MA 243 HOMEWORK 9

SOLUTIONS

B: Exercises

(1) Find a projective transformation of \mathbb{P}^{2} taking the (ordered) list $\{(1: 1: 0),(1: 0: 1),(1: 1: 1),(0: 1: 1)\}$ of points to the (ordered) list $\{(1: 0: 0),(0: 1: 0),(0: 0$: 1), $(1: 1: 1)\}$.

$$
T([\mathbf{x}])=\left[\left(\begin{array}{rrr}
2 & 0 & -2 \\
2 & -2 & 0 \\
1 & -1 & -1
\end{array}\right) \mathbf{x}\right] .
$$

(2) Compute the cross-ratio $\{P, Q ; R, S\}$ of the set $\{P=(1$: $0), Q=(1: 1), R=(2: 1), S=(1: 2)\}$ of points in \mathbb{P}^{1}.

The transformation

$$
T([\mathbf{x}])=\left[\left(\begin{array}{rr}
-2 & 2 \\
0 & 1
\end{array}\right) \mathbf{x}\right]
$$

takes P to $(1: 0), Q$ to $(0: 1)$, and S to $(1: 1)$, and takes R to (1:-1), so $\{P, Q ; R, S\}=-1$.
(3) Recall that we embed \mathbb{A}^{n} into \mathbb{P}^{n} by sending \mathbf{x} to (1:x). Given an affine transformation $T(\mathrm{x})=A \mathrm{x}+\mathbf{b}$, write down the corresponding projective transformation it extends to (this was given in class briefly). Let $S(\mathbf{x})=$ $A^{\prime} \mathbf{x}+\mathbf{b}^{\prime}$. Write down the composition $S \circ T$, and compare it with the result of composing the corresponding projective transformations.

We set

$$
\tilde{T}([\mathbf{x}])=\left[\left(\begin{array}{c|c}
1 & 0 \\
\hline \mathbf{b} & A
\end{array}\right) \mathbf{x}\right] .
$$

Let

$$
\tilde{S}([\mathbf{x}])=\left[\left(\begin{array}{c|c}
1 & 0 \\
\hline \mathbf{b}^{\prime} & A^{\prime}
\end{array}\right) \mathbf{x}\right] .
$$

Then $S \circ T(\mathbf{x})=A^{\prime} A \mathbf{x}+\left(A^{\prime} \mathbf{b}+\mathbf{b}^{\prime}\right)$, so

$$
\widetilde{S \circ T}([\mathbf{x}])=\left[\left(\begin{array}{r|r}
1 & 0 \\
\hline\left(A^{\prime} \mathbf{b}+\mathbf{b}^{\prime}\right) & A^{\prime} A
\end{array}\right) \mathbf{x}\right]=\tilde{S} \circ \tilde{T}([\mathbf{x}]) .
$$

(4) Read the Proposition in Section 5.6 of the notes. Suppose that the cross ratio $\{P, Q ; R, S\}=\lambda$. There are twenty-four permutations (bijections) $\pi:\{P, Q, R, S\} \rightarrow$ $\{P, Q, R, S\}$. How many different values does $\{\pi(P), \pi(Q) ; \pi(R), \pi(S)\}$ take? Hint: See exercises to Chapter five in the notes. The Proposition in Section 5.6 of the notes says that if $\mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}$ are the position vectors of P, Q, R, S, then

$$
\{P, Q ; R, S\}=\frac{\mathbf{p}-\mathbf{r}}{\mathbf{p}-\mathbf{s}} \cdot \frac{\mathbf{q}-\mathbf{s}}{\mathbf{q}-\mathbf{r}},
$$

where the ratio of vectors means the ratio (of lengths) along the line L, and thus can be taken to be the ratio of signed lengths such as $\pm|\mathbf{p}-\mathbf{r}| /|\mathbf{p}-\mathbf{s}|$. Thus switching P and Q or switching R and S changes a cross-ratio of λ to one of $1 / \lambda$. By direct calculation, if $\{P, Q ; R, S\}=\lambda$, then $\{Q, R ; S, P\}=$ $\lambda /(\lambda-1)$. Since the permutations (12) and (1234) generate the permutation group S_{4} (exercise!), to compute all the possible cross-ratios we just need to work out the results of repeated application of the maps $\phi: \lambda \mapsto 1 / \lambda$ and $\psi: \lambda \mapsto \lambda /(\lambda-1)$. This gives the options: $\{\lambda, 1 / \lambda, \lambda /(\lambda-1),(\lambda-1) / \lambda, 1 /(1-$ $\lambda), 1-\lambda\}$, which are $\{1, \phi, \psi, \phi \circ \psi, \psi \circ \phi, \phi \circ \psi \circ \phi\}$. Check that all other compositions give something on this list. Bonus exercise: What can you say about the map from S_{4} to the group generated by ϕ, ψ ?

Warning: Note a typo in Exercise 5.11 on page 112 of the notes.

