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Today we will discuss valuations and Puiseux series.
Let K be a field. We denote by K∗ the nonzero elements of K. A valuation on K

is a function val : K → R ∪∞ satisfying

(1) val(a) = ∞ if and only if a = 0,
(2) val(ab) = val(a) + val(b) and
(3) val(a + b) ≥ min{val(a), val(b)} for all a, b ∈ K∗.

We will always assume that 1 ∈ im(val). Since (λ val) : K → R is a valuation for
any valuation val and λ ∈ R>0, this is not a serious restriction.
Example: K = k(x), the ring of rational functions. We can write any function
f/g ∈ K as a Laurent series h =

∑
hix

i where hi = 0 for i � 0. Then val(f/g) =
min(i : hi 6= 0). If i is the lowest exponent occuring in f and j is the lowest exponent
occuring in g, then val(f/g) = i− j.
Example: K = Q, and valp(q) = j when q = pja/b, where p does not divide a or
b. For example val2(12/5) = 2, while val2(1/10) = −1. This the p-adic valuation.

Lemma 1. If val(a) 6= val(b) then val(a + b) = min(val(a), val(b)).

Proof. Without loss of generality we may assume that val(b) > val(a). Since 12 = 1,
we have val(1) = 0, and so (−1)2 = 1 implies val(−1) = 0 as well. Thus val(−b) =
val(b), so val(a) ≥ min(val(a + b), val(−b)) = min(val(a + b), val(b)), and so val(a) ≥
val(a + b). But val(a + b) ≥ min(val(a), val(b)) = val(a), and thus val(a + b) =
val(a). �

Given a valuation val we define the valuation ring

R = {a ∈ K : val(a) ≥ 0} ∪ {0}.
This is closed under addition and multiplication, since val(a), val(b) ≥ 0 implies
val(ab), val(a + b) ≥ 0. It has a unique maximal ideal

m = {a ∈ K : val(a) > 0} ∪ {0}.
To see that m is the unique maximal ideal, it suffices to note that if a ∈ R \m then
a is a unit in R. Indeed, if a ∈ R \m, then val(a) = 0, so val(a−1) = − val(a) = 0, so
a−1 ∈ R. The residue field is

k = R/m.

Example: If K = k((x)) is the quotient ring of k[[x]], then R = k[[x]], and m = k.
Example: In the case that K = Q and val is the p-adic valuation, we have
R = {pja/b : j ≥ 0} ∪ {0}. Exercise: Check that the residue field is isomorphic to
Z/pZ.
Example: Let Rn = k[[t1/n]], and let k((t1/n)) be its quotient field. Let K =⋃

n≥1 k((t1/n)), which we denote by k{{t}}. Note that K is closed under addition
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and multiplication, and is thus a field. The field K is the ring of Puiseux series. An
element of K has the form

∑
q∈Q aqt

q where {q : aq 6= 0} is bounded below and has
a common denominator.

The field k((t1/n)) has a valuation like that on the ring of rational functions. This
induces a valuation val : K → R ∪∞. If a =

∑
q∈Q aqt

q ∈ K, then val(a) = min{q :

aq 6= 0}.
Puiseux series are useful because they are algebraically closed, as we now prove.

Theorem 2. If k is an algebraically closed field of characteristic zero, then K =
k{{t}} is algebraically closed.

I learned the following proof from Thomas Markwig, and it is closely modelled on
the one he gives in his paper [Mar07] on a generalization of the Puiseux series.

Proof. We need to show that given a polynomial F =
∑n

i=0 cix
i ∈ S = K[x] there is

y ∈ K with F (y) =
∑n

i=0 ciy
i = 0. In principle the idea is to build y up as a Puiseux

series by successive powers of t.
We first note that we may assume the following properties of F :

(1) val(ci) ≥ 0 for all i,
(2) There is some j with val(cj) = 0,
(3) c0 6= 0, and
(4) val(c0) > 0.

To see this, note that if α = min{val(ci) : 0 ≤ i ≤ n} then multiplying F by t−α

does not change the existence of a root of F , which deals with the first two properties.
If c0 = 0 then y = 0 is a root so there is nothing to prove.

To make the last assumption, suppose that F satisfies the first three assumptions
but val(c0) = 0. If val(cn) > 0 then we can form G(x) = xnF (1/x) =

∑n
i=0 cn−ix

i,
which has the desired form, and if G(y′) = 0 then F (1/y′) = 0. If val(c0) = val(cn) =
0 then consider the polynomial f := F ∈ k[x] that is the image of F in K[x]/mK[x].
This which is not constant since val(cn) = 0. Since k is algebraically closed, we can
choose a root λ ∈ k of f . Then

F ′(x) := F (x + λ) =
n∑

i=0

(
n∑

j=i

cj

(
j

i

)
λj−i)xi

has constant term F ′(0) = F (λ) with positive valuation, and F ′ still satisfies the first
three properties. If y′ is a root of F ′, then y′ + λ is a root of F .

