MA 243 HOMEWORK 5

DUE: THURSDAY, 13 NOVEMBER, 2008, BY 12PM

Hand in the problems in Section B only to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

A : Warm-up problems

(1) Use the spherical cosine law to compute the distance between the points $(1,0,0)$ and $(0,1 / \sqrt{2}, 1 / \sqrt{2})$ on S^{2}.
(2) Describe all motions of \mathbb{E}^{2} you can obtain by repeatedly reflecting in the y axis and reflecting in the line $x=1$.
(3) Recall that $\mathbb{H}^{1}=\left\{(t, x) \in \mathbb{R}^{2}:-t^{2}+x^{2}=-1\right\}$. Show that the map $\phi: \mathbb{R} \rightarrow \mathbb{H}^{1}$ given by $\phi(s)=(\cosh (s), \sinh (s))$ is a bijection.
(4) Prove the hyperbolic double-angle formula:

$$
\cosh (\beta+\gamma)=\cosh (\beta) \cosh (\gamma)+\sinh (\beta) \sinh (\gamma)
$$

(5) Write a list summarizing in just one or two sentences the content of each lecture so far.

B: ExERCISES

(1) Use the main formula of spherical trig to calculate the distance from London to Christchurch, NZ on the surface of the earth, using that London is approximately 51° North, and Christchurch is approximately 43° South, 172° East. Recall that latitude is measured from the equator 0° north to the North Pole $=90^{\circ}$ N , and longitude is measured from the Greenwich observatory, which is in London. The circumference of the earth is 40,000 km by the definition of kilometer.
(2) Prove that $P, Q, R \in S^{2}$ are collinear if and only if either $d(P, Q)+d(Q, R)=d(P, R)$ after relabelling, or $d(P, Q)+$ $d(Q, R)+d(P, R)=2 \pi$.
(3) Show that if $T(x)=A x$ is a linear map from \mathbb{R}^{2} to itself (so A is a 2×2 matrix) with the property that T maps \mathbb{H}^{1} to itself and
preserves distance, then A has one of the following two forms:

$$
A=\left(\begin{array}{cc}
\cosh (s) & \sinh (s) \\
\sinh (s) & \cosh (s)
\end{array}\right), \quad A=\left(\begin{array}{cc}
\cosh (s) & -\sinh (s) \\
\sinh (s) & -\cosh (s)
\end{array}\right)
$$

(4) Show that if L is a hyperbolic line then there is a distance preserving bijection from L to \mathbb{H}^{1}.

C: Extensions

(1) (a) Consider the motions of \mathbb{E}^{2} given by the reflection T in the x-axis and the reflection S in the y-axis. How many different motions of \mathbb{E}^{2} can you obtain by repeated composition of T and S ? (for example, $T \circ S, T \circ S \circ T \circ S \circ S$). line $y=-\sqrt{3} x$?
(b) Consider the motions of \mathbb{E}^{2} given by the reflection T in the x-axis and the reflection S in the line $y=\tan (2 \pi / n)$ for a fixed $n \geq 3$. How many different motions of \mathbb{E}^{2} can you obtain by repeated composition of T and S ? How does your answer change if S is a general line $y=c x$ for a fixed c not equal to $\tan (\pi / n)$ for some n ? What if the two lines of reflection do not intersect?
(2) Do any (all!) of the exercises on the sphere in Chapter 3 of the book.

