AARMS TROPICAL GEOMETRY - LECTURES 13-15

DIANE MACLAGAN

For the rest of the week we consider the closure of $X \subset T^n$ in a toric variety. We start with taking the closure of X in \mathbb{A}^n . We will consider only the case that $\mathbb{k} \to K$, such as $\mathbb{C} \to \mathbb{C}\{\{t\}\}$.

Recall that $T^n \subset \mathbb{A}^n$, since $T^n = \{(x_1, \ldots, x_n) : x_i \in \mathbb{k}, x_i \neq 0\}$, and $\mathbb{A}^n = \{(x_1, \ldots, x_n) : x_i \in \mathbb{k}\}$. Given $X \subset T^n$, let \overline{X} be the closure of X in \mathbb{A}^n . This is the smallest closed set in \mathbb{A}^n containing X, so $\overline{X} = V(I)$ for some I and is as small as possible. Recall that if $V(I) \subsetneq V(J) \subset T^n$, then $\sqrt{J} \subsetneq \sqrt{I}$. If U is a subset of \mathbb{A}^n then $\overline{U} = \bigcap_{U \subseteq V(I): I \subseteq \mathbb{k}[x_1, \ldots, x_n]} V(I)$.

Question: Given $X \subset T^n$ is $0 \in \overline{X}$?

The answer is given by the following theorem, which was first observed by Tevelev [Tev07].

Theorem 1. Let $X \subset T^n_{\Bbbk}$, and let \overline{X} be the closure of X in \mathbb{A}^n . Then $0 \in \overline{X}$ if and only if $\operatorname{trop}(X) \cap \mathbb{R}^n_{>0} \neq \emptyset$, where $\mathbb{R}^n_{>0} = \{(x_1, \ldots, x_n) : x_i > 0 \text{ for } 1 \leq i \leq n\}$.

Example: Let $X = V(x+y+1) \subset T^2$. Then $X = \{(a, -1-a) : a \in \mathbb{k}^*, a \neq -1\}$, so $\overline{X} = \{(a, -1-a) : a \in \mathbb{k}\} = X \cup \{(0, -1), (-1, 0)\} = V(x+y+1) \subset \mathbb{A}^2$. The tropical variety trop(X) is shown in Figure 1. Note that $0 \notin \overline{X}$, and trop $(X) \cap \mathbb{R}^2_{>0} = \emptyset$. **Example:** Let $X = V(x^2 - y) \subset T^2$. Then $X = \{(a, a^2) : a \in \mathbb{k}^*\}$, and $\overline{X} = \{(a, a^2) : a \in K\} = X \cup \{(0, 0)\} = V(x^2 - y) \subset \mathbb{A}^2$. Then trop(X) is the line $w_2 = 2w_1$, which contains the point $(1, 2) \in \mathbb{R}^2_{>0}$, and $0 \in \overline{X}$. **Example:** Let $X = V(xy-1) = \{(a, 1/a) : a \in \mathbb{k}^*\} \subset T^2$. Then $\overline{X} = X$, so $0 \notin \overline{X}$. The tropical variety is the line $w_1 + w_2 = 0$, which does not intersect the positive

orthant. We first note the following description of the ideal of $\overline{X} \subset \mathbb{A}^n$.

Lemma 2. If $X = V(I) \subset T^n$ for $I \in \mathbb{k}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ then $\overline{X} = V(\overline{I}) \subset \mathbb{A}^n$, where $\overline{I} = I \cap \mathbb{k}[x_1, \dots, x_n]$.

