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For the rest of the week we consider the closure of X ⊂ T n in a toric variety. We
start with taking the closure of X in An. We will consider only the case that k → K,
such as C → C{{t}}.

Recall that T n ⊂ An, since T n = {(x1, . . . , xn) : xi ∈ k, xi 6= 0}, and An =
{(x1, . . . , xn) : xi ∈ k}. Given X ⊂ T n, let X be the closure of X in An. This is the
smallest closed set in An containing X, so X = V (I) for some I and is as small as

possible. Recall that if V (I) ( V (J) ⊂ T n, then
√
J (

√
I. If U is a subset of An

then U =
⋂

U⊆V (I):I⊆k[x1,...,xn] V (I).

Question: Given X ⊂ T n is 0 ∈ X?
The answer is given by the following theorem, which was first observed by Tevelev [Tev07].

Theorem 1. Let X ⊂ T n
k , and let X be the closure of X in An. Then 0 ∈ X if and

only if trop(X) ∩ Rn
>0 6= ∅, where Rn

>0 = {(x1, . . . , xn) : xi > 0 for 1 ≤ i ≤ n}.
Example: Let X = V (x+y+1) ⊂ T 2. Then X = {(a,−1−a) : a ∈ k∗, a 6= −1}, so
X = {(a,−1−a) : a ∈ k} = X∪{(0,−1), (−1, 0)} = V (x+y+1) ⊂ A2. The tropical
variety trop(X) is shown in Figure 1. Note that 0 6∈ X, and trop(X) ∩ R2

>0 = ∅.
Example: Let X = V (x2 − y) ⊂ T 2. Then X = {(a, a2) : a ∈ k∗}, and X =
{(a, a2) : a ∈ K} = X ∪ {(0, 0)} = V (x2 − y) ⊂ A2. Then trop(X) is the line
w2 = 2w1, which contains the point (1, 2) ∈ R2

>0, and 0 ∈ X.

Example: Let X = V (xy−1) = {(a, 1/a) : a ∈ k∗} ⊂ T 2. Then X = X, so 0 6∈ X.
The tropical variety is the line w1 + w2 = 0, which does not intersect the positive
orthant.

We first note the following description of the ideal of X ⊂ An.

Lemma 2. If X = V (I) ⊂ T n for I ∈ k[x±1
1 , . . . , x±1

n ] then X = V (I) ⊂ An, where
I = I ∩ k[x1, . . . , xn].

Proof. Let X = V (J) for J ⊂ k[x1, . . . , xn]. Then since X ⊂ X, we have f(x) = 0 for

all x ∈ X and f ∈ J , so f ∈
√
I when f is regarded as an element of k[x±1

1 , . . . , x±1
n ].

Let J ′ = Jk[x±1
1 , . . . , x±1

n ]. Then J ′ ⊆
√
I. Now J ⊆ J ′ ∩ k[x1, . . . , xn] ⊆

√
I ∩

(0, 0)

Figure 1.
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k[x1, . . . , xn]. We claim that
√
I ∩ k[x1, . . . , xn] =

√
I. To see this, note that if f ∈√

I ∩k[x1, . . . , xn], then there is N > 0 for which fN ∈ I, and since f ∈ k[x1, . . . , xn]

we have fN ∈ I, so f ∈
√
I. Conversely, if f ∈

√
I, then there is N > 0 for which

fN ∈ I, so fN ∈ I, and f ∈ k[x1, . . . , xn], so f ∈
√
I ∩ k[x1, . . . , xn]. Thus J ⊆

√
I,

so V (I) ⊆ V (J) = X. But if x ∈ X then f(x) = 0 for all f ∈ I, so X ⊆ V (I), and
so X ⊆ V (I). Thus X = V (I). �

A key idea of the proof of Theorem 1 is the inclusion of tori. This will let us reduce
to the case where X is a curve in T 2.

Definition 3. A morphism φ : T n → Tm is determined by a k-algebra homomor-
phism φ∗ : k[y±1

1 , . . . , y±1
m ] → k[x±1

1 , . . . , x±1
n ]. Note that the map φ∗ goes in the

reverse direction!

