AARMS TROPICAL GEOMETRY - LECTURE 5

DIANE MACLAGAN

The goal for today is to discuss Gröbner bases in our contexts. From now on we will always have K being an algebraically closed field with a nontrivial valuation (such as $\mathbb{C}\{\{t\}\}$) with residue field \mathbb{k}. We will discuss Gröbner bases in three different contexts.

The homogeneous case. We first consider the case where there is an inclusion of \mathbb{k} into K with the image having valuation zero. This is the case for the Puiseux series, but not for all possible K. When an ideal has generators in $\mathbb{k} \subset K$, we say that the corresponding variety is defined over \mathbb{k}, and that we are in the constant coefficients case.

In this case, we first let $S=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$. Fix $w \in \mathbb{R}^{n}$. Given a polynomial $f=\sum_{u \in \mathbb{N}^{n}} c_{u} x^{u} \in S$, set $W=\min \left\{(0, w) \cdot u: c_{u} \neq 0\right\}$. Then

$$
\operatorname{in}_{w}(f)=\sum_{(0, w) \cdot u=W} c_{u} x^{u}
$$

If I is a homogeneous ideal, then we set

$$
\operatorname{in}_{w}(I)=\left\langle\mathrm{in}_{w}(f): f \in I\right\rangle .
$$

Example: Let $f=x_{0}^{2}+3 x_{0} x_{1}$. When $w=2, \operatorname{in}_{w}(f)=x_{0}^{2}$. When $w=0, \operatorname{in}_{w}(f)=$ $x_{0}^{2}+3 x_{0} x_{1}$. When $w=-3, \operatorname{in}_{w}(f)=3 x_{0} x_{1}$. If $I=\left\langle x_{0}^{2}+3 x_{0} x_{1}\right\rangle$, then $\mathrm{in}_{2}(I)=\left\langle x_{0}^{2}\right\rangle$. Example: $I=\left\langle x_{0} x_{2}-x_{1}^{2}, x_{0} x_{1}-x_{2}^{2}\right\rangle$. Take $w=(2,3)$. Then $\mathrm{in}_{w}\left(x_{0} x_{2}-x_{1}^{2}\right)=x_{0} x_{2}$, and $\operatorname{in}_{w}\left(x_{0} x_{1}-x_{2}^{2}\right)=x_{0} x_{1}$. However $\operatorname{in}_{w}(I) \neq\left\langle x_{0} x_{2}, x_{0} x_{1}\right\rangle$, since $x_{1}^{3}-x_{2}^{2} \in I$, and $\operatorname{in}_{w}\left(x_{1}^{3}-x_{2}^{3}\right)=x_{1}^{3}$. In this case $\operatorname{in}_{w}(I)=\left\langle x_{0} x_{2}, x_{0} x_{1}, x_{1}^{3}\right\rangle$.
Definition 1. A set $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for w if $\mathrm{in}_{w}(I)$ is generated by $\left\{\operatorname{in}_{w}\left(g_{1}\right), \ldots, \mathrm{in}_{w}\left(g_{s}\right)\right\}$.
Example: With I as above, and $w=(-1,-1), \operatorname{in}_{w}(I)=\left\langle x_{1}^{2}, x_{2}^{2}\right\rangle$. With $w=(0,0)$, $\operatorname{in}_{w}(I)=\left\langle x_{0} x_{2}-x_{1}^{2}, x_{0} x_{1}-x_{2}^{2}\right\rangle$. With $w=(1,2), \operatorname{in}_{w}\left(x_{0} x_{2}-x_{1}^{2}\right)=x_{0} x_{2}-x_{1}^{2}$, and $\mathrm{in}_{w}\left(x_{0} x_{1}-x_{2}^{2}\right)=x_{0} x_{1}$, and we have $\mathrm{in}_{w}(I)=\left\langle x_{0} x_{2}-x_{1}^{2}, x_{0} x_{1}\right\rangle$.

Definition 2. An ideal in S is monomial if it is generated by monomials. We say that w is generic with respect to I if $\mathrm{in}_{w}(I)$ is a monomial ideal.
Lemma 3. If w is generic then the monomials not in $\operatorname{in}_{w}(I)$ form $a \mathbb{k}$-basis for S / I.
We put an equivalence relation on \mathbb{R}^{n} by setting $w \sim w^{\prime}$ if $\mathrm{in}_{w}(I)=\mathrm{in}_{w^{\prime}}(I)$.
Example: With I as above, for $w=(-2,-3)$, we have $\operatorname{in}_{w}(I)=\left\langle x_{1}^{2}, x_{2}^{2}\right)$, so $(-1,-1) \sim(-2,-3)$.

