MA 243 HOMEWORK 8

DUE: THURSDAY, 29, 2007, BY 12PM

Hand in the problems in Section B *only* to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

A : WARM-UP PROBLEMS

- (1) Consider the line $L = \{y = 0\} \cap \mathbb{H}^2$ in \mathbb{H}^2 . Show that this corresponds to the line y = 0 in the Poincaré disk model. (See QB2 for the extension).
- (2) Let *E* be the affine subspace of \mathbb{A}^2 given by $E = \{(1,0) + \lambda(2,3)\}$. Find $\mathbf{u}_0, \mathbf{u}_1$ so that $E = \{\mu_0 \mathbf{u}_0 + \mu_1 \mathbf{u}_1 : \mu_0 + \mu_1 = 1\}$. Find a matrix *C* and vector **d** so that $E = \{\mathbf{x} \in \mathbb{R}^2 : C\mathbf{x} = \mathbf{d}\}$ (Hint: vectors of size one are numbers!)

B: Exercises

- (1) In this question we will show that the circumference of a circle of radius r in S^2 is $2\pi \sin(r)$. As in \mathbb{E}^2 , a circle of radius r with centre P is the set of all points in S^2 distance r from P.
 - (a) If ΔPQR is a triangle with d(P,Q) = d(P,R) = r, and the angle between PQ and PR at P equal to α , what is the distance d(Q,R)?
 - (b) Use this to compute the circumference of a regular polygon in S^2 with *n* vertices and radius *r* by dividing the polygon into triangles around a central vertex.
 - (c) Write an expression for the circumference of the circle of radius r as a limit as n goes to infinity. Evaluate this limit.
- (2) Consider the line $L = \{t = 2x\} \cap \mathbb{H}^2$ in \mathbb{H}^2 . Show that in the Poincaré disk model of \mathbb{H}^2 , L is taken to an arc of the circle of radius $\sqrt{(3)}$ centred at the point (2,0) (using the identification of projecting from (-1,0,0) as in the diagram on p70 of Cannon, Floyd, Kenyon and Parry, which is linked on the main webpage under announcements).
- (3) Let *E* be the affine subspace of \mathbb{A}^3 given by $E = \{(1,0,0) + \lambda_1(1,2,3) + \lambda_2(4,5,6) : \lambda_1, \lambda_2 \in \mathbb{R}\}$. Find $\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2$ so that

DUE: THURSDAY, 29, 2007, BY 12PM

 $E = \{\mu_0 \mathbf{u}_0 + \mu_1 \mathbf{u}_1 + \mu_2 \mathbf{u}_2 : \mu_0 + \mu_1 + \mu_2 = 1\}.$ Find a matrix C and vector \mathbf{d} so that $E = \{\mathbf{x} \in \mathbb{R}^3 : C\mathbf{x} = \mathbf{d}\}.$

C: EXTENSIONS

- (1) Repeat the calculation of exercise B1 for \mathbb{H}^2 What answer do you get? What happens when you do this in \mathbb{E}^2 ?
- (2) (Highly recommended!!!) There are many many interesting problems in the notes/book we did not have time to cover. For example, prove the spherical or hyperbolic sine law. Repeat the previous exercise for the area of a spherical/hyperbolic circle.