A point a = (a1, . . . , an) ∈ T n corresponds to the maximal ideal

Ia = 〈x1 − a1, . . . , xn − an〉 ∈ k[x±1
1 , . . . , x±1

n ].

Since the induced map k[y±1
1 , . . . , y±1

m ] → k[x±1
1 , . . . , x±1

n ]/Ia ∼= k is surjective, the
kernel φ∗−1(Ia) is maximal, so is of the form 〈y1 − b1, . . . , ym − bm〉 ∈ k[y±1

1 , . . . , y±1
m ]

for some b = (b1, . . . , bm) ∈ Tm. We thus set φ(a) = b.
Note that φ∗(yi) is an invertible polynomial in k[x±1

1 , . . . , x±1
n ] for 1 ≤ i ≤ m, so

must be a monomial. We thus have

φ∗(yi) = xui for ui ∈ Zn.

Thus a morphism φ : T n → Tm corresponds to a map ψ : Zm → Zn given by
ψ(ei) = ui, where ei is the ith standard basis vector of Rm.
Exercise: The morphism φ is surjective if and only if ψ is injective. The morphism
φ is injective if and only if ψ is surjective.

We record ψ by the n × m matrix U with columns u1, . . . ,um, so ψ(v) = Uv.
The map φ : T n → Tm is given by φ(t1, . . . , tn) = (tu1 , . . . , tum), where tui =
tui1
1 tui2

2 . . . tuin
n .

Given X ⊂ T n with X = V (I), the closure φ(X) of the image of X under φ is the
variety V (φ∗−1(I)).

Proposition 4. Let φ : T n → Tm be a morphism of tori, with associated n × m
matrix U . Let X ⊂ T n be a variety, and let φ(X) be the closure of its image in Tm.

Then w ∈ trop(X) if and only if UTw ∈ trop(φ(X)).

Proof. We denote by X(K) the subvariety of T n
K defined by the same equations

as X. If w ∈ trop(X) then by the Fundamental Theorem there is y ∈ X(K) with

val(y) = w. Then φ(y) = (yu1 , . . . , yum) ∈ φ(X), and val(φ(y)) = (u1 ·val(y), . . . ,um ·
val(y)) = UTw. So w ∈ trop(X) implies UTw ∈ trop(φ(X)).

Conversely, if w ∈ trop(φ(X)), then there exists y ∈ φ(X) with val(y) = w. By

[Pay07] the set of y ∈ φ(X) with val(y) = w is Zariski dense in φ(X), so we may
assume that y ∈ φ(X). Thus there is y ∈ X with y = φ(y). Then w = val(y) =
val(φ(y)) = UT val(y), so there is w = val(y) ∈ trop(X) with w = UTw. �

We note that one direction of Proposition 4 can also be seen by arguments with
initial ideals.



AARMS TROPICAL GEOMETRY - LECTURES 13–15 3

Lemma 5. Let I = k[x±1
1 , . . . , x±1

n ], and let w ∈ Rn. Let φ : T n → Tm be given by
φ(t)i = tui, and let U be the n×m matrix with columns the vectors ui. Let φ∗ be the
k-algebra homomorphism k[y±1

1 , . . . , y±1
m ] → k[x±1

1 , . . . , x±1
n ]. Then

inUT w(φ∗−1(I)) ⊆ φ∗−1(inw(I)).

Thus w ∈ trop(X) implies that UTw ∈ trop(φ(X)).

Proof. Let f =
∑

v∈Nn avy
v ∈ φ−1(I), so φ(f) =

∑
v∈Nn avx

Uv ∈ I. Then inUT w =∑
UT w·v=W avy

v, where W = min{UTw · v : av 6= 0} = min{vTUTw : av 6= 0}. How-
ever inw(φ(f)) =

∑
w·Uv=W ′ avx

Uv where W ′ = min{w ·Uv : av 6= 0} = min{vTUTw :
av 6= 0} = W . Thus {v : w · Uv = W, av 6= 0} = {v : UTw · v, av 6= 0}, so
inw(φ(f)) = φ(inUT w(f)). Thus inUT w(f) ∈ φ−1(inw(I)).