Theorem 4. The set

$$
C[w]:=\left\{w^{\prime} \in \mathbb{R}^{n}: \operatorname{in}_{w}(I)=\operatorname{in}_{w^{\prime}}(I)\right\}
$$

Figure 1.

Figure 2. Polyhedral fans
is a relatively open polyhedral cone. This means that it can be described by equations and strict inequalities.

For a proof of this, see Stu96, Chapter 2], or Mac .
Example: Let I be as above, and $w=(-1,-1)$. Then

$$
C[w]=\left\{w^{\prime} \in \mathbb{R}^{2}: 2 w_{1}^{\prime}<w_{2}^{\prime}, 2 w_{1}^{\prime}<w_{2}^{\prime}\right\} .
$$

This is shown in Figure 1.
Definition 5. A polyhedral cone is the intersection of finitely many halfspaces with the corresponding hyperplanes passing through the origin. It is thus of the form

$$
C=\{x: A x \leq 0\}
$$

where A is a $d \times n$ matrix. A hyperplane H in \mathbb{R}^{n} is supporting for a cone C if C lies in one of the two halfspaces determined by H. A face of C is the intersection of C with a supporting hyperplane.

A fan is a collection of polyhedral cones, the intersection of any two of which is a face of each.

Theorem 6. For a fixed ideal I the collection $\left\{\overline{C[w]}: w \in \mathbb{R}^{n}\right\}$ is a polyhedral fan.
Definition 7. This fan is called the Gröbner fan of I.

Figure 3. Not a polyhedral fan

Example: Let $I=\left\langle x_{0} x_{1}-x_{2}^{2}, x_{0} x_{2}-x_{1}^{2}\right\rangle$. Then the Gröbner fan for I is shown in Figure 4, where the ideals corresponding to the cones are given in the following table.

Figure 4.

Cone	Initial ideal	Cones	Initial ideal
A	$\left\langle x_{0} x_{1}, x_{1}^{2}, x_{0}^{2} x_{2}\right\rangle$	a	$\left\langle x_{0} x_{1}, x_{0} x_{2}-x_{1}^{2}\right\rangle$
B	$\left\langle x_{0} x_{2}, x_{0} x_{1}, x_{2}^{3}\right\rangle$	b	$\left\langle x_{0} x_{2}, x_{0} x_{1}, x_{1}^{3}-x_{2}^{3}\right\rangle$
C	$\left\langle x_{0} x_{2}, x_{0} x_{1}, x_{1}^{3}\right\rangle$	c	$\left\langle x_{0} x_{2}, x_{0} x_{1}-x_{2}^{2}\right\rangle$
D	$\left\langle x_{0} x_{2}, x_{2}^{2}, x_{0}^{2} x_{1}\right\rangle$	d	$\left\langle x_{0} x_{2}, x_{2}^{2}, x_{0}^{2} x_{1}-x_{1}^{2} x_{2}\right\rangle$
E	$\left\langle x_{0} x_{2}, x_{2}^{2}, x_{2}^{2} x_{2}, x_{0}^{3} x_{1}\right\rangle$	e	$\left\langle x_{0} x_{2}, x_{2}^{2}, x_{1}^{2} x_{2}, x_{0}^{3} x_{1}-x_{1}^{4}\right\rangle$
F	$\left\langle x_{0} x_{2}, x_{2}^{2}, x_{1}^{2} x_{2}, x_{1}^{4}\right\rangle$	f	$\left\langle x_{0} x_{2}-x_{1}^{2}, x_{2}^{2}\right\rangle$
G	$\left\langle x_{1}^{2}, x_{2}^{2}\right\rangle$	g	$\left\langle x_{0} x_{1}-x_{2}^{2}, x_{1}^{2}\right\rangle$
H	$\left\langle x_{0} x_{1}, x_{1}^{2}, x_{1} x_{2}^{2}, x_{2}^{4}\right\rangle$	h	$\left\langle x_{0} x_{1}, x_{1}^{2}, x_{1} x_{2}^{2}, x_{0}^{3} x_{2}-x_{2}^{4}\right\rangle$
I	$\left\langle x_{0} x_{1}, x_{1}^{2}, x_{1} x_{2}^{2}, x_{0}^{3} x_{2}\right\rangle$	i	$\left\langle x_{0} x_{1}, x_{1}^{2}, x_{0}^{2} x_{2}-x_{1} x_{1}^{2}\right\rangle$

There is software, called gfan Jen], written by Anders Jensen, that will compute the Gröbner fan of an ideal.

