AARMS TROPICAL GEOMETRY - LECTURE 5

DIANE MACLAGAN

The goal for today is to discuss Gröbner bases in our contexts. From now on we will always have K being an algebraically closed field with a nontrivial valuation (such as $\mathbb{C}\{\{t\}\}\)$ with residue field \Bbbk . We will discuss Gröbner bases in three different contexts.

The homogeneous case. We first consider the case where there is an inclusion of \Bbbk into K with the image having valuation zero. This is the case for the Puiseux series, but not for all possible K. When an ideal has generators in $\Bbbk \subset K$, we say that the corresponding variety is defined over \Bbbk , and that we are in the *constant coefficients* case.

In this case, we first let $S = \mathbb{k}[x_0, \dots, x_n]$. Fix $w \in \mathbb{R}^n$. Given a polynomial $f = \sum_{u \in \mathbb{N}^n} c_u x^u \in S$, set $W = \min\{(0, w) \cdot u : c_u \neq 0\}$. Then

$$\operatorname{in}_w(f) = \sum_{(0,w) \cdot u = W} c_u x^u.$$

If I is a homogeneous ideal, then we set

$$\operatorname{in}_w(I) = \langle \operatorname{in}_w(f) : f \in I \rangle.$$

Example: Let $f = x_0^2 + 3x_0x_1$. When w = 2, $in_w(f) = x_0^2$. When w = 0, $in_w(f) = x_0^2 + 3x_0x_1$. When w = -3, $in_w(f) = 3x_0x_1$. If $I = \langle x_0^2 + 3x_0x_1 \rangle$, then $in_2(I) = \langle x_0^2 \rangle$. **Example:** $I = \langle x_0x_2 - x_1^2, x_0x_1 - x_2^2 \rangle$. Take w = (2, 3). Then $in_w(x_0x_2 - x_1^2) = x_0x_2$, and $in_w(x_0x_1 - x_2^2) = x_0x_1$. However $in_w(I) \neq \langle x_0x_2, x_0x_1 \rangle$, since $x_1^3 - x_2^2 \in I$, and $in_w(x_1^3 - x_2^3) = x_1^3$. In this case $in_w(I) = \langle x_0x_2, x_0x_1, x_1^3 \rangle$.

Definition 1. A set $\{g_1, \ldots, g_s\} \subset I$ is a Gröbner basis for w if $\operatorname{in}_w(I)$ is generated by $\{\operatorname{in}_w(g_1), \ldots, \operatorname{in}_w(g_s)\}$.

Example: With *I* as above, and w = (-1, -1), $\operatorname{in}_w(I) = \langle x_1^2, x_2^2 \rangle$. With w = (0, 0), $\operatorname{in}_w(I) = \langle x_0 x_2 - x_1^2, x_0 x_1 - x_2^2 \rangle$. With w = (1, 2), $\operatorname{in}_w(x_0 x_2 - x_1^2) = x_0 x_2 - x_1^2$, and $\operatorname{in}_w(x_0 x_1 - x_2^2) = x_0 x_1$, and we have $\operatorname{in}_w(I) = \langle x_0 x_2 - x_1^2, x_0 x_1 \rangle$.

Definition 2. An ideal in S is monomial if it is generated by monomials. We say that w is generic with respect to I if $in_w(I)$ is a monomial ideal.

Lemma 3. If w is generic then the monomials not in $in_w(I)$ form a k-basis for S/I.

We put an equivalence relation on \mathbb{R}^n by setting $w \sim w'$ if $\operatorname{in}_w(I) = \operatorname{in}_{w'}(I)$. **Example:** With I as above, for w = (-2, -3), we have $\operatorname{in}_w(I) = \langle x_1^2, x_2^2 \rangle$, so $(-1, -1) \sim (-2, -3)$.

