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In these last two lectures we describe how to use tropical techniques to count
rational curves in P2 passing through a fixed number of points.

Definition 1. A curve C = V (f) ⊂ P2 has degree d if f ∈ C[x0, x1, x2] is homoge-
neous of degree d. An irreducible curve C is rational if there is a map from an open
set U ⊂ P1 to C given by

φ([t0 : t1]) = (p0(t0, t1) : p1(t0, t1) : p2(t0, t2))

where pi is a homogeneous polynomial of degree d for 0 ≤ i ≤ 2. The open set
U ⊂ P1 is the set of [t0 : t1] for which at least one of p0(t0, t1), p1(t0, t1), and p2(t0, t1)
are nonzero.

A curve of degree one is a line in P2, which is rational.
Exercise: Check that every curve in P2 of degree two is rational.
Question: Given n general points p1, . . . , pn ∈ P2, how many rational curves of
degree d pass through all n points?

This question clearly needs to be clarified before a clear answer can be given. For
small n (such as n = 1) there will be an infinite number of curves. For example,
there are infinitely many lines through any given point in P2. For large n if the pi

are not chosen specially, then there are no curves. For example, if p1, p2, p3 are three
lines in P2 that do not lie on a line, then there are no curves of degree one (lines!)
passing through all three points. However given any two distinct points in P2, there
is a unique line passing through them, so for d = 1 and n = 2, with the notion of
“general” being “distinct”, the question has answer one.

When d = 2, we claim that there is also a unique curve of degree two passing
through five general points in P2. To see this, let

F = ax2
0 + bx0x1 + cx0x1 + dx2

1 + ex1x2 + fx2
2.

The variety C = V (F ) is a curve as long as one of a, . . . , f is nonzero, and F and
λF define the same curve, so a choice of conic corresponds to a point [a : b : c : d :
e : f ] ∈ P5. We observed in the exercise above that all curves of the form V (F ) are
rational, so we need to show that given five sufficiently general points in P2 there is a
unique point in P5 for which the corresponding V (F ) passes through all five points.
Since we are requiring that the five points be general, we may assume that the first
coordinate is nonzero, so they have the form P5 = {[1 : ui : vi] : 1 ≤ i ≤ 5}. So we
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to have a one-dimensional solution space for most choices of P5. This means that
the 5× 6 coefficient matrix must have rank five for most choices of five points. The
ideal of 5× 5 minors of the coefficient matrix is principal, and generated by a single
polynomial of degree six in C[u1, . . . , u5, v1, . . . , v6], so for any choice of P5 with this
polynomial nonzero there is a unique rational curve of degree two passing through
the points in P5.

Note that this means that for a general set of four points in P2 there are are an
infinite number of degree two rational curves passing through the points, and for a
general set of six points in P2 there are no degree two rational curves passing through
all of the points.
Claim: For general d, there are a finite number of rational curves of degree d
passing through 3d− 1 general points in P2.
Idea of proof: A rational curve of degree d in P2 is determined by three polynomials
p0, p1, p2, which have the form

∑d
j=0 aijt

j
0t

d−j
1 for 0 ≤ i ≤ 2, for a total of 3d + 3

parameters. Since the image is in P2, this over-counts by one. Since we only care
about the image of the curve, not the parameterization, this also over-counts by the
dimension of AutP1, which is three. This means that the set of rational curves is
determined by 3d + 3 − 1 − 3 = 3d − 1 parameters. Thus forcing the curve to pass
through 3d− 1 general points in P2 will guarantee a finite number of solutions.

Definition 2. Let Nd be the number of irreducible rational curves passing through
3d− 1 general points in P2.

Example: We saw above that N1 = N2 = 1. The numbers N3 and N4 were
computed in the nineteenth century.

Theorem 3 (Kontsevich). For d > 1 the numbers Nd obey the following recursion:

Nd =
∑

dA+dB=d,dA,dB>0

(d2
Ad2

B

(
3d− 4

3dA − 2

)
− d3

AdB

(
3d− 4

3dA − 1

)
)NdA

NdB
.