The torus case. We now consider the case when $S=\mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Given a Laurent polynomial $f=\sum_{u \in \mathbb{Z}^{n}} c_{u} x^{u}$, and $w \in \mathbb{R}^{n}$, we set $W=\min \left\{w \cdot u: c_{u} \neq 0\right\}$, and then

$$
\mathrm{in}_{w}(f)=\sum_{w \cdot u=W} c_{u} x^{u}
$$

If I is an ideal in S, then the initial ideal is

$$
\operatorname{in}_{w}(I)=\left\langle\mathrm{in}_{w}(f): f \in I\right\rangle .
$$

We make the same caveats as before on the fact that the initial ideal is not necessarily generated by the initial terms of generators.
Example: Let $f=x+1 \in \mathbb{k}\left[x^{ \pm 1}\right]$, and let $I=\langle x+1\rangle$. When $w=1$, we have $\operatorname{in}_{w}(f)=1$, and $\operatorname{in}_{w}(I)=\langle 1\rangle$. When $w=-1, \operatorname{in}_{w}(f)=x$ and $\mathrm{in}_{w}(I)=\langle x\rangle=\langle 1\rangle$.
Example: Let $f=x+y+1 \in \mathbb{k}\left[x^{ \pm 1}, y^{ \pm 1}\right]$, and let $I=\langle f\rangle$. For $w=(1,1)$, $\operatorname{in}_{w}(f)=1$, and $\operatorname{in}_{w}(I)=\langle 1\rangle$. For $w=(1,0), \mathrm{in}_{w}(f)=y+1$, and $\mathrm{in}_{w}(I)=y+1$. If $w=(1,-1)$ then $\operatorname{in}_{w}(f)=y$, and $\operatorname{in}_{w}(I)=\langle y\rangle=\langle 1\rangle$.

The Gröbner fan does not exist in the same fashion, as we can see from this example that $\left\{w: \operatorname{in}_{w}(I)=\langle 1\rangle\right\}$ is not convex. However ignoring these cases gives a cone. The support of a polyhedral fan in \mathbb{R}^{n} is the set of those $w \in \mathbb{R}^{n}$ lying in some cone of the fan. It follows from the following proposition that the set of w with $\mathrm{in}_{w}(I) \neq\langle 1\rangle$ has the support of a polyhedral fan.

If $f=\sum c_{u} x^{u} \in \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, let $W=\max \left\{|u|: c_{u} \neq 0\right\}$, where $|u|=\sum_{i=1}^{n} u_{i}$. The homogenization, \tilde{f} of f is $\tilde{f}=\sum c_{u} x_{0}^{W-|u|} x^{u} \in \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$.

Proposition 8. Let I be an ideal in $\mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Let $\bar{I}=I \cap \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, and let $J \subset \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]=\langle\tilde{f}: f \in \bar{I}\rangle$. Then

$$
\left.\operatorname{in}_{w}(J)\right|_{x_{0}=1}=\operatorname{in}_{w}(I) .
$$

Proof. Exercise.
Remark 9. The variety in \mathbb{P}^{n} of the ideal J from Proposition 8 is the projective closure of the variety of I in T^{n}. This is the Zariski closure in \mathbb{P}^{n} of the image of the variety of $I \subset T^{n}$ under the map $i: T^{n} \rightarrow \mathbb{P}^{n}$ given by $x \mapsto(1: x)$.

Corollary 10. Let $I \subset \mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ and let J be the ideal defined in Proposition 8 . Then the support of the subfan of the Gröbner fan of J consisting of those cones σ for which $\left(\operatorname{in}_{w}(J): x_{0}^{\infty}\right) \neq\langle 1\rangle$ for $w \in \sigma$ is $\left\{w \in \mathbb{R}^{n}: \operatorname{in}_{w}(I) \neq\langle 1\rangle\right.$.