Proof. Let $\overline{X} = V(J)$ for $J \subset \Bbbk[x_1, \ldots, x_n]$. Then since $X \subset \overline{X}$, we have f(x) = 0 for all $x \in X$ and $f \in J$, so $f \in \sqrt{I}$ when f is regarded as an element of $\Bbbk[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Let $J' = J \Bbbk[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Then $J' \subseteq \sqrt{I}$. Now $J \subseteq J' \cap \Bbbk[x_1, \ldots, x_n] \subseteq \sqrt{I} \cap$

FIGURE 1. 1

DIANE MACLAGAN

$$\begin{split} & \Bbbk[x_1,\ldots,x_n]. \text{ We claim that } \sqrt{I} \cap \Bbbk[x_1,\ldots,x_n] = \sqrt{I}. \text{ To see this, note that if } f \in \\ & \sqrt{I} \cap \Bbbk[x_1,\ldots,x_n], \text{ then there is } N > 0 \text{ for which } f^N \in I, \text{ and since } f \in \Bbbk[x_1,\ldots,x_n] \\ & \text{we have } f^N \in \overline{I}, \text{ so } f \in \sqrt{\overline{I}}. \text{ Conversely, if } f \in \sqrt{\overline{I}}, \text{ then there is } N > 0 \text{ for which } \\ & f^N \in \overline{I}, \text{ so } f^N \in I, \text{ and } f \in \Bbbk[x_1,\ldots,x_n], \text{ so } f \in \sqrt{I} \cap \Bbbk[x_1,\ldots,x_n]. \text{ Thus } J \subseteq \sqrt{\overline{I}}, \\ & \text{so } V(\overline{I}) \subseteq V(J) = \overline{X}. \text{ But if } x \in X \text{ then } f(x) = 0 \text{ for all } f \in \overline{I}, \text{ so } X \subseteq V(\overline{I}), \text{ and} \\ & \text{so } \overline{X} \subseteq V(\overline{I}). \end{split}$$

A key idea of the proof of Theorem 1 is the *inclusion of tori*. This will let us reduce to the case where X is a curve in T^2 .

Definition 3. A morphism $\phi : T^n \to T^m$ is determined by a k-algebra homomorphism $\phi^* : k[y_1^{\pm 1}, \ldots, y_m^{\pm 1}] \to k[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Note that the map ϕ^* goes in the reverse direction!

A point $a = (a_1, \ldots, a_n) \in T^n$ corresponds to the maximal ideal

$$I_a = \langle x_1 - a_1, \dots, x_n - a_n \rangle \in \mathbb{k}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$$

Since the induced map $\mathbb{k}[y_1^{\pm 1}, \ldots, y_m^{\pm 1}] \to \mathbb{k}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]/I_a \cong \mathbb{k}$ is surjective, the kernel $\phi^{*-1}(I_a)$ is maximal, so is of the form $\langle y_1 - b_1, \ldots, y_m - b_m \rangle \in \mathbb{k}[y_1^{\pm 1}, \ldots, y_m^{\pm 1}]$ for some $b = (b_1, \ldots, b_m) \in T^m$. We thus set $\phi(a) = b$.

Note that $\phi^*(y_i)$ is an invertible polynomial in $\Bbbk[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ for $1 \leq i \leq m$, so must be a monomial. We thus have

$$\phi^*(y_i) = x^{\mathbf{u}_i} \text{ for } \mathbf{u}_i \in \mathbb{Z}^n.$$

Thus a morphism $\phi : T^n \to T^m$ corresponds to a map $\psi : \mathbb{Z}^m \to \mathbb{Z}^n$ given by $\psi(\mathbf{e}_i) = \mathbf{u}_i$, where \mathbf{e}_i is the *i*th standard basis vector of \mathbb{R}^m .

Exercise: The morphism ϕ is surjective if and only if ψ is injective. The morphism ϕ is injective if and only if ψ is surjective.

We record ψ by the $n \times m$ matrix U with columns $\mathbf{u}_1, \ldots, \mathbf{u}_m$, so $\psi(\mathbf{v}) = U\mathbf{v}$. The map $\phi : T^n \to T^m$ is given by $\phi(t_1, \ldots, t_n) = (t^{\mathbf{u}_1}, \ldots, t^{\mathbf{u}_m})$, where $t^{\mathbf{u}_i} = t_1^{u_{i1}} t_2^{u_{i2}} \ldots t_n^{u_{in}}$.

Given $X \subset T^n$ with X = V(I), the closure $\overline{\phi(X)}$ of the image of X under ϕ is the variety $V(\phi^{*-1}(I))$.

