
Mathematics 244: Lab 5

Trajectories in the Phase Plane

Spring 2006

0. Introduction and Setup In this lab, we shall use Maple to study the qualitative
properties of autonomous systems of two differential equations.

The first step is to obtain the seed file from the web page and save it in your directory on eden. You will
be asked to execute the Maple commands that have been placed in this worksheet and to add some of your
own. Please turn in only the printout of your main Maple worksheet. Include explicit answers to all questions
asked, using the text feature of Maple to insert them in the worksheet. Remove any extraneous material
from the worksheet. There is also a supplementary worksheet that suggests additional experiments that
may lead to better answers to the questions considered in this project.

As in Lab4, we require the DEtools, plots, and LinearAlgebra packages. There are also some
constants that will be used in both of the remaining sections. To assure that these definitions are available,
both the seed file and the supplementary worksheet contain the following instructions.

with(plots): with(DEtools): with(LinearAlgebra):
window:=x=-6..6,y=-6..6;
trange:=-6..6;
inits:=[[x(0)=3,y(0)=3],[x(0)=-1,y(0)=4],

[x(0)=2,y(0)=-2],[x(0)=-1,y(0)=-4]];

Each numbered section of this lab deals with a system of two autonomous differential equations, i.e., a
system of the form

x ′(t) = F(x, y), y′(t) = G(x, y).

Note that the distinguishing feature of an autonomous system is that the expressions defining the functions
F and G do not contain the independent variable t . This allows many properties of the solutions to be
studied using the curves, called trajectories, that show the path in the xy plane followed by the solutions
(It is an easy exercise, mentioned in Lab 4, to show that if an initial condition is on a trajectory, then the
whole solution follows that trajectory). The Maple command DEplot may be used to draw trajectories and
direction fields for such systems.

1. A linear system Consider the linear system:

x ′
= x + 2y,

y′
− 5x − 2y.

You teach Maple to recognize this equation using the instructions

L1:=[x+2*y,-5*x-2*y];
de1x:=diff(x(t),t)=eval(L1[1],{x=x(t),y=y(t)});
de1y:=diff(y(t),t)=eval(L1[2],{x=x(t),y=y(t)});
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that appear in the seed file and supplementary worksheet for lab5. The right side of the equation is entered
initially as L1 using variables x and y that are converted to the expressions x(t) and y(t) when building
the equations. The eval instructions are useful since the functions are required in some places, but simple
variables are easier to use and clearer when their use is accepted.

This system has (0, 0) as an equilibrium point. We will study the stability of that point.

a. The Direction field The following instruction can be used to recall previous definitions and
construct a plot of the direction field of this system. The plot consists of small arrows pointing the way of
the trajectories in the square −6 ≤ x ≤ 6, −6 ≤ y ≤ 6.

df1:=DEplot([de1x,de1y],[x(t),y(t)], trange, window,color=GREEN):

(note the colon at the end to suppress output of the plot structure). The color options is used to give a
better view of the nullclines and solution curves to be added later. You should also test different values of
dirgrid as in Lab 2 and customize the value for the plots in this project. A value should be chosen that
allows individual arrows to be identified while including a sufficient number of arrows. To show this plot,
you need only enter its name df1; after defining it. This should not be done in the main worksheet, since
we will include this as part of a display command later.

b. Nullclines The points where the direction field is horizontal (characterized by dy/dt = 0) or
vertical (characterized by dx/dt = 0) form curves called nullclines. In many cases, these curves provide
useful information about the behavior of trajectories without the excessive detail of a direction field. They
can be plotted by the following instructions (the color is intended to distinguish these curves on the screen
— it is not necessary to print your report in color).

dh1:=plot(-5*x/2,window,color=coral):
dv1:=plot(-x/2,window,color=violet):
display({df1,dh1,dv1},title="Slope field and nullclines");

Note that the nullclines usually cut across the arrows in the slope field since they are not solutions of the
equation (except in rare cases). The line dh1, colored coral shows where the direction field is horizontal,
and the line dv1, colored violet shows where the direction field is vertical.