Noe that this describes Nd in terms of smaller d, so knowing N1 = 1 determines
all larger Nd.
Example: To compute N2, the only decomposition is dA = dB = 1. Then

N2 = (1212

(
2

1

)
− 131

(
2

2

)
)(1)(1) = 2− 1 = 1.



AARMS TROPICAL GEOMETRY - LECTURES 17 AND 18 3

2

2

2

Figure 1.

To compute N3 we need to consider the pairs (dA, dB) ∈ {(1, 2), (2, 1)}. Thus

N3 =(1222

(
5

1

)
− 13(2)

(
5

2

)
)(1)(1)

+ (2212

(
5

4

)
− 23(1)

(
5

4

)
)(1)(1)

=20− 20 + 20− 8

=12

Tropical Version
We now outline how to prove Theorem 3 using tropical methods. Our sketch

follows closely the version given in [HM06], which is based on [GM08] and [Mik05].
The idea is to define a tropical analogue N trop

d of Nd, and show that this equals Nd.
We then show that N trop

d obeys the Kontsevich recursion Theorem 3.

Definition 4. A tropical rational curve of degree d is a one-dimensional balanced
weighted polyhedral complex for which

(1) the unbounded rays point in the directions (1, 0), (0, 1), and (−1,−1);
(2) there are d unbounded rays pointing in each of these directions (counted with

multiplicity);
(3) and the underlying graph of the polyhedral complex has no cycles.

Example:
Figure 1 shows contains some examples of tropical rational curves of degrees two,

two, and three. Figure 2 contains some one-dimensional tropical varieties that are
not tropical rational curves of degree d for some d. For the first variety, the problem
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Figure 2.

is that the underlying graph contains a cycle. For the second, there are unbounded
edges not pointing in one of the three prescribed directions.

Note that there is a unique tropical rational curve of degree one through two points
in R2 unless they lie on the same vertical, horizontal, or slope-one line.
Exercise: There is a unique tropical rational curve of degree two through most
sets of five points in R2.

One way to construct a tropical rational curve of degree d is to take a curve of the
form X = V (f) ⊂ T 2

C{{t}}, where f ∈ C{{t}}[x±1, y±1] has the form
∑

i+j≤2,i,j≥0 cijx
iyj

with all cij 6= 0. Then, as computed in the first exercise set, trop(X) is a weighted
balanced polyhedral complex with d unbounded rays pointing in the prescribed di-
rections. In [DES07] Speyer shows that every tropical rational curve of degree d in
R2 arises in this fashion.

Definition 5. A rational tropical curve of degree d is trivalent if the underlying
graph is trivalent. Let C be a rational tropical curve of degree d, and let V be a
vertex of C. Let v1,v2,v3 be the smallest integral vectors pointing along the three
rays leaving V , and let µ1, µ2, µ3 be the multiplicities of the corresponding polyhedra.
The multiplicity of V is the absolute value of the determinant of the 2×2 matrix with
columns two of the µivi. The balancing condition guarantees that this is independent
of the choice. The multiplicity of C is the product of the multiplicity of all vertices
in C.

Example : The multiplicity of the first two tropical rational curves shown in Figure 3
is one. The multiplicity of the third curve is 8 = (2)(4), since the multiplicity of the
bottom vertex is 4, and the multiplicity of the vertex above is 2, while the other two
vertices have multiplicity one.

Definition 6. Fix P = {p1, . . . , p3d−1} ⊂ R2. Then N trop
d (P) is the number of

tropical rational curves counted with multiplicity passing through p1, . . . , p3d−1.

Proposition 7. There is a Zariski-open set U ⊂ (R2)3d−1 for which N trop
d (P) is

constant for P = {p1, . . . , p3d−1} with (p1, . . . , p3d−1) ∈ U .