Proposition 4. Let $\phi : T^n \to T^m$ be a morphism of tori, with associated $n \times m$ matrix U. Let $X \subset T^n$ be a variety, and let $\overline{\phi(X)}$ be the closure of its image in T^m . Then $w \in \operatorname{trop}(X)$ if and only if $U^T w \in \operatorname{trop}(\overline{\phi(X)})$.

Proof. We denote by X(K) the subvariety of T_K^n defined by the same equations as X. If $w \in \operatorname{trop}(X)$ then by the Fundamental Theorem there is $y \in X(K)$ with $\operatorname{val}(y) = w$. Then $\phi(y) = (y^{\mathbf{u}_1}, \ldots, y^{\mathbf{u}_m}) \in \overline{\phi(X)}$, and $\operatorname{val}(\phi(y)) = (\mathbf{u}_1 \cdot \operatorname{val}(y), \ldots, \mathbf{u}_m \cdot \operatorname{val}(y)) = U^T w$. So $w \in \operatorname{trop}(X)$ implies $U^T w \in \operatorname{trop}(\overline{\phi(X)})$.

Conversely, if $\overline{w} \in \operatorname{trop}(\overline{\phi(X)})$, then there exists $\overline{y} \in \overline{\phi(X)}$ with $\operatorname{val}(\overline{y}) = \overline{w}$. By [Pay07] the set of $\overline{y} \in \overline{\phi(X)}$ with $\operatorname{val}(\overline{y}) = \overline{w}$ is Zariski dense in $\overline{\phi(X)}$, so we may assume that $\overline{y} \in \phi(X)$. Thus there is $y \in X$ with $\overline{y} = \phi(y)$. Then $\overline{w} = \operatorname{val}(\overline{y}) =$ $\operatorname{val}(\phi(y)) = U^T \operatorname{val}(y)$, so there is $w = \operatorname{val}(y) \in \operatorname{trop}(X)$ with $\overline{w} = U^T w$. \Box

We note that one direction of Proposition 4 can also be seen by arguments with initial ideals.

Lemma 5. Let $I = \mathbb{k}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$, and let $w \in \mathbb{R}^n$. Let $\phi : T^n \to T^m$ be given by $\phi(t)_i = t^{\mathbf{u}_i}$, and let U be the $n \times m$ matrix with columns the vectors \mathbf{u}_i . Let ϕ^* be the \Bbbk -algebra homomorphism $\Bbbk[y_1^{\pm 1}, \ldots, y_m^{\pm 1}] \to \Bbbk[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Then

$$\operatorname{in}_{U^Tw}(\phi^{*-1}(I)) \subseteq \phi^{*-1}(\operatorname{in}_w(I)).$$

Thus $w \in \operatorname{trop}(X)$ implies that $U^T w \in \operatorname{trop}(\overline{\phi(X)})$.

Proof. Let $f = \sum_{v \in \mathbb{N}^n} a_v y^v \in \phi^{-1}(I)$, so $\phi(f) = \sum_{v \in \mathbb{N}^n} a_v x^{Uv} \in I$. Then $\operatorname{in}_{U^T w} =$ $\sum_{U^T w \cdot v = W} a_v y^v, \text{ where } W = \min\{U^T w \cdot v : a_v \neq 0\} = \min\{v^T U^T w : a_v \neq 0\}. \text{ However } \inf_{w}(\phi(f)) = \sum_{w \cdot U v = W'} a_v x^{Uv} \text{ where } W' = \min\{w \cdot Uv : a_v \neq 0\} = \min\{v^T U^T w : a_v \neq 0\}.$ $a_v \neq 0$ = W. Thus $\{v : w \cdot Uv = W, a_v \neq 0\} = \{v : U^T w \cdot v, a_v \neq 0\}$, so $in_w(\phi(f)) = \phi(in_{U^Tw}(f)).$ Thus $in_{U^Tw}(f) \in \phi^{-1}(in_w(I)).$

If $w \in \operatorname{trop}(X)$, then $\operatorname{in}_w(I) \neq \langle 1 \rangle$, so $\operatorname{in}_{U^T w}(\phi^{*-1}(I)) \neq \langle 1 \rangle$, and thus $U^T w \in$ $\operatorname{trop}(\phi(X)).$

We next outline how to reduce the proof of Theorem 1 to the case where X is a curve.

