MA 243 HOMEWORK 7

DUE: THURSDAY, NOVEMBER 27, BY 12PM

Hand in the problems in Section B *only* to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

A : WARM-UP PROBLEMS

- (1) Find an affine transformation of \mathbb{A}^2 taking the set $\{(0,0), (1,0), (1,1)\}$ to the set $\{(1,2), (1,3), (2,2)\}$.
- (2) Are the points $\{(1,3), (2,4), (3,5)\}$ collinear? How about $\{(1,2), (4,5), (-1,0)\}$?

B: Exercises

- (1) Find an affine transformation of \mathbb{A}^2 taking the set $\{(3, 4), (4, 6), (6, 11)\}$ to $\{(1, -1), (2, 1), (3, 5)\}.$
- (2) Recall that an affine subspace of dimension d is a subset of \mathbb{A}^n of the form $\mathbf{v} + V = {\mathbf{v} + \mathbf{w} : \mathbf{w} \in V}$ where V is a subspace of dimension d. A collection of d points in \mathbb{A}^n are affine linearly dependent if there is an affine subspace of dimension d-2 containing them.
 - (a) Are the points $\{(1,0,0), (2,2,3), (5,8,12)\}$ affine linearly dependent? What does it mean geometrically for three points to be affine linearly dependent?
 - (b) Give a determinantal criterion for 3 points in A² to be affine linearly dependent (ie describe a matrix whose determinant is zero or nonzero accordingly).
 - (c) Generalize the previous part to the case of n + 1 points in \mathbb{A}^n .
- (3) Find the intersection of the following pairs of lines in \mathbb{P}^2 : $L = W/\sim$, $L' = W'/\sim$, where
 - (a) $W = \{ \mathbf{x} \in \mathbb{R}^3 : x_0 + x_1 = 0 \}, W' = \{ \mathbf{x} \in \mathbb{R}^3 : 2x_0 + x_1 x_2 = 0 \}$
 - (b) $W = \{ \mathbf{x} \in \mathbb{R}^3 : x_2 = 0 \}, W' = \{ \mathbf{x} \in \mathbb{R}^3 : x_1 = x_2 \}$
- (4) Prove that 3 lines L, M, N of \mathbb{P}^n that intersect in pairs are either concurrent (have a common point) or coplanar.

C: EXTENSIONS

- (1) We can define affine and projective space over any field k. Affine space \mathbb{A}_k^n is the vector space k^n with affine transformations T(x) = Ax + b where A is an $n \times n$ invertible matrix with entries in k, and $b \in k^n$. Projective space \mathbb{P}^n is $(k^{n+1} \setminus \mathbf{0}) / \sim$, where \sim is defined as before: $\mathbf{v} \sim \lambda \mathbf{v}$ for all $\lambda \in k \setminus \mathbf{0}$.
 - (a) Consider the case $k = \mathbb{F}_2$, the finite field with two elements. What do lines look like in \mathbb{A}^2 ?
 - (b) What about \mathbb{A}^3 ?
 - (c) Repeat this for $k = \mathbb{F}_3$, the finite field with three elements.
 - (d) Look at the game described at http://www.setgame.com/set/index.html. Can you see a connection?
 - (e) Let $k = \mathbb{F}_2$. List the points in \mathbb{P}_k^2 . Draw a picture of all the lines in \mathbb{P}_k^2 .