Theorem 4. The set

$$C[w] := \{ w' \in \mathbb{R}^n : \inf_{w}(I) = \inf_{w'}(I) \}$$

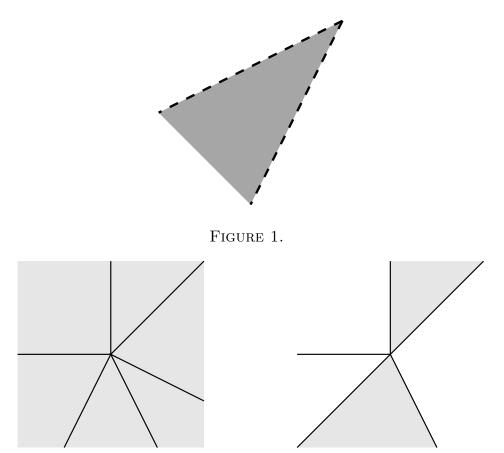


FIGURE 2. Polyhedral fans

is a relatively open polyhedral cone. This means that it can be described by equations and strict inequalities.

For a proof of this, see [Stu96, Chapter 2], or [Mac]. **Example:** Let I be as above, and w = (-1, -1). Then

$$C[w] = \{ w' \in \mathbb{R}^2 : 2w'_1 < w'_2, 2w'_1 < w'_2 \}.$$

This is shown in Figure 1.

Definition 5. A polyhedral cone is the intersection of finitely many halfspaces with the corresponding hyperplanes passing through the origin. It is thus of the form

$$C = \{x : Ax \le 0\}$$

where A is a $d \times n$ matrix. A hyperplane H in \mathbb{R}^n is supporting for a cone C if C lies in one of the two halfspaces determined by H. A face of C is the intersection of C with a supporting hyperplane.

A fan is a collection of polyhedral cones, the intersection of any two of which is a face of each.

Theorem 6. For a fixed ideal I the collection $\{\overline{C[w]} : w \in \mathbb{R}^n\}$ is a polyhedral fan.

Definition 7. This fan is called the Gröbner fan of *I*.

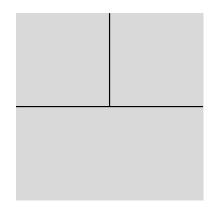
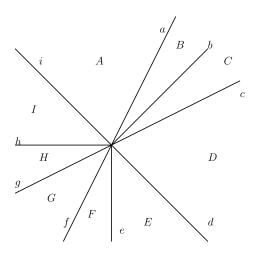


FIGURE 3. Not a polyhedral fan

Example: Let $I = \langle x_0 x_1 - x_2^2, x_0 x_2 - x_1^2 \rangle$. Then the Gröbner fan for I is shown in Figure 4, where the ideals corresponding to the cones are given in the following table.



Cone	Initial ideal	Cones	Initial ideal
А	$\langle x_0 x_1, x_1^2, x_0^2 x_2 \rangle$	a	$\langle x_0 x_1, x_0 x_2 - x_1^2 \rangle$
В	$\langle x_0 x_2, x_0 x_1, x_2^3 \rangle$	b	$\langle x_0 x_2, x_0 x_1, x_1^3 - x_2^3 \rangle$
С	$\langle x_0 x_2, x_0 x_1, x_1^3 \rangle$	c	$\langle x_0 x_2, x_0 x_1 - x_2^2 \rangle$
D	$\langle x_0 x_2, x_2^2, x_0^2 x_1 \rangle$	d	$\langle x_0 x_2, x_2^2, x_0^2 x_1 - x_1^2 x_2 \rangle$
Ε	$\langle x_0 x_2, x_2^2, x_2^2 x_2, x_0^3 x_1 \rangle$	е	$\langle x_0 x_2, x_2^2, x_1^2 x_2, x_0^3 x_1 - x_1^4 \rangle$
\mathbf{F}	$\langle x_0 x_2, x_2^2, x_1^2 x_2, x_1^4 \rangle$	f	$\langle x_0 x_2 - x_1^2, x_2^2 \rangle$
G	$\langle x_1^2, x_2^2 \rangle$	g	$\langle x_0 x_1 - x_2^2, x_1^2 \rangle$
Η	$\langle x_0 x_1, x_1^2, x_1 x_2^2, x_2^4 \rangle$	h	$\langle x_0 x_1, x_1^2, x_1 x_2^2, x_0^3 x_2 - x_2^4 \rangle$
Ι	$\langle x_0 x_1, x_1^2, x_1 x_2^2, x_0^3 x_2 \rangle$	i	$\langle x_0 x_1, x_1^2, x_0^2 x_2 - x_1 x_1^2 \rangle$

There is software, called gfan [Jen], written by Anders Jensen, that will compute the Gröbner fan of an ideal.