Lemma 6. Let $X \subset T^n$ with ideal $I \subset \Bbbk[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Let $\phi : T^m \to T^n$ be a morphism of tori with associated $m \times n$ matrix U and k-algebra homomorphism $\phi^*: \Bbbk[x_1^{\pm 1}, \dots, x_n^{\pm 1}] \to \Bbbk[y_1^{\pm 1}, \dots, y_m^{\pm 1}]. \text{ Then } Y = \phi^{-1}(X) = V(\phi(I)) \subseteq T^m.$ We have the containment of sets $U^T \operatorname{trop}(Y) \subset \operatorname{trop}(X) \cap \operatorname{trop}(\operatorname{im}(\phi)).$

Proof. Note that if $f = \sum_{v \in \mathbb{Z}^n} a_v x^v$, then $\phi^*(f) = \sum_{v \in \mathbb{Z}^n} a_v x^{Uv}$, so $\phi^*(f)(y) = f(\phi(y))$ for all $y \in T^m$. Let $y \in Y$. Then $\phi^*(f)(y) = f(\phi(y)) = 0$ for all $f \in I$, so $y \in V(\phi^*(I))$. Conversely, if g(y) = 0 for all $g \in \phi^*(I)$, then $\phi^*(f)(y) = 0$ for all $f \in I$, so $f(\phi(y)) = 0$ for all $f \in I$, and thus $\phi(y) \in V(I) = X$, so $y \in Y$.

Let $w \in \operatorname{trop}(Y)$. Then there is $y \in Y$ with $\operatorname{val}(y) = w$. Thus $\phi(y) \in X$, and so val $(\phi(y)) = U^T w \in \operatorname{trop}(X)$. Since $\operatorname{trop}(\operatorname{im}(\phi)) = \operatorname{im} U^T$, it follows that $U^T w \in \operatorname{trop}(X) \cap \operatorname{trop}(\operatorname{im}(\phi)).$

The morphism $\phi: T^n \to T^m$ extends to a morphism $\overline{\phi}: \mathbb{A}^n \to \mathbb{A}^m$ if and only if every entry of U is nonnegative. To reduce to the case that X is a curve, one intersects with a codimension $\dim(X) - 1$ subtorus of T^n that intersects X transversely in a curve $Y \subset T^m$ for $m = n - \dim(X) + 1$. We assume that the inclusion $\phi: T^m \to T^m$ has matrix U with positive entries. It then follows from Lemma 6 that if $0 \in X$ then $0 \in \overline{Y}$, so given the curve case of Theorem 1 we know that there is $w \in \operatorname{trop}(Y)$ with $w \in \mathbb{R}^m_{>0}$. Then $U^T w \in \operatorname{trop}(X) \cap \mathbb{R}^m_{>0}$.

We will only prove Theorem 1 in the case where X is a curve in T^2 . The elementary approach to a proof proposed in class does not work.

Proposition 7. Let $X \subset T^2_{\Bbbk}$ be a curve, so X = V(f) for some $f \in \Bbbk[x^{\pm 1}, y^{\pm 1}]$. Then $0 \in \overline{X}$ if and only if $\operatorname{trop}(X) \cap \mathbb{R}^2_{>0} \neq \emptyset$.