Proof. By Proposition 8, we have $\operatorname{in}_{w}(I) \neq\langle 1\rangle$ if and only if there is no power of x_{0} in $\mathrm{in}_{w}(J)$, and thus if and only if $\left(\mathrm{in}_{w}(J): x_{0}^{\infty}\right) \neq\langle 1\rangle$.

Nonconstant coefficients. We now consider the case that $S=K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Fix $w \in \mathbb{R}^{n}$, and let $f=\sum_{u \in \mathbb{Z}^{n}} c_{u} x_{u} \in S$. Let $W=\min \left\{\operatorname{val}\left(c_{u}\right)+w \cdot u: c_{u} \neq 0\right\}$. Then

$$
\operatorname{in}_{w}(f)=\overline{t^{-W} \sum_{u \in \mathbb{Z}^{n}} c_{u} t^{w \cdot u} x^{u}} \in \mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]
$$

and

$$
\operatorname{in}_{w}(I)=\left\langle\mathrm{in}_{w}(f): f \in I\right\rangle .
$$

Example: Let $f=\left(t+t^{2}\right) x+t^{2} y+t^{4}$, and $w=(0,0)$. Then $W=1$, and $\operatorname{in}_{w}(f)=\overline{(1+t) x}=x$. When $w=(4,2), W=4$, and $\operatorname{in}_{w}(f)=y+1$. When $w=(2,1), W=3$, and $\mathrm{in}_{w}(f)=x+y$.

Definition 11. A polyhedron is the intersection of finitely many (affine) halfspaces. Unlike a polyhedral cones the boundary (affine) hyperplanes are not required to pass through the origin. An affine hyperplane H is supporting for a polyhedron P if $P \cap H \neq \emptyset$ and P lies on one side of H. A face of P is the intersection of P with a supporting hyperplane, or P itself. A polyhedral complex in \mathbb{R}^{n} is a collection of polyhedra in \mathbb{R}^{n}, the intersection of any two of which is a face of each.

As in the constant coefficient \mathbb{k} case we can also consider initial ideal in the homogenized polynomial ring $K\left[x_{0}, \ldots, x_{n}\right]$. Instead of a Gröbner fan, though, there is now a Gröbner complex. Each $w \in \mathbb{R}^{n}$ determines a relatively open polyhedron in \mathbb{R}^{n} on which the initial ideal is constant. Throwing away those polyhedra for which the corresponding initial ideal contains a power of x_{0}, we obtain the following theorem, whose proof we will omit.

Theorem 12. The set of $w \in \mathbb{R}^{n}$ for which $\operatorname{in}_{w}(I) \neq\langle 1\rangle$ is the support of a polyhedral complex.

Example: Let $f=t x^{2}+2 x y+3 t y^{2}+4 x+5 y+6 t \in \mathbb{C}\{\{t\}\}\left[x^{ \pm 1}, y^{ \pm 1}\right]$, and let $I=\langle f\rangle$ be the ideal generated by I. Then the set $\left\{w \in \mathbb{R}^{2}:\left\langle\operatorname{in}_{w}(I) \neq\langle 1\rangle\right\}\right.$ is illustrated in Figure 5. The initial ideals corresponding to the labelled edges are as

Figure 5.

listed in the following table.

Cone	Initial ideal
A	$\left\langle x^{2}+4 x\right\rangle$
B	$\langle 4 x+6\rangle$
C	$\langle 5 y+6\rangle$
D	$\langle 4 x+5 y\rangle$
E	$\langle 2 x y+4 x\rangle$
F	$\left\langle x^{2}+2 x y\right\rangle$
G	$\langle 2 x y+5 y\rangle$
H	$\left\langle 3 y^{2}+5 y\right\rangle$
I	$\left\langle 2 x y+3 y^{2}\right\rangle$

References

[Jen] Anders N. Jensen, Gfan, a software system for Gröbner fans. Available at http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html.
[Mac] Diane and Thomas Rekha R. Maclagan, Computational Algebra and Combinatorics of Toric Ideals. Available at http://www.warwick.ac.uk/staff/D.Maclagan/papers/indialectures.pdf.gz.
[Stu96] Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949 (97b:13034)

