AARMS TROPICAL GEOMETRY - LECTURE 8

DIANE MACLAGAN

The goal for today is to start describing the structure of the tropical variety. Example: Let $f=x+y+1 \in K\left[x^{ \pm 1}, y^{ \pm 1}\right]$. Then $V(f)$ is a line in T^{2}, and $\operatorname{trop}(V(f))$ is the standard "tropical line" we have seen multiple times, as shown in Figure 1

Figure 1.
Example: Let $f=x+y+z+1 \in K\left[x^{ \pm 1}, y^{ \pm 1}, z^{ \pm 1}\right]$. Then $V(f)$ is a surface in T^{3}. We have $w \in \operatorname{trop}(V(f))$ if and only if

$$
\begin{aligned}
w_{1} & =w_{2} \leq w_{3}, 0 \\
\text { or } w_{1} & =w_{3} \leq w_{2}, 0 \\
\text { or } w_{1} & =0 \leq w_{2}, w_{3} \\
\text { or } w_{2} & =w_{3} \leq w_{1}, 0 \\
\text { or } w_{2} & =0 \leq w_{1}, w_{3} \\
\text { or } w_{3} & =0 \leq w_{1}, w_{2} .
\end{aligned}
$$

This is a fan with rays

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right)\right\} .
$$

The fan consists of all two-dimensional cones in \mathbb{R}^{3} generated by any two of these rays. It intersects the sphere S^{3} in the complete graph K_{4}.
Example: Let $\phi: T^{d} \rightarrow T^{n}$ be a subtorus embedded by

$$
\phi: s=\left(s_{1}, \ldots, s_{d}\right) \mapsto\left(s^{a_{1}}, \ldots, s^{a_{n}}\right)
$$

Figure 2. The complex on the left is pure, while the one on the right is not.
where $a_{j} \in \mathbb{Z}^{d}$ for $1 \leq i \leq n$, and $s^{a_{j}}=\prod_{i=1}^{d} s_{i}^{a_{i j}}$. We assume that the $d \times n$ matrix $A=\left(a_{i j}\right)$ has rank d, so that ϕ is an embedding. Let $X=\operatorname{im}(\phi) \cong T^{d} \subset T^{n}$. Then

$$
\begin{aligned}
\operatorname{trop}(X) & =\operatorname{closure} \text { of }\left\{\operatorname{val}\left(s^{a_{1}}\right), \ldots, \operatorname{val}\left(s^{a_{n}}\right): s=\left(s_{1}, \ldots, s_{d}\right) \in T_{K}^{d}\right\} \\
& =\operatorname{closure} \text { of }\left\{\mathbf{a}_{1} \cdot \operatorname{val}(s), \ldots, \mathbf{a}_{n} \cdot \operatorname{val}(s): s \in T_{K}^{s}\right\} \\
& =\operatorname{closure} \text { of }\left\{A^{T} \operatorname{val}(s): s \in T_{K}^{d}\right\} \\
& =\operatorname{im} A^{T} .
\end{aligned}
$$

So $\operatorname{trop}(X)$ is a linear space of dimension d.
Definition 1. The Minkowski sum of two subsets $A, B \subset \mathbb{R}^{n}$ is the set

$$
A+B=\{a+b: a \in A, b \in B\}
$$

Definition 2. The affine span of a polyhedron $P \subseteq \mathbb{R}^{n}$ is

$$
\operatorname{aff}(P)=v+\operatorname{span}(u-v: u \in P)
$$

where $v \in P$. Here the sum is an example of Minkowski addition. Note that this is independent of the choice of $v \in P$. The relative interior of P is the interior of P inside its affine span.
Definition 3. The dimension of a polyhedron P is the dimension of its affine span. A polyhedral complex Σ is pure of dimension d if all maximal polyhedra in Σ are d-dimensional.

Note: In each of the examples, $\operatorname{trop}(X)$ is a pure polyhedral complex and $\operatorname{dim}(X)=$ $\operatorname{dim}(\operatorname{trop}(X))$. This is true in general.

Recall that the support of a polyhedral complex in \mathbb{R}^{n} is the subset of \mathbb{R}^{n} obtained by taking the union of all the polyhedra in the complex.

Theorem 4. Let $X \subset T_{K}^{n}$ be an irreducible variety of dimension d defined by the prime ideal $I \subset K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. There is a polyhedral complex Σ that is pure of dimension d whose support is $\operatorname{trop}(X)$.

The existence of the polyhedral complex we saw already in the discussion of the Gröbner complex last week. The new material here is that this complex is pure of dimension d.

To prove this we need some more Gröbner basics, which we will see first in an example.

