AARMS TROPICAL GEOMETRY - LECTURES 13-15

DIANE MACLAGAN

For the rest of the week we consider the closure of $X \subset T^{n}$ in a toric variety. We start with taking the closure of X in \mathbb{A}^{n}. We will consider only the case that $\mathbb{k} \rightarrow K$, such as $\mathbb{C} \rightarrow \mathbb{C}\{\{t\}\}$.

Recall that $T^{n} \subset \mathbb{A}^{n}$, since $T^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{k}, x_{i} \neq 0\right\}$, and $\mathbb{A}^{n}=$ $\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{k}\right\}$. Given $X \subset T^{n}$, let \bar{X} be the closure of X in \mathbb{A}^{n}. This is the smallest closed set in \mathbb{A}^{n} containing X, so $\bar{X}=V(I)$ for some I and is as small as possible. Recall that if $V(I) \subsetneq V(J) \subset T^{n}$, then $\sqrt{J} \subsetneq \sqrt{I}$. If U is a subset of \mathbb{A}^{n} then $\bar{U}=\bigcap_{U \subseteq V(I): I \subseteq \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]} V(I)$.
Question: Given $X \subset T^{n}$ is $0 \in \bar{X}$?
The answer is given by the following theorem, which was first observed by Tevelev [Tev07].
Theorem 1. Let $X \subset T_{\mathrm{k}}^{n}$, and let \bar{X} be the closure of X in \mathbb{A}^{n}. Then $0 \in \bar{X}$ if and only if $\operatorname{trop}(X) \cap \mathbb{R}_{>0}^{n} \neq \emptyset$, where $\mathbb{R}_{>0}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i}>0\right.$ for $\left.1 \leq i \leq n\right\}$.
Example: Let $X=V(x+y+1) \subset T^{2}$. Then $X=\left\{(a,-1-a): a \in \mathbb{k}^{*}, a \neq-1\right\}$, so $\bar{X}=\{(a,-1-a): a \in \mathbb{k}\}=X \cup\{(0,-1),(-1,0)\}=V(x+y+1) \subset \mathbb{A}^{2}$. The tropical variety $\operatorname{trop}(X)$ is shown in Figure 1. Note that $0 \notin \bar{X}$, and $\operatorname{trop}(X) \cap \mathbb{R}_{>0}^{2}=\emptyset$.
Example: Let $X=V\left(x^{2}-y\right) \subset T^{2}$. Then $X=\left\{\left(a, a^{2}\right): a \in \mathbb{k}^{*}\right\}$, and $\bar{X}=$ $\left\{\left(a, a^{2}\right): a \in K\right\}=X \cup\{(0,0)\}=V\left(x^{2}-y\right) \subset \mathbb{A}^{2}$. Then $\operatorname{trop}(X)$ is the line $w_{2}=2 w_{1}$, which contains the point $(1,2) \in \mathbb{R}_{>0}^{2}$, and $0 \in \bar{X}$.
Example: Let $X=V(x y-1)=\left\{(a, 1 / a): a \in \mathbb{k}^{*}\right\} \subset T^{2}$. Then $\bar{X}=X$, so $0 \notin \bar{X}$. The tropical variety is the line $w_{1}+w_{2}=0$, which does not intersect the positive orthant.

We first note the following description of the ideal of $\bar{X} \subset \mathbb{A}^{n}$.
Lemma 2. If $X=V(I) \subset T^{n}$ for $I \in \mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ then $\bar{X}=V(\bar{I}) \subset \mathbb{A}^{n}$, where $\bar{I}=I \cap \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.

Proof. Let $\bar{X}=V(J)$ for $J \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$. Then since $X \subset \bar{X}$, we have $f(x)=0$ for all $x \in X$ and $f \in J$, so $f \in \sqrt{I}$ when f is regarded as an element of $\mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Let $J^{\prime}=J \mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Then $J^{\prime} \subseteq \sqrt{I}$. Now $J \subseteq J^{\prime} \cap \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \subseteq \sqrt{I} \cap$

Figure 1.
$\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$. We claim that $\sqrt{I} \cap \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]=\sqrt{\bar{I}}$. To see this, note that if $f \in$ $\sqrt{I} \cap \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, then there is $N>0$ for which $f^{N} \in I$, and since $f \in \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ we have $f^{N} \in \bar{I}$, so $f \in \sqrt{\bar{I}}$. Conversely, if $f \in \sqrt{\bar{I}}$, then there is $N>0$ for which $f^{N} \in \bar{I}$, so $f^{N} \in I$, and $f \in \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, so $f \in \sqrt{I} \cap \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$. Thus $J \subseteq \sqrt{\bar{I}}$, so $V(\bar{I}) \subseteq V(J)=\bar{X}$. But if $x \in X$ then $f(x)=0$ for all $f \in \bar{I}$, so $X \subseteq V(\bar{I})$, and so $\bar{X} \subseteq V(\bar{I})$. Thus $\bar{X}=V(\bar{I})$.