Set F0 = F . We will construct a sequence of polynomials Fi =
∑n

j=0 ci
jx

j. Suppose,
as we have shown we may assume for i = 0, that Fi satisfies conditions 1 to 4 above.
The Newton polygon of Fi is the convex hull of the points {(i, j) : there is k with k ≤
i, val(ck) ≤ j} ⊂ R2. There is an edge of the Newton polygon with negative slope
connecting the vertex (0, val(ci

0)) to a vertex (ki, val(ci
ki

)). Let

wi =
val(ci

0)− val(ci
ki

)

ki

.

Let fi be the image in k[x] of the polynomial t− val(ci
0)F (twix) ∈ K[x]. Note that

fi has degree ki, and has nonzero constant term. Since k is algebraically closed
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we can find a root λi of fi. Let ri+1 be the multiplicity of λi as a root of fi, so
fi = (x− λi)

ri+1gi(x), where gi(λi) 6= 0. Set

Fi+1(x) = t− val(ci
0)Fi(t

wi(x + λi)) =
n∑

j=0

ci+1
j xj.

Note that the coefficients ci+1
j are given by the formula

(1) ci+1
j =

n∑
l=j

ci
lt

lwi−val(ci
0)

(
l

j

)
λl−j

i .

The image of this in k is

ci+1
j =

1

j!

∂jfi

∂xj
(λi).

For 0 ≤ j < ri+1 this is zero, since λi is a root of fi of multiplicity ri+1. For j = ri+1

this is nonzero. Thus val(ci+1
j ) > 0 for 0 ≤ i ≤ ri+1, and val(ci+1

j ) = 0 for j = ri+1.
Note that we are using the fact that char(k) = 0 here.

If ci+1
0 = 0 then x = 0 is a root of Fi+1, so λit

wi is root of Fi and so by recursing

we get
∑i

j=0 λit
w0+···+wj is a root of F0 = F , and we are done. Thus we may assume

that for each i we have ci+1
0 6= 0, so Fi+1 satisfies conditions 1 to 4 above, so we can

continue.
The observation above on val(ci+1

j ) implies that ki+1 ≤ ri+1 ≤ ki. Since n is finite,
the value of ki can only drop a finite number of times, so there is 1 ≤ k ≤ n and
m for which for i ≥ m we have ki = k. This means that ri = k for all i > m, so
fi = µi(x− λi)

k for all i > m, and some µi ∈ k.
Let Ni be such that ci

j ∈ k((t1/Ni)) for 0 ≤ j ≤ n. We can take Ni+1 to be the

least common denominator of Ni and wi by Equation 1. Let yi =
∑i

j=0 λit
w0+···+wj ∈

k((t1/Ni)). We now show that we can take Ni+1 = Ni for i > m. In that case, we
have wi+1 = val(ci

0)/k, so it suffices to show that for i > m we have val(ci
0) ∈ k/NiZ.

This follows from the fact that fi is a pure power, so val(ci
j) = (k − j)/k val(cj

0) for

1 ≤ j ≤ k, and in particular val(ci
k−1) = 1/k val(cj

0) ∈ 1/NiZ. Thus there is an N for

which yi ∈ k((t1/N)) for all i, and so the limit

y =
∑
j≥0

λjt
w0+···+wj ∈ k((t1/N)).

It remains to show that that y is a root of F . To see this, consider zi =
∑

j≥i λjt
wi+···+wj ,

and note that y = yi−1 + tw0+···+wi−1zi for i > 0, so

Fi(zi) = tval(c
i
0)Fi+1(zi+1).

Since z0 = y, it follows that

val(F (y)) =
i∑

j=0

val(cj
0) + val(Fi+1(zi+1)) >

i∑
j=0

val(cj
0)

for all i > 0. Since val(cj
0) ∈ 1/NZ, we conclude that val(F (y)) = ∞, so F (y) = 0 as

required. �
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If k has characteristic p > 0 then k{{t}} is not algebraically closed. This is because
the Artin-Schreier polynomial xp − x− t−1 has p “roots” of the form

(t−1/p + t−1/p2

+ t−1/p3

+ . . . ) + c

for c in the prime field Fp of k. These are not Puiseux series, since there is no
common denominator of the exponents, but do live in the field of generalized power
series which we now define.

Fix an algebraically closed field k, and a divisible group G ⊂ R. The Mal’cev-
Neumann ring K = k((G)) of generalized power series is the set of formal sums α =∑

g∈G αgt
g in an indeterminant t with the property that supp(α) := {g ∈ G : αg 6= 0}

is a well-ordered set.
If β =

∑
g∈G βgt

g then we set α+β =
∑

g∈G(αg+βg)t
g, and αβ =

∑
h∈G(

∑
g+g′=h αgβg′)t

h.

Then supp(α + β) ⊆ supp(α) ∪ supp(β), so is well-ordered, and thus α + β is well-
defined. For αβ, define supp(α) + supp(β) to be the set {g + g′ : g ∈ supp(α), g′ ∈
supp(β)}. Then supp(α) supp(β) is well-ordered, and the set {(g, g′) : g + g′ = h} is
finite for all h ∈ G, so multiplication is well-defined.

The field of generalized power series is the most general field with valuation we
need to consider in the following sense.

Theorem 3. Fix a divisible group G and a residue field k. Let K be a field with a
valuation val with value group G such that val is trivial on the prime field (FP or Q)
of K, and K has residue field k. Then K is isomorphic to a subfield of k((tG)).

One reference for these topics is [Poo93].
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