If w ∈ trop(X), then inw(I) 6= 〈1〉, so inUT w(φ∗−1(I)) 6= 〈1〉, and thus UTw ∈
trop(φ(X)). �

We next outline how to reduce the proof of Theorem 1 to the case where X is a
curve.

Lemma 6. Let X ⊂ T n with ideal I ⊂ k[x±1
1 , . . . , x±1

n ]. Let φ : Tm → T n be
a morphism of tori with associated m × n matrix U and k-algebra homomorphism
φ∗ : k[x±1

1 , . . . , x±1
n ] → k[y±1

1 , . . . , y±1
m ]. Then Y = φ−1(X) = V (φ(I)) ⊆ Tm.

We have the containment of sets UT trop(Y ) ⊂ trop(X) ∩ trop(im(φ)).

Proof. Note that if f =
∑

v∈Zn avx
v, then φ∗(f) =

∑
v∈Zn avx

Uv, so φ∗(f)(y) =
f(φ(y)) for all y ∈ Tm. Let y ∈ Y . Then φ∗(f)(y) = f(φ(y)) = 0 for all f ∈ I, so
y ∈ V (φ∗(I)). Conversely, if g(y) = 0 for all g ∈ φ∗(I), then φ∗(f)(y) = 0 for all
f ∈ I, so f(φ(y)) = 0 for all f ∈ I, and thus φ(y) ∈ V (I) = X, so y ∈ Y .

Let w ∈ trop(Y ). Then there is y ∈ Y with val(y) = w. Thus φ(y) ∈ X,
and so val(φ(y)) = UTw ∈ trop(X). Since trop(im(φ)) = imUT , it follows that
UTw ∈ trop(X) ∩ trop(im(φ)). �

The morphism φ : T n → Tm extends to a morphism φ : An → Am if and only if
every entry of U is nonnegative. To reduce to the case thatX is a curve, one intersects
with a codimension dim(X) − 1 subtorus of T n that intersects X transversely in a
curve Y ⊂ Tm for m = n− dim(X) + 1. We assume that the inclusion φ : Tm → Tm

has matrix U with positive entries. It then follows from Lemma 6 that if 0 ∈ X then
0 ∈ Y , so given the curve case of Theorem 1 we know that there is w ∈ trop(Y ) with
w ∈ Rm

>0. Then UTw ∈ trop(X) ∩ Rm
>0.

We will only prove Theorem 1 in the case where X is a curve in T 2. The elementary
approach to a proof proposed in class does not work.

Proposition 7. Let X ⊂ T 2
k be a curve, so X = V (f) for some f ∈ k[x±1, y±1].

Then 0 ∈ X if and only if trop(X) ∩ R2
>0 6= ∅.

Proof. Write f =
∑

(i,j)∈Z2 aijx
iyj. Let I = 〈f〉 ⊆ k[x±1, y±1], and let I = I ∩ k[x, y].

Then I = 〈f ′〉 for f ′ = x−ky−lf , where k = min{i : aij 6= 0}, and l = min{j : aij 6=
0}.

Now 0 ∈ X if and only if f ′(0, 0) = 0, which occurs if and only if akl 6= 0. If
akl 6= 0, then for all w ∈ R2

>0, we have inw(f ′) = akl, so inw(I) = 〈1〉, and thus
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trop(X)∩R2
>0 = ∅. Conversely, if akl = 0, then let P = conv((i− k, j − l) : aij 6= 0).