Figure 3.
Example: Let $f=t x^{2} y+x^{2}+x y+t^{2} y+x+t \in \mathbb{C}\{\{t\}\}\left[x^{ \pm 1}, y^{ \pm 1}\right]$. Then $\operatorname{trop}(f)=$ $\min (2 x+y+1,2 x, x+y, y+2, x, 1)$, and $\operatorname{trop}(V(f))$ is shown in Figure 3 .

For $w=(1,0)$, we have $\operatorname{in}_{w}(f)=x y+x+1 \in \mathbb{C}\left[x^{ \pm 1}, y^{ \pm 1}\right]$. Then $\operatorname{trop}\left(V\left(\operatorname{in}_{w}(f)\right)\right)=$ $\left\{v \in \mathbb{R}^{2}:\left\langle\operatorname{in}_{v}\left(\operatorname{in}_{w}(f)\right)\right\rangle \neq\langle 1\rangle\right\}$ is shown in Figure 4 .

Figure 4.

For $w=(0,0)$ we have $\operatorname{in}_{w}(f)=x^{2}+x y+x$, and $\operatorname{trop}\left(\operatorname{in}_{w}(f)\right)=\left\{v \in \mathbb{R}^{2}\right.$: $\left.\left\langle\mathrm{in}_{v}\left(\mathrm{in}_{w}(f)\right)\right\rangle \neq\langle 1\rangle\right\}$ is shown in Figure 5.

Figure 5.

If $w=(1 / 2,0)$, then $\operatorname{in}_{w}(f)=x+x y$, and $\operatorname{trop}\left(V\left(\operatorname{in}_{w}(f)\right)\right)$ is the x-axis $\{(x, y) \in$ $\left.\mathbb{R}^{2}: y=0\right\}$.

If $w=(1,1)$, then $\operatorname{in}_{w}(f)=x+1$, and $\operatorname{trop}\left(V\left(\mathrm{in}_{w}(f)\right)\right)$ is the y-axis $\left\{(x, y) \in \mathbb{R}^{2}\right.$: $x=0\}$.

Note that in all cases the set $\operatorname{trop}\left(V\left(\mathrm{in}_{w}(f)\right)\right)$ looks like the piece of $\operatorname{trop}(V(f))$ "near" the polyhedron containing w. More formally, it is the star, which we now define, of the polyhedron containing w in the polyhedral complex $\operatorname{trop}(V(f))$.

Definition 5. Let Σ be a polyhedral complex, and let $\sigma \in \Sigma$ be a polyhedron. The star $\operatorname{star}_{\Sigma}(\sigma)$ of $\sigma \in \Sigma$ is a fan in \mathbb{R}^{n} whose cones are indexed by those $\tau \in \Sigma$ for which σ is a face of τ. Fix $w \in \sigma$. Then the cone indexed by τ is the Minkowski sum

$$
\bar{\tau}=\left\{v \in \mathbb{R}^{n}: \exists \epsilon>0 \text { with } w+\epsilon v \in \tau\right\}+\operatorname{aff}(\sigma)-w .
$$

Example: For the polyhedral complex Σ shown on the left of Figure 6, the affine span of the vertex σ_{1} is just the vertex itself. The star is the standard line shown on the right. For σ_{2} the affine span is the entire y-axis, and this is also the star.

Figure 6.

Lemma 6. Let Σ be a polyhedral complex in \mathbb{R}^{n}, and $\sigma \in \Sigma$. Fix w in the relative interior of σ. Then

$$
\operatorname{star}_{\Sigma}(\sigma)=\left\{v \in \mathbb{R}^{n}: w+\epsilon v \in \Sigma \text { for sufficiently small } \epsilon>0\right\}
$$

Definition 7. A subspace $V \subseteq \mathbb{R}^{n}$ is the lineality space of a polyhedron $P \subseteq \mathbb{R}^{n}$ if

$$
x \in P \text { implies } x+v \in P \text { for all } v \in V \text {. }
$$

If V is the lineality space of a polyhedron P then we often consider $P / V i n \mathbb{R}^{n} / V$ for ease of visualization.

Note: The affine span $\operatorname{aff}(\sigma)$ of a polyhedron $\sigma \in \Sigma$ lies in the lineality space of every cone in the fan $\operatorname{star}(\sigma)$.

