MA 243 HOMEWORK 4

DUE: THURSDAY, OCTOBER 30, 2008

Hand in the problems in Section B only to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

A: Warm-up problems

1. Decompose the motion

$$
T(\mathrm{x})=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \mathbf{x}+\binom{1}{0}
$$

of \mathbb{E}^{2} into a product of reflections.
2. Show that every rotation in \mathbb{E}^{2} can be written as the composition of two reflections. (Hint: Last week's homework).

B: ExERCISES

1. Prove that if triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ have $d(A, B)=d\left(A^{\prime}, B^{\prime}\right)$, and the angles at A and B equal the angles at A^{\prime} and B^{\prime} respectively: $\angle B A C=\angle B^{\prime} A^{\prime} C^{\prime}, \angle A B C=\angle A^{\prime} B^{\prime} C^{\prime}$, then $A B C$ is congruent to $A^{\prime} B^{\prime} C^{\prime}$. Use the language and definitions of this module.
2. Let T be the motion of \mathbb{E}^{3} given in coordinates by $T\left(x_{1}, x_{2}, x_{3}\right)=$ $(\mathbf{x})=\left(-x_{3},-x_{2}, x_{1}\right)$. Write T as the composition of rotations and reflections and a translation as described in class. Then write T as the composition of at most four reflections as described in class.
3. Recall that the perpendical bisector of $P, Q \in \mathbb{E}^{n}$ is the set $\{R \in$ $\left.\mathbb{E}^{n}: d(P, R)=d(Q, R)\right\}$. Show that this is an affine hyperplane in \mathbb{E}^{n}.
4. Write an equation for the perpendicular bisector Π of the line between $(2,0,0)$ and $(2,1,3)$. Write down in coordinates the motion of reflecting in the plane Π.

C: Extensions

1. (a) Show that any motion of \mathbb{E}^{n} is invertible.
(b) If T is a rotation in \mathbb{E}^{2}, what is the inverse?
(c) If S is a translation in \mathbb{E}^{2}, what is the inverse?
(d) If U is a reflection in \mathbb{E}^{2}, what is the inverse?
(e) With T, S, U as above, what is $S^{-1} \circ T \circ S$? What about $S^{-1} \circ U \circ S$?
(f) (Extension part, for those who know more group theory) This is showing that the group of orthogonal matrices (motions fixing a particular point P) is a normal subgroup of the group of all Euclidean motions, and in fact the group of all motions is a semi-direct product of the orthogonal motions and the translations. Understand this sentence! (More realistically, come back to this question once you learn what a semi-direct product is).