Proof. Write $f = \sum_{(i,j) \in \mathbb{Z}^2} a_{ij} x^i y^j$. Let $I = \langle f \rangle \subseteq \Bbbk[x^{\pm 1}, y^{\pm 1}]$, and let $\overline{I} = I \cap \Bbbk[x, y]$. Then $\overline{I} = \langle f' \rangle$ for $f' = x^{-k}y^{-l}f$, where $k = \min\{i : a_{ij} \neq 0\}$, and $l = \min\{j : a_{ij} \neq 0\}$ $0\}.$

Now $0 \in \overline{X}$ if and only if f'(0,0) = 0, which occurs if and only if $a_{kl} \neq 0$. If $a_{kl} \neq 0$, then for all $w \in \mathbb{R}^2_{>0}$, we have $\operatorname{in}_w(f') = a_{kl}$, so $\operatorname{in}_w(I) = \langle 1 \rangle$, and thus

DIANE MACLAGAN

trop $(X) \cap \mathbb{R}^2_{>0} = \emptyset$. Conversely, if $a_{kl} = 0$, then let $P = \operatorname{conv}((i - k, j - l) : a_{ij} \neq 0)$. By construction P lives in the positive orthant, and has a vertex v_1 of the form (0, r)and a vertex v_{∞} of the form (s, 0). Let v_2 be the next vertex in counter-clockwise order from v_1 . Let $w = (w_1, w_2)$ be the inner facet normal of the edge joining v_1 and v_2 (so $w \cdot u \geq w \cdot v_1 = w \cdot v_2$ for all $u \in P$). Note that $w_1, w_2 > 0$. Then $\operatorname{in}_w(f')$ is not a monomial, since its support contains the monomials with exponents giving rise to v_1 and v_2 , and so $\operatorname{in}_w(f)$ is not a monomial, and thus $w \in \operatorname{trop}(X)$. \Box

Theorem 1 generalizes to the following theorem.

Theorem 8. Let $X \subset T^n$ and let \overline{X} be the closure of X in \mathbb{A}^n . Then for $\sigma \in \{1, \ldots, n\}$

$$\overline{X} \cap \{x \in \mathbb{A}^n : x_i = 0 \text{ for all } i \in \sigma, x_i \neq 0 \text{ for all } i \notin \sigma\} \neq \emptyset$$

if and only if there is $w \in \operatorname{trop}(X)$ with $w_i > 0$ for all $i \in \sigma$, and $w_i = 0$ for all $i \notin \sigma$.

The case $\sigma = \{1, \ldots, n\}$ is Theorem 1. The condition on $w \in \operatorname{trop}(X)$ can be rephrased as asking that w lies in the relative interior of $\operatorname{pos}(\mathbf{e}_i : i \in \sigma)$. Examples of Theorem 8 can be seen by considering the subvarieties of T^2 at the start of the lecture.

One can also ask the same question about the closure of $X \subset T^n$ in \mathbb{P}^n . Recall that T^n embeds into \mathbb{P}^n by the map $(x_1, \ldots, x_n) \mapsto (1 : x_1 : \cdots : x_n)$. Given $X \subset T^n$, let \overline{X} now denote the closure of X in \mathbb{P}^n . This is the smallest projective variety containing X.

Example: Let $X = V(x_1 + x_2 + 1) \subset T^2$. Let \overline{X} be the closure of X in \mathbb{P}^2 under the embedding $T^2 \to \mathbb{P}^2$ given by $(t_1, t_2) \mapsto (1 : t_2 : t_2)$. Then $\overline{X} = X \cup \{(1 : 0 : -1), (1 : -1 : 0), (0 : 1 : -1)\} = V(x_1 + x_2 + x_0)$. Note that $\overline{X} \cap \{x_i = 0\} \neq \emptyset$ for i = 0, 1, 2, while $\overline{X} \cap \{x_i = x_j = 0\} = \emptyset$ for all choices of $0 \le i < j \le 2$.

Note that the torus T^n is a group, with multiplication coordinatewise, and identity the element $(1, 1, ..., 1) \in T^n$. The torus T^n acts on \mathbb{P}^n by

$$(t_1, \ldots, t_n) \cdot (x_0 : x_1 : \cdots : x_n) = (x_0 : t_1 x_1 : t_2 x_2 : \cdots : t_n x_n).$$

The orbits of T^n on \mathbb{P}^n are indexed by proper subsets of $\{0, 1, \ldots, n\}$ indicating which coordinates are zero.

