MA 243 HOMEWORK 5

DUE: THURSDAY, 13 NOVEMBER, 2008, BY 12PM

Hand in the problems in Section B *only* to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

A : WARM-UP PROBLEMS

- (1) Use the spherical cosine law to compute the distance between the points (1, 0, 0) and $(0, 1/\sqrt{2}, 1/\sqrt{2})$ on S^2 .
- (2) Describe all motions of \mathbb{E}^2 you can obtain by repeatedly reflecting in the y axis and reflecting in the line x = 1.
- (3) Recall that $\mathbb{H}^1 = \{(t, x) \in \mathbb{R}^2 : -t^2 + x^2 = -1\}$. Show that the map $\phi : \mathbb{R} \to \mathbb{H}^1$ given by $\phi(s) = (\cosh(s), \sinh(s))$ is a bijection.
- (4) Prove the hyperbolic double-angle formula:

 $\cosh(\beta + \gamma) = \cosh(\beta)\cosh(\gamma) + \sinh(\beta)\sinh(\gamma).$

(5) Write a list summarizing in just one or two sentences the content of each lecture so far.

B: Exercises

- (1) Use the main formula of spherical trig to calculate the distance from London to Christchurch, NZ on the surface of the earth, using that London is approximately 51° North, and Christchurch is approximately 43° South, 172° East. Recall that latitude is measured from the equator 0° north to the North Pole = 90° N, and longitude is measured from the Greenwich observatory, which is in London. The circumference of the earth is 40,000 km by the definition of kilometer.
- (2) Prove that $P, Q, R \in S^2$ are collinear if and only if either d(P,Q) + d(Q,R) = d(P,R) after relabelling, or $d(P,Q) + d(Q,R) + d(P,R) = 2\pi$.
- (3) Show that if T(x) = Ax is a linear map from \mathbb{R}^2 to itself (so A is a 2×2 matrix) with the property that T maps \mathbb{H}^1 to itself and

preserves distance, then A has one of the following two forms:

A =	$\cosh(s)$	$\sinh(s)$	$\Big), A = \Big($	$\cosh(s)$	$-\sinh(s)$
	$\sinh(s)$	$\cosh(s)$		$\sinh(s)$	$-\cosh(s)$

(4) Show that if L is a hyperbolic line then there is a distance preserving bijection from L to \mathbb{H}^1 .

C: EXTENSIONS

- (1) (a) Consider the motions of \mathbb{E}^2 given by the reflection T in the x-axis and the reflection S in the y-axis. How many different motions of \mathbb{E}^2 can you obtain by repeated composition of T and S? (for example, $T \circ S$, $T \circ S \circ T \circ S \circ S$). line $y = -\sqrt{3}x$?
 - (b) Consider the motions of \mathbb{E}^2 given by the reflection T in the x-axis and the reflection S in the line $y = \tan(2\pi/n)$ for a fixed $n \ge 3$. How many different motions of \mathbb{E}^2 can you obtain by repeated composition of T and S? How does your answer change if S is a general line y = cx for a fixed c not equal to $\tan(\pi/n)$ for some n? What if the two lines of reflection do not intersect?
- (2) Do any (all!) of the exercises on the sphere in Chapter 3 of the book.