A key idea of the proof of Theorem 1 is the inclusion of tori. This will let us reduce to the case where X is a curve in T^{2}.
Definition 3. A morphism $\phi: T^{n} \rightarrow T^{m}$ is determined by a \mathbb{k}-algebra homomorphism $\phi^{*}: \mathbb{k}\left[y_{1}^{ \pm 1}, \ldots, y_{m}^{ \pm 1}\right] \rightarrow \mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Note that the map ϕ^{*} goes in the reverse direction!

A point $a=\left(a_{1}, \ldots, a_{n}\right) \in T^{n}$ corresponds to the maximal ideal

$$
I_{a}=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle \in \mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] .
$$

Since the induced map $\mathbb{k}\left[y_{1}^{ \pm 1}, \ldots, y_{m}^{ \pm 1}\right] \rightarrow \mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] / I_{a} \cong \mathbb{k}$ is surjective, the kernel $\phi^{*-1}\left(I_{a}\right)$ is maximal, so is of the form $\left\langle y_{1}-b_{1}, \ldots, y_{m}-b_{m}\right\rangle \in \mathbb{k}\left[y_{1}^{ \pm 1}, \ldots, y_{m}^{ \pm 1}\right]$ for some $b=\left(b_{1}, \ldots, b_{m}\right) \in T^{m}$. We thus set $\phi(a)=b$.

Note that $\phi^{*}\left(y_{i}\right)$ is an invertible polynomial in $\mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ for $1 \leq i \leq m$, so must be a monomial. We thus have

$$
\phi^{*}\left(y_{i}\right)=x^{\mathbf{u}_{i}} \text { for } \mathbf{u}_{i} \in \mathbb{Z}^{n} .
$$

Thus a morphism $\phi: T^{n} \rightarrow T^{m}$ corresponds to a map $\psi: \mathbb{Z}^{m} \rightarrow \mathbb{Z}^{n}$ given by $\psi\left(\mathbf{e}_{i}\right)=\mathbf{u}_{i}$, where \mathbf{e}_{i} is the i th standard basis vector of \mathbb{R}^{m}.
Exercise: The morphism ϕ is surjective if and only if ψ is injective. The morphism ϕ is injective if and only if ψ is surjective.

We record ψ by the $n \times m$ matrix U with columns $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$, so $\psi(\mathbf{v})=U \mathbf{v}$. The $\operatorname{map} \phi: T^{n} \rightarrow T^{m}$ is given by $\phi\left(t_{1}, \ldots, t_{n}\right)=\left(t^{\mathbf{u}_{1}}, \ldots, t^{\mathbf{u}_{m}}\right)$, where $t^{\mathbf{u}_{i}}=$ $t_{1}^{u_{i 1}} t_{2}^{u_{i 2}} \ldots t_{n}^{u_{i n}}$.

Given $X \subset T^{n}$ with $X=V(I)$, the closure $\overline{\phi(X)}$ of the image of X under ϕ is the variety $V\left(\phi^{*-1}(I)\right)$.
Proposition 4. Let $\phi: T^{n} \rightarrow T^{m}$ be a morphism of tori, with associated $n \times m$ matrix U. Let $X \subset T^{n}$ be a variety, and let $\overline{\phi(X)}$ be the closure of its image in T^{m}. Then $w \in \operatorname{trop}(X)$ if and only if $U^{T} w \in \operatorname{trop}(\overline{\phi(X)})$.
Proof. We denote by $X(K)$ the subvariety of T_{K}^{n} defined by the same equations as X. If $w \in \operatorname{trop}(X)$ then by the Fundamental Theorem there is $y \in X(K)$ with $\operatorname{val}(y)=w$. Then $\phi(y)=\left(y^{\mathbf{u}_{1}}, \ldots, y^{\mathbf{u}_{m}}\right) \in \overline{\phi(X)}$, and $\operatorname{val}(\phi(y))=\left(\mathbf{u}_{1} \cdot \operatorname{val}(y), \ldots, \mathbf{u}_{m}\right.$. $\operatorname{val}(y))=U^{T} w$. So $w \in \operatorname{trop}(X)$ implies $U^{T} w \in \operatorname{trop}(\overline{\phi(X)})$.