The torus case. We now consider the case when $S = \mathbb{k}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Given a Laurent polynomial $f = \sum_{u \in \mathbb{Z}^n} c_u x^u$, and $w \in \mathbb{R}^n$, we set $W = \min\{w \cdot u : c_u \neq 0\}$, and then

$$\operatorname{in}_w(f) = \sum_{w \cdot u = W} c_u x^u.$$

If I is an ideal in S, then the initial ideal is

$$\operatorname{in}_w(I) = \langle \operatorname{in}_w(f) : f \in I \rangle.$$

We make the same caveats as before on the fact that the initial ideal is not necessarily generated by the initial terms of generators.

Example: Let $f = x + 1 \in \mathbb{k}[x^{\pm 1}]$, and let $I = \langle x + 1 \rangle$. When w = 1, we have $\operatorname{in}_w(f) = 1$, and $\operatorname{in}_w(I) = \langle 1 \rangle$. When w = -1, $\operatorname{in}_w(f) = x$ and $\operatorname{in}_w(I) = \langle x \rangle = \langle 1 \rangle$. **Example:** Let $f = x + y + 1 \in \mathbb{k}[x^{\pm 1}, y^{\pm 1}]$, and let $I = \langle f \rangle$. For w = (1, 1), $\operatorname{in}_w(f) = 1$, and $\operatorname{in}_w(I) = \langle 1 \rangle$. For w = (1, 0), $\operatorname{in}_w(f) = y + 1$, and $\operatorname{in}_w(I) = y + 1$. If w = (1, -1) then $\operatorname{in}_w(f) = y$, and $\operatorname{in}_w(I) = \langle y \rangle = \langle 1 \rangle$.

The Gröbner fan does not exist in the same fashion, as we can see from this example that $\{w : in_w(I) = \langle 1 \rangle\}$ is not convex. However ignoring these cases gives a cone. The support of a polyhedral fan in \mathbb{R}^n is the set of those $w \in \mathbb{R}^n$ lying in some cone of the fan. It follows from the following proposition that the set of w with $in_w(I) \neq \langle 1 \rangle$ has the support of a polyhedral fan.

If $f = \sum_{i=1}^{N} c_u x^u \in \mathbb{k}[x_1, \dots, x_n]$, let $W = \max\{|u| : c_u \neq 0\}$, where $|u| = \sum_{i=1}^{n} u_i$. The homogenization, \tilde{f} of f is $\tilde{f} = \sum_{i=1}^{N} c_u x_0^{W-|u|} x^u \in \mathbb{k}[x_0, \dots, x_n]$.

Proposition 8. Let I be an ideal in $\mathbb{k}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Let $\overline{I} = I \cap \mathbb{k}[x_1, \ldots, x_n]$, and let $J \subset \mathbb{k}[x_0, \ldots, x_n] = \langle \tilde{f} : f \in \overline{I} \rangle$. Then

$$\operatorname{in}_w(J)|_{x_0=1} = \operatorname{in}_w(I).$$

Proof. Exercise.

Remark 9. The variety in \mathbb{P}^n of the ideal J from Proposition 8 is the *projective* closure of the variety of I in T^n . This is the Zariski closure in \mathbb{P}^n of the image of the variety of $I \subset T^n$ under the map $i: T^n \to \mathbb{P}^n$ given by $x \mapsto (1:x)$.

Corollary 10. Let $I \subset \mathbb{k}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ and let J be the ideal defined in Proposition 8. Then the support of the subfan of the Gröbner fan of J consisting of those cones σ for which $(\operatorname{in}_w(J) : x_0^{\infty}) \neq \langle 1 \rangle$ for $w \in \sigma$ is $\{w \in \mathbb{R}^n : \operatorname{in}_w(I) \neq \langle 1 \rangle$.

