# MA 243 HOMEWORK 8 

DUE: THURSDAY, 29, 2007, BY 12PM

Hand in the problems in Section B only to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

## A: Warm-up problems

(1) Consider the line $L=\{y=0\} \cap \mathbb{H}^{2}$ in $\mathbb{H}^{2}$. Show that this corresponds to the line $y=0$ in the Poincaré disk model. (See QB2 for the extension).
(2) Let $E$ be the affine subspace of $\mathbb{A}^{2}$ given by $E=\{(1,0)+$ $\lambda(2,3)\}$. Find $\mathbf{u}_{0}, \mathbf{u}_{1}$ so that $E=\left\{\mu_{0} \mathbf{u}_{0}+\mu_{1} \mathbf{u}_{1}: \mu_{0}+\mu_{1}=1\right\}$. Find a matrix $C$ and vector $\mathbf{d}$ so that $E=\left\{\mathbf{x} \in \mathbb{R}^{2}: C \mathbf{x}=\mathbf{d}\right\}$ (Hint: vectors of size one are numbers!)

## B: Exercises

(1) In this question we will show that the circumference of a circle of radius $r$ in $S^{2}$ is $2 \pi \sin (r)$. As in $\mathbb{E}^{2}$, a circle of radius $r$ with centre $P$ is the set of all points in $S^{2}$ distance $r$ from $P$.
(a) If $\triangle P Q R$ is a triangle with $d(P, Q)=d(P, R)=r$, and the angle between $P Q$ and $P R$ at $P$ equal to $\alpha$, what is the distance $d(Q, R)$ ?
(b) Use this to compute the circumference of a regular polygon in $S^{2}$ with $n$ vertices and radius $r$ by dividing the polygon into triangles around a central vertex.
(c) Write an expression for the circumference of the circle of radius $r$ as a limit as $n$ goes to infinity. Evaluate this limit.
(2) Consider the line $L=\{t=2 x\} \cap \mathbb{H}^{2}$ in $\mathbb{H}^{2}$. Show that in the Poincaré disk model of $\mathbb{H}^{2}, L$ is taken to an arc of the circle of radius $\sqrt{( } 3)$ centred at the point $(2,0)$ (using the identification of projecting from $(-1,0,0)$ as in the diagram on p70 of Cannon, Floyd, Kenyon and Parry, which is linked on the main webpage under announcements).
(3) Let $E$ be the affine subspace of $\mathbb{A}^{3}$ given by $E=\{(1,0,0)+$ $\left.\lambda_{1}(1,2,3)+\lambda_{2}(4,5,6): \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}$. Find $\mathbf{u}_{0}, \mathbf{u}_{1}, \mathbf{u}_{2}$ so that
$E=\left\{\mu_{0} \mathbf{u}_{0}+\mu_{1} \mathbf{u}_{1}+\mu_{2} \mathbf{u}_{2}: \mu_{0}+\mu_{1}+\mu_{2}=1\right\}$. Find a matrix $C$ and vector $\mathbf{d}$ so that $E=\left\{\mathbf{x} \in \mathbb{R}^{3}: C \mathbf{x}=\mathbf{d}\right\}$.

## C: Extensions

(1) Repeat the calculation of exercise B1 for $\mathbb{H}^{2}$ What answer do you get? What happens when you do this in $\mathbb{E}^{2}$ ?
(2) (Highly recommended!!!) There are many many interesting problems in the notes/book we did not have time to cover. For example, prove the spherical or hyperbolic sine law. Repeat the previous exercise for the area of a spherical/hyperbolic circle.