Conversely, if $\bar{w} \in \operatorname{trop}(\overline{\phi(X)})$, then there exists $\bar{y} \in \overline{\phi(X)}$ with $\underline{\operatorname{val}(\bar{y})}=\bar{w}$. By Pay07 the set of $\bar{y} \in \overline{\phi(X)}$ with $\operatorname{val}(\bar{y})=\bar{w}$ is Zariski dense in $\overline{\phi(X)}$, so we may assume that $\bar{y} \in \phi(X)$. Thus there is $y \in X$ with $\bar{y}=\phi(y)$. Then $\bar{w}=\operatorname{val}(\bar{y})=$ $\operatorname{val}(\phi(y))=U^{T} \operatorname{val}(y)$, so there is $w=\operatorname{val}(y) \in \operatorname{trop}(X)$ with $\bar{w}=U^{T} w$.

We note that one direction of Proposition 4 can also be seen by arguments with initial ideals.

Lemma 5. Let $I=\mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, and let $w \in \mathbb{R}^{n}$. Let $\phi: T^{n} \rightarrow T^{m}$ be given by $\phi(t)_{i}=t^{\mathbf{u}_{i}}$, and let U be the $n \times m$ matrix with columns the vectors \mathbf{u}_{i}. Let ϕ^{*} be the \mathbb{k}-algebra homomorphism $\mathbb{k}\left[y_{1}^{ \pm 1}, \ldots, y_{m}^{ \pm 1}\right] \rightarrow \mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Then

$$
\operatorname{in}_{U^{T} w}\left(\phi^{*-1}(I)\right) \subseteq \phi^{*-1}\left(\operatorname{in}_{w}(I)\right)
$$

Thus $w \in \operatorname{trop}(X)$ implies that $U^{T} w \in \operatorname{trop}(\overline{\phi(X)})$.
Proof. Let $f=\sum_{v \in \mathbb{N}^{n}} a_{v} y^{v} \in \phi^{-1}(I)$, so $\phi(f)=\sum_{v \in \mathbb{N}^{n}} a_{v} x^{U v} \in I$. Then $\operatorname{in}_{U^{T} w}=$ $\sum_{U^{T} w \cdot v=W} a_{v} y^{v}$, where $W=\min \left\{U^{T} w \cdot v: a_{v} \neq 0\right\}=\min \left\{v^{T} U^{T} w: a_{v} \neq 0\right\}$. However $\operatorname{in}_{w}(\phi(f))=\sum_{w \cdot U v=W^{\prime}} a_{v} x^{U v}$ where $W^{\prime}=\min \left\{w \cdot U v: a_{v} \neq 0\right\}=\min \left\{v^{T} U^{T} w\right.$: $\left.a_{v} \neq 0\right\}=W$. Thus $\left\{v: w \cdot U v=W, a_{v} \neq 0\right\}=\left\{v: U^{T} w \cdot v, a_{v} \neq 0\right\}$, so $\mathrm{in}_{w}(\phi(f))=\phi\left(\mathrm{in}_{U^{T} w}(f)\right)$. Thus $\mathrm{in}_{U^{T} w}(f) \in \phi^{-1}\left(\mathrm{in}_{w}(I)\right)$.

If $w \in \operatorname{trop}(X)$, then $\operatorname{in}_{w}(I) \neq\langle 1\rangle$, so $\operatorname{in}_{U^{T} w}\left(\phi^{*-1}(I)\right) \neq\langle 1\rangle$, and thus $U^{T} w \in$ $\operatorname{trop}(\overline{\phi(X)})$.

We next outline how to reduce the proof of Theorem 1 to the case where X is a curve.

Lemma 6. Let $X \subset T^{n}$ with ideal $I \subset \mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Let $\phi: T^{m} \rightarrow T^{n}$ be a morphism of tori with associated $m \times n$ matrix U and \mathbb{k}-algebra homomorphism $\phi^{*}: \mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \rightarrow \mathbb{k}\left[y_{1}^{ \pm 1}, \ldots, y_{m}^{ \pm 1}\right]$. Then $Y=\phi^{-1}(X)=V(\phi(I)) \subseteq T^{m}$.