Lemma 8. Let $I \subseteq K\left[x_{1}^{ \pm 1} \ldots, x_{n}^{ \pm 1}\right]$, and fix $w, v \in \mathbb{R}^{n}$. Then there is $\epsilon>0$ such that

$$
\operatorname{in}_{v}\left(\operatorname{in}_{w}(I)\right)=\operatorname{in}_{w+\epsilon v}(I) .
$$

Proof. We first note that it suffices to check that for all $f \in K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ there is $\epsilon>0$ such that

$$
\operatorname{in}_{v}\left(\operatorname{in}_{w}(f)\right)=\operatorname{in}_{w+\epsilon^{\prime} v}(f)
$$

for all $\epsilon^{\prime}<\epsilon$.
To see this, note that $\operatorname{in}_{v}\left(\mathrm{in}_{w}(I)\right)$ is finitely generated by $g_{1}, \ldots, g_{s} \in \mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ and each generator g_{i} is of the form $\operatorname{in}_{v}\left(\operatorname{in}_{w}\left(f_{i}\right)\right)$ for some $f_{i} \in I$, so we can choose ϵ to be the minimum of the ϵ_{i} corresponding to these generating f_{i}. Then $g_{i}=$ $\operatorname{in}_{v}\left(\mathrm{in}_{w}\left(f_{i}\right)\right)=\operatorname{in}_{w+\epsilon v}\left(f_{i}\right)$, so $\mathrm{in}_{v}\left(\mathrm{in}_{w}(I)\right) \subseteq \mathrm{in}_{w+\epsilon v}(I)$. Equality follows from the fact that we cannot have a proper inclusion of initial ideals.

We now prove the claim lemma for an individual polynomial. Let $f=\sum_{u \in \mathbb{Z}^{n}} c_{u} x^{u}$. Then

$$
\operatorname{in}_{w}(f)=\sum_{u \in \mathbb{Z}^{n}} \overline{c_{u} t^{w \cdot u-W}} x^{u}
$$

where $W=\min \left(\operatorname{val}\left(c_{u}\right)+w \cdot u: c_{u} \neq 0\right)=\operatorname{trop}(f)(w)$. Let $W^{\prime}=\min (v \cdot u$: $\left.\operatorname{val}\left(c_{u}\right)+w \cdot u=W\right)$. Then

$$
\operatorname{in}_{v}\left(\operatorname{in}_{w}(f)\right)=\sum_{v \cdot u=W^{\prime}} \overline{c_{u} t^{w \cdot u-W}} x^{u}
$$

Let $\delta=\min \left(\operatorname{val}\left(c_{u}\right)+w \cdot u-W: \operatorname{val}\left(c_{u}\right)+w \cdot u>w\right)$, and let $M=\max \left(v \cdot u: c_{u} \neq 0\right)$. Set $\epsilon=\delta / 2 M$, and $W^{\prime \prime}=\min \left(\operatorname{val}\left(c_{u}\right)+(w+\epsilon v) \cdot u\right.$. Then by construction we have

$$
W^{\prime \prime}=W+\epsilon W^{\prime}
$$

and

$$
\left\{u: \operatorname{val}\left(c_{u}\right)+(w+\epsilon v) \cdot u=W^{\prime \prime}\right\}=\left\{u: \operatorname{val}\left(c_{u}\right)+w \cdot u=W, v \cdot u=W^{\prime}\right\}
$$

Thus $\operatorname{in}_{w+\epsilon v}(f)=\operatorname{in}_{v}\left(\operatorname{in}_{w}(f)\right)$.
Recall that we say that $v \in \mathbb{R}^{n}$ is generic for I if $\mathrm{in}_{v}(I)$ is a monomial ideal. The following corollary allows us to compute Gröbner bases with respect to nongeneric weight vectors using standard computer algebra packages.
Corollary 9. Let $I \subset K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, and $w \in \mathbb{R}^{n}$. Choose a vector $v \in \mathbb{R}^{n}$ that is generic for $\mathrm{in}_{w}(I)$. Then a Gröbner basis \mathcal{G} for I with respect to $w+\epsilon v$ for sufficiently small ϵ is a Gröbner basis for I with respect to w, and $\operatorname{in}_{w}(I)=\left\langle\mathrm{in}_{w}(g): g \in \mathcal{G}\right\rangle$.