Example: The torus T^2 acts on \mathbb{P}^2 by $(t_1, t_2) \cdot (x_0 : x_1 : x_2) = (x_0 : t_1x_1 : t_2x_2)$. The orbits of T^2 on \mathbb{P}^2 are:

$$\{T^2, \{(0:1:t_2): t_2 \neq 0\}, \{(1:0:t_2): t_2 \neq 0\}, \{(1:t_1:0): t_1 \neq 0\}, \\ \{(1:0:0)\}, \{(0:1:0)\}, \{(0:0:1)\}.$$

These can be labelled by following subsets of $\{0, 1, 2\}$:

 $\{\emptyset, \{0\}, \{1\}, \{2\}, \{1,2\}, \{0,2\}, \{0,1\}\}.$

We denote by O_{σ} the orbit of \mathbb{P}^n indexed by $\sigma \subset \{0, 1, \ldots, n\}$. **Question:** For $X \subset T^n$, let \overline{X} be the closure of X in \mathbb{P}^n . Given $\sigma \subsetneq \{0, 1, \ldots, n\}$, does \overline{X} intersect O_{σ} ?.

As before, then answer depends on the configuration of $\operatorname{trop}(X) \subset \mathbb{R}^n$. We will reduce this calculation to one in \mathbb{A}^{n+1} that uses Theorem 8, by using the notion of the affine cone of X.

FIGURE 2.

Let $\tilde{T}^n = \{(t_0, t_1, \dots, t_n) : t_i \in \mathbb{k}^*\}$. Note that we have the short exact sequence

 $1 \to \mathbb{k}^* \to \tilde{T}^n \xrightarrow{\pi} T^n \to 1,$

where 1 is the trivial group (written multiplicatively). The map $\mathbb{k}^* \to \tilde{T}^n$ is given by $t \mapsto (t, t, \ldots, t)$, and the map $\pi : (t_0, \ldots, t_n) \mapsto (t_1/t_0, \ldots, t_n/t_0)$. This short exact sequence tropicalizes to

$$0 \to \operatorname{span}(\mathbf{1}) \to \mathbb{R}^{n+1} \stackrel{\operatorname{trop}(\pi)}{\to} \mathbb{R}^n \to 0,$$

where **1** is the vector $(1, 1, ..., 1) \in \mathbb{R}^{n+1}$, the first map is the inclusion, and and $\operatorname{trop}(\pi) : (w_0, \ldots, w_n) \to (w_1 - w_0, \ldots, w_n - w_0).$

Given $X \subset T^n$, the affine cone over X is $\tilde{X} = \pi^{-1}(X)$. The map $\pi^* : \Bbbk[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \to \\ \Bbbk[x_0^{\pm 1}, \ldots, x_n^{\pm 1}]$ is given by $\pi^*(x_i) = x_i/x_0$ for $1 \le i \le n$. If $X = V(I) \subset T^n$, then $\tilde{X} = V(\pi^*(I)) \subset \tilde{T}^n$. Note that **1** lies in the lineality space of trop (\tilde{X}) , and that trop $(X) = \text{trop}(\tilde{X})/\mathbf{1}$.

Example: Let $X = V(x_1 + x_2 + 1) \subset T^2$. Then $\tilde{X} = V(x_1/x_0 + x_2/x_0 + 1) = V(x_1 + x_2 + x_0) \subset \tilde{T}^2$.

Let $\overline{\tilde{X}}$ be the closure of \tilde{X} in \mathbb{A}^{n+1} . Recall that $\mathbb{P}^n = (\mathbb{A}^{n+1} \setminus 0)/\mathbb{k}^*$. Then $\overline{X} = (\overline{\tilde{X}}) \setminus 0)/\mathbb{k}^*$. Thus \overline{X} intersects the T^n -orbit indexed by $\sigma \subsetneq \{0, \ldots, n\}$ if and only if the preimage $\operatorname{trop}(\tilde{X})$ of $\operatorname{trop}(X)$ intersects the relative interior of the appropriate $\operatorname{pos}(\mathbf{e}_i : i \in \sigma)$. We can also consider these sets in \mathbb{R}^n . Note that the image $\overline{\mathbf{e}}_0$ of \mathbf{e}_0 in \mathbb{R}^n is $-\sum_{i=1}^n \overline{\mathbf{e}}_i$. Then \overline{X} intersects the T^n -orbit indexed by σ if and only if $\operatorname{trop}(X) \cap \operatorname{relint}(\operatorname{pos}(\overline{\mathbf{e}}_i : i \in \sigma)) \neq \emptyset$.

