1}\right)\right)\right)=\sum_{i=1}^{s-1} y_{v_{i+1}}+W$, which is a contradiction.

Comprehension exercises: Show that if G has no negative cost circuit then no edge (u, v) will ever be incorrect. If G has a negative cost circuit, does it mean that some edge (u, v) must be incorrect at each stage?

