## MA 243 HOMEWORK 7

DUE: THURSDAY, NOVEMBER 27, BY 12PM

Hand in the problems in Section B only to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

## A : Warm-up problems

(1) Find an affine transformation of $\mathbb{A}^{2}$ taking the set $\{(0,0),(1,0),(1,1)\}$ to the set $\{(1,2),(1,3),(2,2)\}$.
(2) Are the points $\{(1,3),(2,4),(3,5)\}$ collinear? How about $\{(1,2),(4,5),(-1,0)\}$ ?

## B: Exercises

(1) Find an affine transformation of $\mathbb{A}^{2}$ taking the set $\{(3,4),(4,6),(6,11)\}$ to $\{(1,-1),(2,1),(3,5)\}$.
(2) Recall that an affine subspace of dimension $d$ is a subset of $\mathbb{A}^{n}$ of the form $\mathbf{v}+V=\{\mathbf{v}+\mathbf{w}: \mathbf{w} \in V\}$ where $V$ is a subspace of dimension $d$. A collection of $d$ points in $\mathbb{A}^{n}$ are affine linearly dependent if there is an affine subspace of dimension $d-2$ containing them.
(a) Are the points $\{(1,0,0),(2,2,3),(5,8,12)\}$ affine linearly dependent? What does it mean geometrically for three points to be affine linearly dependent?
(b) Give a determinantal criterion for 3 points in $\mathbb{A}^{2}$ to be affine linearly dependent (ie describe a matrix whose determinant is zero or nonzero accordingly).
(c) Generalize the previous part to the case of $n+1$ points in $\mathbb{A}^{n}$.
(3) Find the intersection of the following pairs of lines in $\mathbb{P}^{2}: L=$ $W / \sim, L^{\prime}=W^{\prime} / \sim$, where
(a) $W=\left\{\mathbf{x} \in \mathbb{R}^{3}: x_{0}+x_{1}=0\right\}, W^{\prime}=\left\{\mathbf{x} \in \mathbb{R}^{3}: 2 x_{0}+x_{1}-\right.$ $\left.x_{2}=0\right\}$
(b) $W=\left\{\mathbf{x} \in \mathbb{R}^{3}: x_{2}=0\right\}, W^{\prime}=\left\{\mathbf{x} \in \mathbb{R}^{3}: x_{1}=x_{2}\right\}$
(4) Prove that 3 lines $L, M, N$ of $\mathbb{P}^{n}$ that intersect in pairs are either concurrent (have a common point) or coplanar.

## C: Extensions

(1) We can define affine and projective space over any field $k$. Affine space $\mathbb{A}_{k}^{n}$ is the vector space $k^{n}$ with affine transformations $T(x)=A x+b$ where $A$ is an $n \times n$ invertible matrix with entries in $k$, and $b \in k^{n}$. Projective space $\mathbb{P}^{n}$ is $\left(k^{n+1} \backslash \mathbf{0}\right) / \sim$, where $\sim$ is defined as before: $\mathbf{v} \sim \lambda \mathbf{v}$ for all $\lambda \in k \backslash 0$.
(a) Consider the case $k=\mathbb{F}_{2}$, the finite field with two elements. What do lines look like in $\mathbb{A}^{2}$ ?
(b) What about $\mathbb{A}^{3}$ ?
(c) Repeat this for $k=\mathbb{F}_{3}$, the finite field with three elements.
(d) Look at the game described at http://www.setgame.com/set/index.html. Can you see a connection?
(e) Let $k=\mathbb{F}_{2}$. List the points in $\mathbb{P}_{k}^{2}$. Draw a picture of all the lines in $\mathbb{P}_{k}^{2}$.