We have the containment of sets $U^{T} \operatorname{trop}(Y) \subset \operatorname{trop}(X) \cap \operatorname{trop}(\operatorname{im}(\phi))$.
Proof. Note that if $f=\sum_{v \in \mathbb{Z}^{n}} a_{v} x^{v}$, then $\phi^{*}(f)=\sum_{v \in \mathbb{Z}^{n}} a_{v} x^{U v}$, so $\phi^{*}(f)(y)=$ $f(\phi(y))$ for all $y \in T^{m}$. Let $y \in Y$. Then $\phi^{*}(f)(y)=f(\phi(y))=0$ for all $f \in I$, so $y \in V\left(\phi^{*}(I)\right)$. Conversely, if $g(y)=0$ for all $g \in \phi^{*}(I)$, then $\phi^{*}(f)(y)=0$ for all $f \in I$, so $f(\phi(y))=0$ for all $f \in I$, and thus $\phi(y) \in V(I)=X$, so $y \in Y$.

Let $w \in \operatorname{trop}(Y)$. Then there is $y \in Y$ with $\operatorname{val}(y)=w$. Thus $\phi(y) \in X$, and so $\operatorname{val}(\phi(y))=U^{T} w \in \operatorname{trop}(X)$. Since $\operatorname{trop}(\operatorname{im}(\phi))=\operatorname{im} U^{T}$, it follows that $U^{T} w \in \operatorname{trop}(X) \cap \operatorname{trop}(\operatorname{im}(\phi))$.

The morphism $\phi: T^{n} \rightarrow T^{m}$ extends to a morphism $\bar{\phi}: \mathbb{A}^{n} \rightarrow \mathbb{A}^{m}$ if and only if every entry of U is nonnegative. To reduce to the case that X is a curve, one intersects with a codimension $\operatorname{dim}(X)-1$ subtorus of T^{n} that intersects X transversely in a curve $Y \subset T^{m}$ for $m=n-\operatorname{dim}(X)+1$. We assume that the inclusion $\phi: T^{m} \rightarrow T^{m}$ has matrix U with positive entries. It then follows from Lemma 6 that if $0 \in \bar{X}$ then $0 \in \bar{Y}$, so given the curve case of Theorem 1 we know that there is $w \in \operatorname{trop}(Y)$ with $w \in \mathbb{R}_{>0}^{m}$. Then $U^{T} w \in \operatorname{trop}(X) \cap \mathbb{R}_{>0}^{m}$.

We will only prove Theorem1 1 in the case where X is a curve in T^{2}. The elementary approach to a proof proposed in class does not work.
Proposition 7. Let $X \subset T_{\mathbb{k}}^{2}$ be a curve, so $X=V(f)$ for some $f \in \mathbb{k}\left[x^{ \pm 1}, y^{ \pm 1}\right]$. Then $0 \in \bar{X}$ if and only if $\operatorname{trop}(X) \cap \mathbb{R}_{>0}^{2} \neq \emptyset$.

Proof. Write $f=\sum_{(i, j) \in \mathbb{Z}^{2}} a_{i j} x^{i} y^{j}$. Let $I=\langle f\rangle \subseteq \mathbb{k}\left[x^{ \pm 1}, y^{ \pm 1}\right]$, and let $\bar{I}=I \cap \mathbb{k}[x, y]$. Then $\bar{I}=\left\langle f^{\prime}\right\rangle$ for $f^{\prime}=x^{-k} y^{-l} f$, where $k=\min \left\{i: a_{i j} \neq 0\right\}$, and $l=\min \left\{j: a_{i j} \neq\right.$ $0\}$.