Proof. By Proposition 8, we have $in_w(I) \neq \langle 1 \rangle$ if and only if there is no power of x_0 in $in_w(J)$, and thus if and only if $(in_w(J) : x_0^\infty) \neq \langle 1 \rangle$.

Nonconstant coefficients. We now consider the case that $S = K[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Fix $w \in \mathbb{R}^n$, and let $f = \sum_{u \in \mathbb{Z}^n} c_u x_u \in S$. Let $W = \min\{\operatorname{val}(c_u) + w \cdot u : c_u \neq 0\}$. Then

$$\operatorname{in}_w(f) = \overline{t^{-W} \sum_{u \in \mathbb{Z}^n} c_u t^{w \cdot u} x^u} \in \mathbb{K}[x_1^{\pm 1}, \dots, x_n^{\pm 1}],$$

and

$$\operatorname{in}_w(I) = \langle \operatorname{in}_w(f) : f \in I \rangle.$$

Example: Let $f = (t + t^2)x + t^2y + t^4$, and w = (0,0). Then W = 1, and $\operatorname{in}_w(f) = \overline{(1+t)x} = x$. When w = (4,2), W = 4, and $\operatorname{in}_w(f) = y + 1$. When w = (2,1), W = 3, and $\operatorname{in}_w(f) = x + y$.

Definition 11. A polyhedron is the intersection of finitely many (affine) halfspaces. Unlike a polyhedral cones the boundary (affine) hyperplanes are not required to pass through the origin. An affine hyperplane H is supporting for a polyhedron P if $P \cap H \neq \emptyset$ and P lies on one side of H. A face of P is the intersection of P with a supporting hyperplane, or P itself. A *polyhedral complex* in \mathbb{R}^n is a collection of polyhedra in \mathbb{R}^n , the intersection of any two of which is a face of each.

As in the constant coefficient k case we can also consider initial ideal in the homogenized polynomial ring $K[x_0, \ldots, x_n]$. Instead of a Gröbner fan, though, there is now a *Gröbner complex*. Each $w \in \mathbb{R}^n$ determines a relatively open polyhedron in \mathbb{R}^n on which the initial ideal is constant. Throwing away those polyhedra for which the corresponding initial ideal contains a power of x_0 , we obtain the following theorem, whose proof we will omit.

Theorem 12. The set of $w \in \mathbb{R}^n$ for which $in_w(I) \neq \langle 1 \rangle$ is the support of a polyhedral complex.

Example: Let $f = tx^2 + 2xy + 3ty^2 + 4x + 5y + 6t \in \mathbb{C}\{\{t\}\}[x^{\pm 1}, y^{\pm 1}]$, and let $I = \langle f \rangle$ be the ideal generated by I. Then the set $\{w \in \mathbb{R}^2 : \langle \operatorname{in}_w(I) \neq \langle 1 \rangle\}$ is illustrated in Figure 5. The initial ideals corresponding to the labelled edges are as

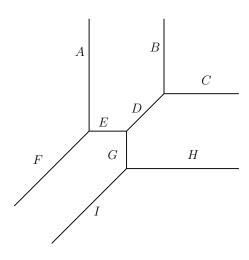


FIGURE 5.

listed in the following table.

Cone	Initial ideal
А	$\langle x^2 + 4x \rangle$
В	$\langle 4x+6\rangle$
С	$\langle 5y+6\rangle$
D	$\langle 4x + 5y \rangle$
Ε	$\langle 2xy + 4x \rangle$
\mathbf{F}	$\langle x^2 + 2xy \rangle$
G	$\langle 2xy + 5y \rangle$
Η	$\langle 3y^2 + 5y \rangle$
Ι	$\langle 2xy + 3y^2 \rangle$

References

- [Jen] Anders N. Jensen, *Gfan, a software system for Gröbner fans*. Available at http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html.
- [Mac] Diane and Thomas Rekha R. Maclagan, Computational Algebra and Combinatorics of Toric Ideals. Available at

http://www.warwick.ac.uk/staff/D.Maclagan/papers/indialectures.pdf.gz.

[Stu96] Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949 (97b:13034)