Definition 8. A set P = {p1, . . . , p3d−1} with (p1, . . . , p3d−1) ∈ U for the set U of
Proposition 7 is said to be in tropical general position. Let N trop

d = N trop
d (P) for any

P in tropical general position
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Theorem 9 (Mikhalkin Correspondence Theorem). We have equality

N trop
d = Nd.

The idea of the proof of Theorem 9 is as follows.
The amoeba of a variety X ⊂ (C∗)2 is the set {(log(|x1|, log(|x2|)) : (x1, x2) ∈

X} ⊂ R2.
Example: Let C = V (x1 + x2 + 1) ⊂ T 2

C = {(a,−1 − a) : a ∈ C∗, a 6= −1}. Then
the amoeba of C is shown in Figure 4.

When C ⊂ T 2
C has higher degree d, its amoeba generically has d “tentacles” point-

ing in each direction.
If we replace log by logt in the definition of the amoeba, and let t → ∞, then

the amoeba gets thinner and thinner, and in the limit approaches a tropical curve of
degree d. Given a set of 3d − 1 points we can count the number of rational curves
of degree d passing through these points, or the number of tropical rational curves
of degree d passing through (roughly) the logs of the points. The multiplicity of a
tropical rational curve counts how many of these rational curves in T 2 limit to the
tropical curve.

By Theorem 9, in order to prove Theorem 3, it suffices to show that the numbers
N trop

d satisfy the same recursion. We show this by using the standard enumerative
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combinatorics trick of arguing that the equation
(1)

ND+
∑

dA+dB=d,dA,dB>0

d3
AdB

(
3d− 4

3dA − 1

)
NdA

NdB
=

∑
dA+dB=d,dA,dB>0

d2
Ad2

B

(
3d− 4

3dA − 2

)
NdA

NdB

counts the same objects in two different ways. These objects are parameterized
tropical rational curves with n = 3d marked points.

Definition 10. A parameterized tropical rational curve of degree d with n marked
points is a map φ : Γ → R2 where Γ is a tree with 3d + n leaves such that

(1) n of the leaves of Γ are labelled 1, . . . , n,
(2) each non-leaf edge e of Γ comes with a weight de,
(3) φ(Γ) is a rational tropical curve of degree d,
(4) the image of the labelled leaves of Γ are contracted to points, and
(5) the images of the nonlabelled edges of Γ extended to unbounded rays.

Example: Two examples of parameterized rational curves of degree one with two
marked points are shown in Figure 5. We have labelled the “unlabelled” edges a, b,
and c so their image under φ is clear, but this is not part of the data of φ. Note that
a non-leaf edge of Γ is contracted in the second example.

Definition 11. Given a parameterized tropical curve of degree d with n ≥ 4 marked
points φ : Γ → R2, we define the forgetful map f as follows. Let Γ′ be the smallest
connected subtree of Γ containing the leaves 1, 2, 3 and 4. Then Γ′ consists of two
pairs of leaves which are connected by a path of non-leaf edges. The image of the
forgetful map f(φ) is then the phylogenetic tree Γ with four leaves obtained by
turning this path of edges into one edge with length the combined weights.

Example: An example of the forgetful map applied to a parameterized tropical
curve of degree one is shown in Figure 6.

We will count the number Md(p1, . . . , p3d−1; Γ) of parameterized tropical rational
curves φ : Γ → R2 of degree d with n = 3d marked points such that

(1) The labelled edges 3, . . . , n get mapped to p1, . . . , p3d−1;
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Figure 6.

(2) The labelled edge 1 gets mapped to the a point on the line x = (p1)1;
(3) The labelled edge 2 gets mapped to the a point on the line y = (p1)2;
(4) The image f(φ) of the forgetful map is equal to Γ.

Proposition 12. The number Md(p1, . . . , p3d−1; Γ) is constant for a general choice
of p1, . . . , p3d−1 ∈ R2 (tropical general position) and for any choice of four-vertex
phylogenetic tree Γ. We thus denote it by Md.