c. Trajectories To study the stability of an equilibrium point, it is also useful to draw the direction
field together with several trajectories. In Lab 4, we did this by finding the exact solution to the equation.
Since this will usually not be possible for the nonlinear equations to be studied later in this project, we use
the numerical methods that are part of the DEplot command. This will allow us to experiment with those
methods before they are really needed. These experiments will be done in the supplementary worksheet, with
only the conclusions reported here. The initial points (3, 3), (−1, 4), (2, −2), and (−1, −4) were specified
in the earlier definition of inits. To draw the direction field together with the trajectories through these
points, execute the command DEplot([de1x,de1y],[x(t),y(t)], trange, inits, win-
dow,linecolor=[RED, BLUE, BROWN, PLUM],thickness=2); . This form of the command
appears in the supplementary worksheet. The result should not be satisfactory since Maple chose a
stepsize that was much too large (for our trange, the stepsize is .6). The trajectories drawn
as coarse polygons instead of smooth curves, and these trajectories do not follow the arrows very closely.
Experiment with different explicit values of a stepsize option until you find one that gives smooth
trajectories. Copy the completed command to your main worksheet and execute it there. The plot in
the main worksheet should have a title.
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In a Discussion section, list the different stepsizes used in your experiments, and the reason for your
choice. Your choice should be the simplest value giving an acceptable graph — a value that is too small
uses more computer resources without improving the graph. Simplicity also calls for using values requiring
only a few decimal places.

d. Stability The plot reveals curves that spiral towards the origin, so the origin is a stable point of
this system. The eigenvalues of the matrix can be shown to be complex numbers of negative real part, which
is the algebraic characterization of stable spiral points.

It is also possible to recognize the nature of the equilibrium point using the trace-determinant plane
without actually computing eigenvalues.

A more elaborate method of proving stability involves the construction of a Liapunov function. This is
done in the supplementary worksheet.

Select one method for proving the origin stable and include the details in a discussion section.

2. An almost linear system. Consider the almost linear system

x ′
= 2y − 2x + xy − x2

= (2 + x)(y − x)

y′
= 4y + 4x − xy − x2

= (4 − x)(y + x).

The equilibrium solutions are [x = 0, y = 0], [x = −2, y = 2], and [x = 4, y = 4]. Maple can obtain
these by using

F2:=2*y - 2*x + x*y - xˆ2;
G2:=4*y + 4*x - x*y - xˆ2;
eqpts:=solve({F2,G2},{x,y});

which are included in the seed file.

a. The Direction field. The expressions F2 and G2 can be rewritten in the form needed to specify
a differential equation using the commands de2x:=diff(x(t),t)=eval(F2,x=x(t),y=y(t));,
andde2y:=diff(y(t),t)=eval(G2,x=x(t),y=y(t));. (a variant based on thesubs command
will also work). Modify the command that you used to plot the slope field in Section 1 to plot the slope field
of this system. Test different options in the supplementary worksheet and copy your best plot command
to the main worksheet. Use the DEplot command to obtain a plot of the direction field of this system
using the values of trange and window defined earlier. You should test the plot in the supplementary
worksheet, but not include the plot here until it is combined with other plots in a later display.

b. Nullclines. In this example, the factored form of the expressions for dx/dt and dy/dt allows a
simple parametric description of the nullclines. In particular, the slope field is horizontal along dh2, whose
plot can be constructed using

dh2:=plot([[4,t,t=trange],[t,-t,t=trange]],window,color=coral):

Construct a similar instruction to produce a plot showing where the slope field is vertical (you should use
color=violet as before), and obtain a display (including a title) combining the slope field and both
sets of nullclines. The equilibrium points should be seen as points lying on one nullcline of each color.
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c. Trajectories. Graph the solutions belonging to the initial conditions inits defined in part 1.
Choose a suitable stepsize to produce graphs. As before, use different colors to allow the solutions
belonging to different initial conditions to be easily identified.

Include a discussion in which you describe the properties of the portions of the trajectories shown in
the graph. In some cases properties as t → ∞ or as t → −∞ may be suggested by the graph you have.
Include such observations in your discussion. Be sure to describe all four solutions.

d. Stability The type and stability of the critical points can be determined by examining the
eigenvalues of the corresponding linear system. The entries of matrix of the linear system corresponding
to each critical point can be obtained by Maple by executing the following sequence of commands, which
calculate the partial derivatives of the right hand sides of the differential equations, assembles them into a
matrix, and then substitutes the coordinates of the critical point for x and y. The Jac functions constructed
earlier gives a function of x and y which gives the linearization at each stationary point when evaluated
at those values of (x, y). The different stationary points may have different types.

In a discussion section:
(1) give the coordinates of each stationary point;
(2) find the linearizations at each stationary point;
(3) describe the type (node, spiral, or saddle) of each stationary point, and say whether it is stable of

unstable.

End of Lab 5
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