AARMS TROPICAL GEOMETRY - LECTURE 4

DIANE MACLAGAN

Today we will discuss valuations and Puiseux series.
Let K be a field. We denote by K^{*} the nonzero elements of K. A valuation on K is a function val: $K \rightarrow \mathbb{R} \cup \infty$ satisfying
(1) $\operatorname{val}(a)=\infty$ if and only if $a=0$,
(2) $\operatorname{val}(a b)=\operatorname{val}(a)+\operatorname{val}(b)$ and
(3) $\operatorname{val}(a+b) \geq \min \{\operatorname{val}(a), \operatorname{val}(b)\}$ for all $a, b \in K^{*}$.

We will always assume that $1 \in \operatorname{im}($ val $)$. Since (λ val) : $K \rightarrow \mathbb{R}$ is a valuation for any valuation val and $\lambda \in \mathbb{R}_{>0}$, this is not a serious restriction.
Example: $K=\mathbb{k}(x)$, the ring of rational functions. We can write any function $f / g \in K$ as a Laurent series $h=\sum h_{i} x^{i}$ where $h_{i}=0$ for $i \ll 0$. Then $\operatorname{val}(f / g)=$ $\min \left(i: h_{i} \neq 0\right)$. If i is the lowest exponent occuring in f and j is the lowest exponent occuring in g, then $\operatorname{val}(f / g)=i-j$.
Example: $K=\mathbb{Q}$, and $\operatorname{val}_{p}(q)=j$ when $q=p^{j} a / b$, where p does not divide a or b. For example $\operatorname{val}_{2}(12 / 5)=2$, while $\operatorname{val}_{2}(1 / 10)=-1$. This the p-adic valuation.
Lemma 1. If $\operatorname{val}(a) \neq \operatorname{val}(b)$ then $\operatorname{val}(a+b)=\min (\operatorname{val}(a), \operatorname{val}(b))$.
Proof. Without loss of generality we may assume that $\operatorname{val}(b)>\operatorname{val}(a)$. Since $1^{2}=1$, we have $\operatorname{val}(1)=0$, and so $(-1)^{2}=1$ implies $\operatorname{val}(-1)=0$ as well. Thus $\operatorname{val}(-b)=$ $\operatorname{val}(b)$, so $\operatorname{val}(a) \geq \min (\operatorname{val}(a+b), \operatorname{val}(-b))=\min (\operatorname{val}(a+b), \operatorname{val}(b))$, and so $\operatorname{val}(a) \geq$ $\operatorname{val}(a+b)$. But $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))=\operatorname{val}(a)$, and thus $\operatorname{val}(a+b)=$ $\operatorname{val}(a)$.

Given a valuation val we define the valuation ring

$$
R=\{a \in K: \operatorname{val}(a) \geq 0\} \cup\{0\}
$$

This is closed under addition and multiplication, since $\operatorname{val}(a), \operatorname{val}(b) \geq 0$ implies $\operatorname{val}(a b), \operatorname{val}(a+b) \geq 0$. It has a unique maximal ideal

$$
\mathfrak{m}=\{a \in K: \operatorname{val}(a)>0\} \cup\{0\} .
$$

To see that \mathfrak{m} is the unique maximal ideal, it suffices to note that if $a \in R \backslash \mathfrak{m}$ then a is a unit in R. Indeed, if $a \in R \backslash \mathfrak{m}$, then $\operatorname{val}(a)=0$, so $\operatorname{val}\left(a^{-1}\right)=-\operatorname{val}(a)=0$, so $a^{-1} \in R$. The residue field is

$$
\mathbb{k}=R / \mathfrak{m}
$$

Example: If $K=\mathbb{k}((x))$ is the quotient ring of $\mathbb{k}[[x]]$, then $R=\mathbb{k}[[x]]$, and $\mathfrak{m}=\mathbb{k}$. Example: In the case that $K=\mathbb{Q}$ and val is the p-adic valuation, we have $R=\left\{p^{j} a / b: j \geq 0\right\} \cup\{0\}$. Exercise: Check that the residue field is isomorphic to $\mathbb{Z} / p \mathbb{Z}$.
Example: Let $R_{n}=\mathbb{k}\left[\left[t^{1 / n}\right]\right]$, and let $\mathbb{k}\left(\left(t^{1 / n}\right)\right)$ be its quotient field. Let $K=$ $\bigcup_{n \geq 1} \mathbb{k}\left(\left(t^{1 / n}\right)\right)$, which we denote by $\mathbb{k}\{\{t\}\}$. Note that K is closed under addition
and multiplication, and is thus a field. The field K is the ring of Puiseux series. An element of K has the form $\sum_{q \in \mathbb{Q}} a_{q} t^{q}$ where $\left\{q: a_{q} \neq 0\right\}$ is bounded below and has a common denominator.