By construction P lives in the positive orthant, and has a vertex v1 of the form (0, r)
and a vertex v∞ of the form (s, 0). Let v2 be the next vertex in counter-clockwise
order from v1. Let w = (w1, w2) be the inner facet normal of the edge joining v1 and
v2 (so w ·u ≥ w · v1 = w · v2 for all u ∈ P ). Note that w1, w2 > 0. Then inw(f ′) is not
a monomial, since its support contains the monomials with exponents giving rise to
v1 and v2, and so inw(f) is not a monomial, and thus w ∈ trop(X). �

Theorem 1 generalizes to the following theorem.

Theorem 8. Let X ⊂ T n and let X be the closure of X in An. Then for σ ∈
{1, . . . , n}

X ∩ {x ∈ An : xi = 0 for all i ∈ σ, xi 6= 0 for all i 6∈ σ} 6= ∅
if and only if there is w ∈ trop(X) with wi > 0 for all i ∈ σ, and wi = 0 for all i 6∈ σ.

The case σ = {1, . . . , n} is Theorem 1. The condition on w ∈ trop(X) can be
rephrased as asking that w lies in the relative interior of pos(ei : i ∈ σ). Examples
of Theorem 8 can be seen by considering the subvarieties of T 2 at the start of the
lecture.

One can also ask the same question about the closure of X ⊂ T n in Pn. Recall
that T n embeds into Pn by the map (x1, . . . , xn) 7→ (1 : x1 : · · · : xn). Given X ⊂ T n,
let X now denote the closure of X in Pn. This is the smallest projective variety
containing X.
Example: Let X = V (x1 + x2 + 1) ⊂ T 2. Let X be the closure of X in P2 under
the embedding T 2 → P2 given by (t1, t2) 7→ (1 : t2 : t2). Then X = X ∪ {(1 : 0 :
−1), (1 : −1 : 0), (0 : 1 : −1)} = V (x1 + x2 + x0). Note that X ∩ {xi = 0} 6= ∅ for
i = 0, 1, 2, while X ∩ {xi = xj = 0} = ∅ for all choices of 0 ≤ i < j ≤ 2.

Note that the torus T n is a group, with multiplication coordinatewise, and identity
the element (1, 1, . . . , 1) ∈ T n. The torus T n acts on Pn by

(t1, . . . , tn) · (x0 : x1 : · · · : xn) = (x0 : t1x1 : t2x2 : · · · : tnxn).

The orbits of T n on Pn are indexed by proper subsets of {0, 1, . . . , n} indicating which
coordinates are zero.
Example: The torus T 2 acts on P2 by (t1, t2) · (x0 : x1 : x2) = (x0 : t1x1 : t2x2).
The orbits of T 2 on P2 are:

{T 2, {(0 : 1 : t2) : t2 6= 0}, {(1 : 0 : t2) : t2 6= 0}, {(1 : t1 : 0) : t1 6= 0},
{(1 : 0 : 0)}, {(0 : 1 : 0)}, {(0 : 0 : 1)}.

These can be labelled by following subsets of {0, 1, 2}:
{∅, {0}, {1}, {2}, {1, 2}, {0, 2}, {0, 1}}.

We denote by Oσ the orbit of Pn indexed by σ ⊂ {0, 1, . . . , n}.
Question: For X ⊂ T n, let X be the closure of X in Pn. Given σ ( {0, 1, . . . , n},
does X intersect Oσ?.

As before, then answer depends on the configuration of trop(X) ⊂ Rn. We will
reduce this calculation to one in An+1 that uses Theorem 8, by using the notion of
the affine cone of X.
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image of pos((0, 0, 1))

image of pos((0, 1, 0))

image of pos((1, 0, 0)).

Figure 2.

Let T̃ n = {(t0, t1, . . . , tn) : ti ∈ k∗}. Note that we have the short exact sequence

1 → k∗ → T̃ n π→ T n → 1,

where 1 is the trivial group (written multiplicatively). The map k∗ → T̃ n is given by
t 7→ (t, t, . . . , t), and the map π : (t0, . . . , tn) 7→ (t1/t0, . . . , tn/t0). This short exact
sequence tropicalizes to

0 → span(1) → Rn+1 trop(π)→ Rn → 0,

where 1 is the vector (1, 1, . . . , 1) ∈ Rn+1, the first map is the inclusion, and and
trop(π) : (w0, . . . , wn) → (w1 − w0, . . . , wn − w0).