The idea of the proof is then to choose p1, . . . , p3d−1 in tropical general position,
and then choose two different trees Γ at which to evaluate Md to obtain equation 1.

The proof will use the tropical version of Bézout’s theorem. Recall that Bézout’s
theorem in the plane says that if the variety V (f1, f2) ⊂ P2 is finite, when f1, f2

are homogeneous polynomials in C[x0, x1, x2] of degree d1 and d2 respectively, then
V (f1, f2) consists of d1d2 points, counted with multiplicity. The (weak) tropical
version of this states that if C1, C2 are two tropical curves in R2, of degrees d1 and d2

respectively, that intersect in a finite number of points, then that intersection consists
of d1d2 points counted with multiplicity. An example of two tropical rational curves
of degree two intersecting in four points is shown in Figure 7.

We can now outline the proof of Equation 1. First choose a phylogenetic tree Γ
with four labelled leaves that looks like the one on the left of Figure 8, with the length
a of the bounded edge large. Let φ : Γ → R2 be a parameterized rational tropical
curve of degree d with n = 3d labelled points whose image under the forgetful map
is Γ. Then one of two situations occur. The first is that the two leaves labelled 1
and 2 are adjacent to the same vertex in Γ, so the images of these two leaf edges in
R2 is the same. This means that φ(Γ) is a tropical rational curve of degree d in R2

with φ(1) = φ(2) = p1, and φ(i) = pi−1 for 3 ≤ i ≤ n. The number of such images is
Nd. Such maps φ are determind by their image, so there are Nd of such φ.
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The second possibility is that 1 and 2 are not adjacent to the same vertex in Γ.
Then it can be shown (see [HM06, Remark 7.16]) that there is a contracted edge of
Γ, which leads to the image φ(Γ) being reducible. See Figure 9 for an example with
no marked points. This means it is the union of two tropical rational curves CA and
CB, of degrees dA and dB respectively, where 1 and 2 live on CA, 1 lives on the line
x = (p1)1, 2 lives on the line y = (p1)2, 3 and 4 live on CB, 3dA − 1 of {5, ,̇n} live on
CA, and φ(i) = pi−1 for 3 ≤ i ≤ n. There are

(
3d−4

3dA−1

)
choices of the 3dA − 1 points

that live on CA. By Bézout the tropical curve CA intersects the line x = (p1)1 (which
is itself a tropical line) dA times, and similarly for the line y = (p1)2. There are thus
dA choices for the image of 1, and dA choices for the image of 2. Finally, the curves
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C1 and C2 intersect in dAdB points, so there are that many choices for the location
of the contracted edge of Γ. This gives a total of

d3
AdB

(
3d− 4

3dA − 1

)
NdA

NdB

choices for such φ, so

(2) Md = Nd + d3
AdB

(
3d− 4

3dA − 1

)
NdA

NdB
.

Alternatively, choose a phylogenetic tree Γ with four labelled leaves that looks like
the one on the right of Figure 8, where the length b of the bounded edge is large.
In this case we cannot have φ(1) = φ(2), as that would mean that two other φ(i)
would have to coincide, so two of the pi would have to coincide, which is ruled out by
the tropical general position hypothesis. So we are the second case above, where the
image φ(Γ) is a reducible tropical rational curve. In this case we have 1 lying on the
curve CA of degree dA, and 2 lying on the curve CB of degree dB. The point 3 lives
on CA and the point 4 lives on CB. There are 3dA− 2 of the points {5, . . . , n} living
on CA. There are thus

(
3d−4

3dA−2

)
choices for these points, dA choices for the image of 1,

dB choices for the image of 2, and dAdB choices for the image of the contracted edge
of Γ. This gives

(3) Md = d2
Ad2

B

(
3d− 4

3dA − 2

)
NdA

NdB
.

Combining Equations 2 and 3 we obtain equation 1, and thus have the outline of the
tropical proof of Kontsevich’s formula.
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