The field $\mathbb{k}\left(\left(t^{1 / n}\right)\right)$ has a valuation like that on the ring of rational functions. This induces a valuation val : $K \rightarrow \mathbb{R} \cup \infty$. If $a=\sum_{q \in \mathbb{Q}} a_{q} t^{q} \in K$, then $\operatorname{val}(a)=\min \{q$: $\left.a_{q} \neq 0\right\}$.

Puiseux series are useful because they are algebraically closed, as we now prove.
Theorem 2. If \mathbb{k} is an algebraically closed field of characteristic zero, then $K=$ $\mathbb{k}\{\{t\}\}$ is algebraically closed.

I learned the following proof from Thomas Markwig, and it is closely modelled on the one he gives in his paper Mar07 on a generalization of the Puiseux series.

Proof. We need to show that given a polynomial $F=\sum_{i=0}^{n} c_{i} x^{i} \in S=K[x]$ there is $y \in K$ with $F(y)=\sum_{i=0}^{n} c_{i} y^{i}=0$. In principle the idea is to build y up as a Puiseux series by successive powers of t.

We first note that we may assume the following properties of F :
(1) $\operatorname{val}\left(c_{i}\right) \geq 0$ for all i,
(2) There is some j with $\operatorname{val}\left(c_{j}\right)=0$,
(3) $c_{0} \neq 0$, and
(4) $\operatorname{val}\left(c_{0}\right)>0$.

To see this, note that if $\alpha=\min \left\{\operatorname{val}\left(c_{i}\right): 0 \leq i \leq n\right\}$ then multiplying F by $t^{-\alpha}$ does not change the existence of a root of F, which deals with the first two properties. If $c_{0}=0$ then $y=0$ is a root so there is nothing to prove.

To make the last assumption, suppose that F satisfies the first three assumptions but $\operatorname{val}\left(c_{0}\right)=0$. If $\operatorname{val}\left(c_{n}\right)>0$ then we can form $G(x)=x^{n} F(1 / x)=\sum_{i=0}^{n} c_{n-i} x^{i}$, which has the desired form, and if $G\left(y^{\prime}\right)=0$ then $F\left(1 / y^{\prime}\right)=0$. If $\operatorname{val}\left(c_{0}\right)=\operatorname{val}\left(c_{n}\right)=$ 0 then consider the polynomial $f:=\bar{F} \in \mathbb{k}[x]$ that is the image of F in $K[x] / \mathfrak{m} K[x]$. This which is not constant since $\operatorname{val}\left(c_{n}\right)=0$. Since \mathbb{k} is algebraically closed, we can choose a root $\lambda \in \mathbb{k}$ of f. Then

$$
F^{\prime}(x):=F(x+\lambda)=\sum_{i=0}^{n}\left(\sum_{j=i}^{n} c_{j}\binom{j}{i} \lambda^{j-i}\right) x^{i}
$$

has constant term $F^{\prime}(0)=F(\lambda)$ with positive valuation, and F^{\prime} still satisfies the first three properties. If y^{\prime} is a root of F^{\prime}, then $y^{\prime}+\lambda$ is a root of F.

Set $F_{0}=F$. We will construct a sequence of polynomials $F_{i}=\sum_{j=0}^{n} c_{j}^{i} x^{j}$. Suppose, as we have shown we may assume for $i=0$, that F_{i} satisfies conditions 1 to 4 above. The Newton polygon of F_{i} is the convex hull of the points $\{(i, j)$: there is k with $k \leq$ $\left.i, \operatorname{val}\left(c_{k}\right) \leq j\right\} \subset \mathbb{R}^{2}$. There is an edge of the Newton polygon with negative slope connecting the vertex $\left(0, \operatorname{val}\left(c_{0}^{i}\right)\right)$ to a vertex $\left(k_{i}, \operatorname{val}\left(c_{k_{i}}^{i}\right)\right)$. Let

$$
w_{i}=\frac{\operatorname{val}\left(c_{0}^{i}\right)-\operatorname{val}\left(c_{k_{i}}^{i}\right)}{k_{i}}
$$