Example: Figure 2 shows the fan in \mathbb{R}^2 whose cones are the sets $pos(\overline{\mathbf{e}}_i : i \in \sigma)$ for $\sigma \subsetneq \{0, 1, 2\}$. Thus $\overline{X} \cap O_{\sigma} \neq \emptyset$ if and only if trop(X) intersects the relative interior of the appropriate cone. For an example, consider the variety $X = V(x_1 + x_2 + 1) \subset T^2$ analyzed above.

Note that T^n also acts on \mathbb{A}^n by $(t_1, \ldots, t_n) \cdot (x_1, \ldots, x_n) = (t_1x_1, \ldots, t_nx_n)$, and Theorem 8 gave conditions for the closure \overline{X} in \mathbb{A}^n of a variety $X \subset T^n$ to intersect each orbit. The sets \mathbb{A}^n and \mathbb{P}^n are examples of *toric varieties*. These are varieties that contain a dense copy of T^n , and have an action of T^n on them extending the action of T^n on itself. They are (up to the technical notion of normalization) described

DIANE MACLAGAN

by a polyhedral fan $\Sigma \subset \mathbb{R}^n$, the cones of which index T^n -orbits. If \overline{X} is the closure of $X \subset T^n$ in a toric variety with fan Σ , then \overline{X} intersects the T^n -orbit indexed by the cone $\sigma \in \Sigma$ if and only if trop(X) intersects the relative interior of σ .

The following proposition was also mentioned in class, and is used in the proof of the general case of the Fundamental Theorem.

Proposition 9. Let $X \subset T^n$ be an irreducible variety of dimension d. Then for most choices of projection $\phi: T^n \to T^{d+1}$. the image $\overline{\phi(X)}$ is a hypersurface in T^{d+1} .

Here by "most" we mean for a Zariski-open set of choices for the matrix U describing ϕ .

Proof. We first note that since X is irreducible, $\phi(X)$ is irreducible of dimension at most d for any choice of projection ϕ . To see irreducibility, note that if $\overline{\phi(X)} = Y_1 \cup Y_2$ for $Y_1, Y_2 \subsetneq \overline{\phi(X)}$, then $X = X_1 \cup X_2$ with $X_i = \phi^{-1}(Y_i) \cap X$ for i = 1, 2. Then by the irreducibility of X without loss of generality we have $X = X_1$, so $X \subseteq \phi^{-1}(Y_1)$, and thus $\phi(X) \subseteq Y_1$, contradicting $Y_1 \subsetneq \overline{\phi(X)}$.

Since X is irreducible of dimension d and the generators of I have coefficients in \mathbb{k} , trop(X) is a pure d-dimensional fan in \mathbb{R}^n . Choose a d-dimensional cone $\sigma \in \text{trop}(X)$, and choose an $n \times (d+1)$ rank d+1 matrix U with $\text{ker}(U) \cap \text{span}(\sigma) = \mathbf{0}$. Then $\{U^T w : w \in \sigma\}$ is a d-dimensional cone in \mathbb{R}^{d+1} , so $\text{trop}(\overline{\phi(X)})$ has dimension at least d, and thus $\overline{\phi(X)}$ has dimension at least d. Since X has dimension d, $\overline{\phi(X)}$ has dimension at most d, and thus is a hypersurface in T^{d+1} .

References

- [Pay07] Sam Payne, Fibers of tropicalization, 2007. arXiv:0705.1732. To appear in Math. Z.
- [Tev07] Jenia Tevelev, Compactifications of subvarieties of tori, Amer. J. Math. 129 (2007), no. 4, 1087–1104. MR 2343384 (2008f:14068)