Now $0 \in \bar{X}$ if and only if $f^{\prime}(0,0)=0$, which occurs if and only if $a_{k l} \neq 0$. If $a_{k l} \neq 0$, then for all $w \in \mathbb{R}_{>0}^{2}$, we have $\operatorname{in}_{w}\left(f^{\prime}\right)=a_{k l}$, so $\operatorname{in}_{w}(I)=\langle 1\rangle$, and thus
$\operatorname{trop}(X) \cap \mathbb{R}_{>0}^{2}=\emptyset$. Conversely, if $a_{k l}=0$, then let $P=\operatorname{conv}\left((i-k, j-l): a_{i j} \neq 0\right)$. By construction P lives in the positive orthant, and has a vertex v_{1} of the form $(0, r)$ and a vertex v_{∞} of the form $(s, 0)$. Let v_{2} be the next vertex in counter-clockwise order from v_{1}. Let $w=\left(w_{1}, w_{2}\right)$ be the inner facet normal of the edge joining v_{1} and v_{2} (so $w \cdot u \geq w \cdot v_{1}=w \cdot v_{2}$ for all $u \in P$). Note that $w_{1}, w_{2}>0$. Then $\mathrm{in}_{w}\left(f^{\prime}\right)$ is not a monomial, since its support contains the monomials with exponents giving rise to v_{1} and v_{2}, and so $\mathrm{in}_{w}(f)$ is not a monomial, and thus $w \in \operatorname{trop}(X)$.

Theorem 1 generalizes to the following theorem.
Theorem 8. Let $X \subset T^{n}$ and let \bar{X} be the closure of X in \mathbb{A}^{n}. Then for $\sigma \in$ $\{1, \ldots, n\}$

$$
\bar{X} \cap\left\{x \in \mathbb{A}^{n}: x_{i}=0 \text { for all } i \in \sigma, x_{i} \neq 0 \text { for all } i \notin \sigma\right\} \neq \emptyset
$$

if and only if there is $w \in \operatorname{trop}(X)$ with $w_{i}>0$ for all $i \in \sigma$, and $w_{i}=0$ for all $i \notin \sigma$.
The case $\sigma=\{1, \ldots, n\}$ is Theorem 1. The condition on $w \in \operatorname{trop}(X)$ can be rephrased as asking that w lies in the relative interior of $\operatorname{pos}\left(\mathbf{e}_{i}: i \in \sigma\right)$. Examples of Theorem 8 can be seen by considering the subvarieties of T^{2} at the start of the lecture.

One can also ask the same question about the closure of $X \subset T^{n}$ in \mathbb{P}^{n}. Recall that T^{n} embeds into \mathbb{P}^{n} by the map $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(1: x_{1}: \cdots: x_{n}\right)$. Given $X \subset T^{n}$, let \bar{X} now denote the closure of X in \mathbb{P}^{n}. This is the smallest projective variety containing X.
Example: Let $X=V\left(x_{1}+x_{2}+1\right) \subset T^{2}$. Let \bar{X} be the closure of X in \mathbb{P}^{2} under the embedding $T^{2} \rightarrow \mathbb{P}^{2}$ given by $\left(t_{1}, t_{2}\right) \mapsto\left(1: t_{2}: t_{2}\right)$. Then $\bar{X}=X \cup\{(1: 0:$ $-1),(1:-1: 0),(0: 1:-1)\}=V\left(x_{1}+x_{2}+x_{0}\right)$. Note that $\bar{X} \cap\left\{x_{i}=0\right\} \neq \emptyset$ for $i=0,1,2$, while $\bar{X} \cap\left\{x_{i}=x_{j}=0\right\}=\emptyset$ for all choices of $0 \leq i<j \leq 2$.

Note that the torus T^{n} is a group, with multiplication coordinatewise, and identity the element $(1,1, \ldots, 1) \in T^{n}$. The torus T^{n} acts on \mathbb{P}^{n} by

$$
\left(t_{1}, \ldots, t_{n}\right) \cdot\left(x_{0}: x_{1}: \cdots: x_{n}\right)=\left(x_{0}: t_{1} x_{1}: t_{2} x_{2}: \cdots: t_{n} x_{n}\right)
$$

The orbits of T^{n} on \mathbb{P}^{n} are indexed by proper subsets of $\{0,1, \ldots, n\}$ indicating which coordinates are zero.
Example: The torus T^{2} acts on \mathbb{P}^{2} by $\left(t_{1}, t_{2}\right) \cdot\left(x_{0}: x_{1}: x_{2}\right)=\left(x_{0}: t_{1} x_{1}: t_{2} x_{2}\right)$. The orbits of T^{2} on \mathbb{P}^{2} are:

$$
\begin{gathered}
\left\{T^{2},\left\{\left(0: 1: t_{2}\right): t_{2} \neq 0\right\},\left\{\left(1: 0: t_{2}\right): t_{2} \neq 0\right\},\left\{\left(1: t_{1}: 0\right): t_{1} \neq 0\right\}\right. \\
\{(1: 0: 0)\},\{(0: 1: 0)\},\{(0: 0: 1)\}
\end{gathered}
$$