Let f_{i} be the image in $\mathbb{k}[x]$ of the polynomial $t^{-\operatorname{val}\left(c_{0}^{i}\right)} F\left(t^{w_{i}} x\right) \in K[x]$. Note that f_{i} has degree k_{i}, and has nonzero constant term. Since \mathbb{k} is algebraically closed
we can find a root λ_{i} of f_{i}. Let r_{i+1} be the multiplicity of λ_{i} as a root of f_{i}, so $f_{i}=\left(x-\lambda_{i}\right)^{r_{i+1}} g_{i}(x)$, where $g_{i}\left(\lambda_{i}\right) \neq 0$. Set

$$
F_{i+1}(x)=t^{-\operatorname{val}\left(c_{0}^{i}\right)} F_{i}\left(t^{w_{i}}\left(x+\lambda_{i}\right)\right)=\sum_{j=0}^{n} c_{j}^{i+1} x^{j}
$$

Note that the coefficients c_{j}^{i+1} are given by the formula

$$
\begin{equation*}
c_{j}^{i+1}=\sum_{l=j}^{n} c_{l}^{i} t^{l w_{i}-\operatorname{val}\left(c_{0}^{i}\right)}\binom{l}{j} \lambda_{i}^{l-j} \tag{1}
\end{equation*}
$$

The image of this in \mathbb{k} is

$$
\overline{c_{j}^{i+1}}=\frac{1}{j!} \frac{\partial^{j} f_{i}}{\partial x^{j}}\left(\lambda_{i}\right) .
$$

For $0 \leq j<r_{i+1}$ this is zero, since λ_{i} is a root of f_{i} of multiplicity r_{i+1}. For $j=r_{i+1}$ this is nonzero. Thus val $\left(c_{j}^{i+1}\right)>0$ for $0 \leq i \leq r_{i+1}$, and $\operatorname{val}\left(c_{j}^{i+1}\right)=0$ for $j=r_{i+1}$. Note that we are using the fact that $\operatorname{char}(\mathbb{k})=0$ here.

If $c_{0}^{i+1}=0$ then $x=0$ is a root of F_{i+1}, so $\lambda_{i} t^{w_{i}}$ is root of F_{i} and so by recursing we get $\sum_{j=0}^{i} \lambda_{i} t^{w_{0}+\cdots+w_{j}}$ is a root of $F_{0}=F$, and we are done. Thus we may assume that for each i we have $c_{0}^{i+1} \neq 0$, so F_{i+1} satisfies conditions 1 to 4 above, so we can continue.

The observation above on $\operatorname{val}\left(c_{j}^{i+1}\right)$ implies that $k_{i+1} \leq r_{i+1} \leq k_{i}$. Since n is finite, the value of k_{i} can only drop a finite number of times, so there is $1 \leq k \leq n$ and m for which for $i \geq m$ we have $k_{i}=k$. This means that $r_{i}=k$ for all $i>m$, so $f_{i}=\mu_{i}\left(x-\lambda_{i}\right)^{k}$ for all $i>m$, and some $\mu_{i} \in \mathbb{k}$.

Let N_{i} be such that $c_{j}^{i} \in \mathbb{k}\left(\left(t^{1 / N_{i}}\right)\right)$ for $0 \leq j \leq n$. We can take N_{i+1} to be the least common denominator of N_{i} and w_{i} by Equation 1. Let $y_{i}=\sum_{j=0}^{i} \lambda_{i} t^{w_{0}+\cdots+w_{j}} \in$ $\mathbb{k}\left(\left(t^{1 / N_{i}}\right)\right)$. We now show that we can take $N_{i+1}=N_{i}$ for $i>m$. In that case, we have $w_{i+1}=\operatorname{val}\left(c_{0}^{i}\right) / k$, so it suffices to show that for $i>m$ we have $\operatorname{val}\left(c_{0}^{i}\right) \in k / N_{i} \mathbb{Z}$. This follows from the fact that f_{i} is a pure power, so $\operatorname{val}\left(c_{j}^{i}\right)=(k-j) / k \operatorname{val}\left(c_{0}^{j}\right)$ for $1 \leq j \leq k$, and in particular $\operatorname{val}\left(c_{k-1}^{i}\right)=1 / k \operatorname{val}\left(c_{0}^{j}\right) \in 1 / N_{i} \mathbb{Z}$. Thus there is an N for which $y_{i} \in \mathbb{k}\left(\left(t^{1 / N}\right)\right)$ for all i, and so the limit

$$
y=\sum_{j \geq 0} \lambda_{j} t^{w_{0}+\cdots+w_{j}} \in \mathbb{k}\left(\left(t^{1 / N}\right)\right) .
$$