GivenX ⊂ T n, the affine cone overX is X̃ = π−1(X). The map π∗ : k[x±1
1 , . . . , x±1

n ] →
k[x±1

0 , . . . , x±1
n ] is given by π∗(xi) = xi/x0 for 1 ≤ i ≤ n. If X = V (I) ⊂ T n, then

X̃ = V (π∗(I)) ⊂ T̃ n. Note that 1 lies in the lineality space of trop(X̃), and that
trop(X) = trop(X̃)/1.
Example: Let X = V (x1 + x2 + 1) ⊂ T 2. Then X̃ = V (x1/x0 + x2/x0 + 1) =
V (x1 + x2 + x0) ⊂ T̃ 2.

Let X̃ be the closure of X̃ in An+1. Recall that Pn = (An+1 \ 0)/k∗. Then

X = (X̃) \ 0)/k∗. Thus X intersects the T n-orbit indexed by σ ( {0, . . . , n} if
and only if the preimage trop(X̃) of trop(X) intersects the relative interior of the
appropriate pos(ei : i ∈ σ). We can also consider these sets in Rn. Note that the
image e0 of e0 in Rn is −

∑n
i=1 ei. Then X intersects the T n-orbit indexed by σ if

and only if trop(X) ∩ relint(pos(ei : i ∈ σ)) 6= ∅.
Example: Figure 2 shows the fan in R2 whose cones are the sets pos(ei : i ∈ σ) for
σ ( {0, 1, 2}. Thus X∩Oσ 6= ∅ if and only if trop(X) intersects the relative interior of
the appropriate cone. For an example, consider the variety X = V (x1 +x2 +1) ⊂ T 2

analyzed above.
Note that T n also acts on An by (t1, . . . , tn) · (x1, . . . , xn) = (t1x1, . . . , tnxn), and

Theorem 8 gave conditions for the closure X in An of a variety X ⊂ T n to intersect
each orbit. The sets An and Pn are examples of toric varieties. These are varieties
that contain a dense copy of T n, and have an action of T n on them extending the
action of T n on itself. They are (up to the technical notion of normalization) described
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by a polyhedral fan Σ ⊂ Rn, the cones of which index T n-orbits. If X is the closure
of X ⊂ T n in a toric variety with fan Σ, then X intersects the T n-orbit indexed by
the cone σ ∈ Σ if and only if trop(X) intersects the relative interior of σ.

The following proposition was also mentioned in class, and is used in the proof of
the general case of the Fundamental Theorem.

Proposition 9. Let X ⊂ T n be an irreducible variety of dimension d. Then for most
choices of projection φ : T n → T d+1. the image φ(X) is a hypersurface in T d+1.

Here by “most” we mean for a Zariski-open set of choices for the matrix U de-
scribing φ.

Proof. We first note that since X is irreducible, φ(X) is irreducible of dimension at

most d for any choice of projection φ. To see irreducibility, note that if φ(X) = Y1∪Y2

for Y1, Y2 ( φ(X), then X = X1 ∪X2 with Xi = φ−1(Yi) ∩X for i = 1, 2. Then by
the irreducibility of X without loss of generality we have X = X1, so X ⊆ φ−1(Y1),

and thus φ(X) ⊆ Y1, contradicting Y1 ( φ(X).
Since X is irreducible of dimension d and the generators of I have coefficients in k,

trop(X) is a pure d-dimensional fan in Rn. Choose a d-dimensional cone σ ∈ trop(X),
and choose an n × (d + 1) rank d + 1 matrix U with ker(U) ∩ span(σ) = 0. Then

{UTw : w ∈ σ} is a d-dimensional cone in Rd+1, so trop(φ(X)) has dimension at

least d, and thus φ(X) has dimension at least d. Since X has dimension d, φ(X) has
dimension at most d, and thus is a hypersurface in T d+1. �
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