These can be labelled by following subsets of $\{0,1,2\}$:

$$
\{\emptyset,\{0\},\{1\},\{2\},\{1,2\},\{0,2\},\{0,1\}\} .
$$

We denote by O_{σ} the orbit of \mathbb{P}^{n} indexed by $\sigma \subset\{0,1, \ldots, n\}$.
Question: For $X \subset T^{n}$, let \bar{X} be the closure of X in \mathbb{P}^{n}. Given $\sigma \subsetneq\{0,1, \ldots, n\}$, does \bar{X} intersect O_{σ} ?.

As before, then answer depends on the configuration of $\operatorname{trop}(X) \subset \mathbb{R}^{n}$. We will reduce this calculation to one in \mathbb{A}^{n+1} that uses Theorem 8 , by using the notion of the affine cone of X.

Figure 2.
Let $\tilde{T}^{n}=\left\{\left(t_{0}, t_{1}, \ldots, t_{n}\right): t_{i} \in \mathbb{k}^{*}\right\}$. Note that we have the short exact sequence

$$
1 \rightarrow \mathbb{k}^{*} \rightarrow \tilde{T}^{n} \xrightarrow{\pi} T^{n} \rightarrow 1
$$

where 1 is the trivial group (written multiplicatively). The map $\mathbb{k}^{*} \rightarrow \tilde{T}^{n}$ is given by $t \mapsto(t, t, \ldots, t)$, and the map $\pi:\left(t_{0}, \ldots, t_{n}\right) \mapsto\left(t_{1} / t_{0}, \ldots, t_{n} / t_{0}\right)$. This short exact sequence tropicalizes to

$$
0 \rightarrow \operatorname{span}(\mathbf{1}) \rightarrow \mathbb{R}^{n+1} \xrightarrow{\operatorname{trop}(\pi)} \mathbb{R}^{n} \rightarrow 0
$$

where 1 is the vector $(1,1, \ldots, 1) \in \mathbb{R}^{n+1}$, the first map is the inclusion, and and $\operatorname{trop}(\pi):\left(w_{0}, \ldots, w_{n}\right) \rightarrow\left(w_{1}-w_{0}, \ldots, w_{n}-w_{0}\right)$.

Given $X \subset T^{n}$, the affine cone over X is $\tilde{X}=\pi^{-1}(X)$. The map $\pi^{*}: \mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \rightarrow$ $\mathbb{k}\left[x_{0}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ is given by $\pi^{*}\left(x_{i}\right)=x_{i} / x_{0}$ for $1 \leq i \leq n$. If $X=V(I) \subset T^{n}$, then $\tilde{X}=V\left(\pi^{*}(I)\right) \subset \tilde{T}^{n}$. Note that 1 lies in the lineality space of $\operatorname{trop}(\tilde{X})$, and that $\operatorname{trop}(X)=\operatorname{trop}(\tilde{X}) / \mathbf{1}$.
Example: Let $X=V\left(x_{1}+x_{2}+1\right) \subset T^{2}$. Then $\tilde{X}=V\left(x_{1} / x_{0}+x_{2} / x_{0}+1\right)=$ $V\left(x_{1}+x_{2}+x_{0}\right) \subset \tilde{T}^{2}$.