Proof. Fix $\epsilon>0$ such that $\mathrm{in}_{w+\epsilon v}(I)=\operatorname{in}_{v}\left(\mathrm{in}_{w}(I)\right)$, the existence of which is guaranteed by Lemma 8, Let $\mathcal{G}=\left\{g_{1}, \ldots, g_{r}\right\}$ be a Gröbner basis for I with respect to $\mathrm{in}_{w+\epsilon v}$. Thus $\operatorname{in}_{w+\epsilon v}(I)=\left\langle\operatorname{in}_{w+\epsilon v}\left(g_{1}\right), \ldots, \operatorname{in}_{w+\epsilon v}\left(g_{r}\right)\right\rangle$. The choice of ϵ was made to guarantee that $\mathrm{in}_{w+\epsilon v}\left(g_{i}\right)=\operatorname{in}_{v}\left(\mathrm{in}_{v}\left(g_{i}\right)\right)$ for all i, $\operatorname{so~in~}_{w+\epsilon v}(I)=\left\langle\operatorname{in}_{v}\left(\operatorname{in}_{w}\left(g_{1}\right)\right), \ldots, \operatorname{in}_{v}\left(\operatorname{in}_{w}\left(g_{r}\right)\right)\right\rangle=$ $\mathrm{in}_{v}\left(\mathrm{in}_{w}(I)\right)$, so $\left.\left\{\mathrm{in}_{w}\left(g_{1}\right), \ldots, \mathrm{in}_{(} g_{r}\right)\right\}$ is a Gröbner basis for $\mathrm{in}_{w}(I)$ with respect to v, and thus $\mathrm{in}_{w}(I)=\left\langle\mathrm{in}_{w}\left(g_{1}\right), \ldots, \mathrm{in}_{w}\left(g_{r}\right)\right\rangle$.
Corollary 10. Let $X \subset T_{K}^{n}$, with $X=V(I)$ for $I \subseteq K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ and let Σ be a polyhedral complex whose support is $\operatorname{trop}(X) \subset \mathbb{R}^{n}$. Fix $w \in \operatorname{trop}(X)$, and let σ be the polyhedron of Σ containing w in its relative interior. Then

$$
\operatorname{trop}\left(V\left(\operatorname{in}_{w}(I)\right)\right)=\operatorname{star}_{\Sigma}(\sigma)
$$

Proof. We have

$$
\begin{aligned}
\operatorname{trop}\left(V\left(\operatorname{in}_{w}(I)\right)\right) & =\left\{v \in \mathbb{R}^{n}: \operatorname{in}_{v}\left(\operatorname{in}_{w}(I)\right) \neq\langle 1\rangle\right\} \\
& =\left\{v \in \mathbb{R}^{n}: \operatorname{in}_{w+\epsilon v}(I) \neq\langle 1\rangle \text { for sufficiently small } \epsilon>0\right\} \\
& =\left\{v \in \mathbb{R}^{n}: w+\epsilon v \in \operatorname{trop}(X) \text { for sufficiently small } \epsilon>0\right\} \\
& =\operatorname{star}_{\Sigma}(\sigma)
\end{aligned}
$$

where the last equality is by Lemma 6 .
To prove Theorem 4 we need the following Lemma.

Lemma 11. Let $Y \subseteq T_{\mathbb{k}}^{n}$ be equidimensional of dimension d (all irreducible components have the same dimension). Suppose that $\operatorname{trop}(Y)$ is a linear subspace of \mathbb{R}^{n}. Then there is a d-dimensional subtorus $T \subset T_{\mathbb{k}}^{n}$ such that $V(I)$ consists of finitely many T-orbits.

Proof. For a proof, see Lemma 9.9 of [Stu02]
Proof of Theorem 4 Let Σ be a polyhedral complex with $\operatorname{support} \operatorname{trop}(X)$, and let σ be maximal polyhedron in Σ (so σ is not a proper face of any polyhedron in Σ). We need to show that $\operatorname{dim}(\sigma)=d$. Fix w in the relative interior of σ. By Corollary 10 we have $\operatorname{trop}\left(\mathrm{in}_{w}(I)\right)=\operatorname{star}_{\Sigma}(\sigma)$. Since σ is maximal, we have that $\operatorname{star}_{\Sigma}(\sigma)=\operatorname{aff}(\sigma)$ is a $\operatorname{dim}(\sigma)$-dimensional linear subspace. Since I is prime, it follows from a resultof Kalkbrener and Sturmfels KS95 that $V\left(\mathrm{in}_{w}(I)\right)$ is equidimensional, so all irreducible components have the same dimension. By Lemma 11 it follows that there is a subtorus $T \subset T_{K}^{n}$ of dimension $\operatorname{dim}(\sigma)$ for which $V\left(\mathrm{in}_{w}(I)\right)$ is the union of finitely many T-orbits. Since $\operatorname{dim}\left(V\left(\mathrm{in}_{w}(I)\right)\right)=\operatorname{dim}(I)=d$ (Exercise!), it follows that $\operatorname{dim}(\sigma)=d$.

References

[KS95] Michael Kalkbrener and Bernd Sturmfels, Initial complexes of prime ideals, Adv. Math. 116 (1995), no. 2, 365-376. MR 1363769 ($97 \mathrm{~g}: 13043$)
[Stu02] Bernd Sturmfels, Solving systems of polynomial equations, CBMS Regional Conference Series in Mathematics, vol. 97, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2002. MR 1925796 (2003i:13037)