It remains to show that that y is a root of F. To see this, consider $z_{i}=\sum_{j \geq i} \lambda_{j} t^{w_{i}+\cdots+w_{j}}$, and note that $y=y_{i-1}+t^{w_{0}+\cdots+w_{i-1}} z_{i}$ for $i>0$, so

$$
F_{i}\left(z_{i}\right)=t^{\operatorname{val}\left(c_{0}^{i}\right)} F_{i+1}\left(z_{i+1}\right)
$$

Since $z_{0}=y$, it follows that

$$
\operatorname{val}(F(y))=\sum_{j=0}^{i} \operatorname{val}\left(c_{0}^{j}\right)+\operatorname{val}\left(F_{i+1}\left(z_{i+1}\right)\right)>\sum_{j=0}^{i} \operatorname{val}\left(c_{0}^{j}\right)
$$

for all $i>0$. Since $\operatorname{val}\left(c_{0}^{j}\right) \in 1 / N \mathbb{Z}$, we conclude that $\operatorname{val}(F(y))=\infty$, so $F(y)=0$ as required.

If \mathbb{k} has characteristic $p>0$ then $\mathbb{k}\{\{t\}\}$ is not algebraically closed. This is because the Artin-Schreier polynomial $x^{p}-x-t^{-1}$ has p "roots" of the form

$$
\left(t^{-1 / p}+t^{-1 / p^{2}}+t^{-1 / p^{3}}+\ldots\right)+c
$$

for c in the prime field \mathbb{F}_{p} of \mathbb{k}. These are not Puiseux series, since there is no common denominator of the exponents, but do live in the field of generalized power series which we now define.

Fix an algebraically closed field \mathbb{k}, and a divisible group $G \subset \mathbb{R}$. The Mal'cevNeumann ring $K=\mathbb{k}((G))$ of generalized power series is the set of formal sums $\alpha=$ $\sum_{g \in G} \alpha_{g} t^{g}$ in an indeterminant t with the property that $\operatorname{supp}(\alpha):=\left\{g \in G: \alpha_{g} \neq 0\right\}$ is a well-ordered set.

If $\beta=\sum_{g \in G} \beta_{g} t^{g}$ then we set $\alpha+\beta=\sum_{g \in G}\left(\alpha_{g}+\beta_{g}\right) t^{g}$, and $\alpha \beta=\sum_{h \in G}\left(\sum_{g+g^{\prime}=h} \alpha_{g} \beta_{g^{\prime}}\right) t^{h}$. Then $\operatorname{supp}(\alpha+\beta) \subseteq \operatorname{supp}(\alpha) \cup \operatorname{supp}(\beta)$, so is well-ordered, and thus $\alpha+\beta$ is welldefined. For $\alpha \beta$, define $\operatorname{supp}(\alpha)+\operatorname{supp}(\beta)$ to be the set $\left\{g+g^{\prime}: g \in \operatorname{supp}(\alpha), g^{\prime} \in\right.$ $\operatorname{supp}(\beta)\}$. Then $\operatorname{supp}(\alpha) \operatorname{supp}(\beta)$ is well-ordered, and the set $\left\{\left(g, g^{\prime}\right): g+g^{\prime}=h\right\}$ is finite for all $h \in G$, so multiplication is well-defined.

The field of generalized power series is the most general field with valuation we need to consider in the following sense.

Theorem 3. Fix a divisible group G and a residue field \mathbb{k}. Let K be a field with a valuation val with value group G such that val is trivial on the prime field $\left(\mathbb{F}_{P}\right.$ or $\left.\mathbb{Q}\right)$ of K, and K has residue field \mathbb{k}. Then K is isomorphic to a subfield of $\mathbb{k}\left(\left(t^{G}\right)\right)$.

One reference for these topics is Poo93.

References

[Mar07] Thomas Markwig, A field of generalized Puiseux series for tropical geometry, 2007. arXiv:0709.3784.
[Poo93] Bjorn Poonen, Maximally complete fields, Enseign. Math. (2) 39 (1993), no. 1-2, 87-106. MR 1225257 (94h:12005)