Let $\overline{\tilde{X}}$ be the closure of \tilde{X} in \mathbb{A}^{n+1}. Recall that $\mathbb{P}^{n}=\left(\mathbb{A}^{n+1} \backslash 0\right) / \mathbb{k}^{*}$. Then $\bar{X}=(\bar{X}) \backslash 0) / \mathbb{k}^{*}$. Thus \bar{X} intersects the T^{n}-orbit indexed by $\sigma \subsetneq\{0, \ldots, n\}$ if and only if the preimage $\operatorname{trop}(\tilde{X})$ of $\operatorname{trop}(X)$ intersects the relative interior of the appropriate $\operatorname{pos}\left(\mathbf{e}_{i}: i \in \sigma\right)$. We can also consider these sets in \mathbb{R}^{n}. Note that the image $\overline{\mathbf{e}}_{0}$ of \mathbf{e}_{0} in \mathbb{R}^{n} is $-\sum_{i=1}^{n} \overline{\mathbf{e}}_{i}$. Then \bar{X} intersects the T^{n}-orbit indexed by σ if and only if $\operatorname{trop}(X) \cap \operatorname{relint}\left(\operatorname{pos}\left(\overline{\mathbf{e}}_{i}: i \in \sigma\right)\right) \neq \emptyset$.
Example: Figure 2 shows the fan in \mathbb{R}^{2} whose cones are the sets $\operatorname{pos}\left(\overline{\mathbf{e}}_{i}: i \in \sigma\right)$ for $\sigma \subsetneq\{0,1,2\}$. Thus $X \cap O_{\sigma} \neq \emptyset$ if and only if $\operatorname{trop}(X)$ intersects the relative interior of the appropriate cone. For an example, consider the variety $X=V\left(x_{1}+x_{2}+1\right) \subset T^{2}$ analyzed above.

Note that T^{n} also acts on \mathbb{A}^{n} by $\left(t_{1}, \ldots, t_{n}\right) \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(t_{1} x_{1}, \ldots, t_{n} x_{n}\right)$, and Theorem 8 gave conditions for the closure \bar{X} in \mathbb{A}^{n} of a variety $X \subset T^{n}$ to intersect each orbit. The sets \mathbb{A}^{n} and \mathbb{P}^{n} are examples of toric varieties. These are varieties that contain a dense copy of T^{n}, and have an action of T^{n} on them extending the action of T^{n} on itself. They are (up to the technical notion of normalization) described
by a polyhedral fan $\Sigma \subset \mathbb{R}^{n}$, the cones of which index T^{n}-orbits. If \bar{X} is the closure of $X \subset T^{n}$ in a toric variety with fan Σ, then \bar{X} intersects the T^{n}-orbit indexed by the cone $\sigma \in \Sigma$ if and only if $\operatorname{trop}(X)$ intersects the relative interior of σ.

The following proposition was also mentioned in class, and is used in the proof of the general case of the Fundamental Theorem.

Proposition 9. Let $X \subset T^{n}$ be an irreducible variety of dimension d. Then for most choices of projection $\phi: T^{n} \rightarrow T^{d+1}$. the image $\overline{\phi(X)}$ is a hypersurface in T^{d+1}.

Here by "most" we mean for a Zariski-open set of choices for the matrix U describing ϕ.
Proof. We first note that since X is irreducible, $\overline{\phi(X)}$ is irreducible of dimension at most d for any choice of projection ϕ. To see irreducibility, note that if $\overline{\phi(X)}=Y_{1} \cup Y_{2}$ for $Y_{1}, Y_{2} \subsetneq \overline{\phi(X)}$, then $X=X_{1} \cup X_{2}$ with $X_{i}=\phi^{-1}\left(Y_{i}\right) \cap X$ for $i=1,2$. Then by the irreducibility of X without loss of generality we have $X=X_{1}$, so $X \subseteq \phi^{-1}\left(Y_{1}\right)$, and thus $\phi(X) \subseteq Y_{1}$, contradicting $Y_{1} \subsetneq \overline{\phi(X)}$.

Since X is irreducible of dimension d and the generators of I have coefficients in \mathbb{k}, $\operatorname{trop}(X)$ is a pure d-dimensional fan in \mathbb{R}^{n}. Choose a d-dimensional cone $\sigma \in \operatorname{trop}(X)$, and choose an $n \times(d+1)$ rank $d+1$ matrix U with $\operatorname{ker}(U) \cap \operatorname{span}(\sigma)=\mathbf{0}$. Then $\left\{U^{T} w: w \in \sigma\right\}$ is a d-dimensional cone in \mathbb{R}^{d+1}, so $\operatorname{trop}(\overline{\phi(X)})$ has dimension at least d, and thus $\overline{\phi(X)}$ has dimension at least d. Since X has dimension $d, \overline{\phi(X)}$ has dimension at most d, and thus is a hypersurface in T^{d+1}.

References

[Pay07] Sam Payne, Fibers of tropicalization, 2007. arXiv:0705.1732. To appear in Math. Z.
[Tev07] Jenia Tevelev, Compactifications of subvarieties of tori, Amer. J. Math. 129 (2007), no. 4, 1087-1104. MR 2343384 (2008f:14068)

