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The goal of today is to introduce affine and projective varieties. We adopt the
simplistic motto that “Algebraic geometry is the study of solutions of polynomial
equations”. We are interested in the geometry of these solution spaces.

For example, consider the three equations x2+y2−1 = 0, xy = 0, and x2+y2 = −1.
The first of these describes a circle of radius one, while the second is the union of
two lines. The third has no solutions over the real numbers, but has solutions if work
over the complex numbers (or at least an algebraically closed field), as we always
will.

Definition 1. Let k be an algebraically closed field (such as C). Then affine space
is

An = {(a1, . . . , an) : ai ∈ k} = kn.

Philosophically An should be thought of as kn without a distinguished origin.

Definition 2. Let S = k[x1, . . . , xn] be the polynomial ring in n variables with
coefficients in k. Given f1, . . . , fs ∈ S the (affine) variety defined by the fi is

V (f1, . . . , fs) = {(a1, . . . , an) ∈ An : fi(a1, . . . , an) = 0 for 1 ≤ i ≤ s}.
Example: V (x + y − 1) is the line y = x− 1.
Example: V (x2−y, x3−z, y3−z2) = {(t, t2, t3) : t ∈ C)}. This is the affine “twisted
cubic” curve.
Note: V (f1, f2) = V (f1 + f2, f1 − f2) = V (f1, f2, f1 + f2, xf1 + y2f2).

Recall that an ideal I ⊆ S is a set closed under addition and multiplication by
elements of S. The ideal I generated by f1, . . . , fs ∈ S is

I = 〈f1, . . . , fs〉 = {
s∑

i=1

gifi : gi ∈ S}.

Lemma 3. The variety V (f1, . . . , fs) only depends on the ideal 〈f1, . . . , fs〉, so if
〈f1, . . . , fs〉 = 〈g1, . . . , gr〉 then V (f1, . . . , fs) = V (g1, . . . , gr).

Thus we will talk about varieties as defined by ideals. Note that if the ideal is
principal (generated by one element) then we call the variety a hypersurface. All the
examples we saw yesterday were hypersurfaces.

Operations on varieties (The Ideal/Variety dictionary).

(1) V (I) ∩ V (J) = V (I + J). Here I + J = {f + g : f ∈ I, g ∈ J}. If I =
〈f1, . . . , fs〉, J = 〈g1, . . . , gr〉, then I + J = 〈f1, . . . , fs, g1, . . . , gr〉.

(2) V (I) ∪ V (J) = V (I ∩ J) = V (IJ), where IJ = {fg : f ∈ I, g ∈ J}. If
I = 〈f1, . . . , fs〉, J = 〈g1, . . . , gr〉 then IJ = 〈figj : 1 ≤ i ≤ s, 1 ≤ j ≤ r〉. A
description of I ∩ J in terms of the fi and gj is not as simple (though there
are algorithms to compute it).
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Warning: We see here that we can have V (I) = V (J) if I 6= J (for example
IJ 6= I ∩ J in general). For example,

V ((x− y)2) = V (x− y) = {(a, a) : a ∈ k}.
Solution: Hilbert’s Nullstellensatz.

Theorem 4. Let k be an algebraically closed field. Then V (I) = V (J) if and only if√
I =

√
J , where √

I = {f ∈ S : f r ∈ I for some r}.

For a proof, see any book on commutative algebra (for example, [Eis95], or [CLO07]).

Example: If I = 〈x2〉, then
√

I = 〈x〉.
A subvariety of a variety V (I) is a variety V (J) with V (J) ⊂ V (I). Note that if

V (J) is a subvariety of V (I) then
√

I ⊆
√

J .
We place a topology on An by setting the closed sets to be {V (I) : I is an ideal of S}.

This is the Zariski topology. To check that ∅ and An are closed, note that ∅ = V (1),
and An = V (0). Exercise: Check that the finite union of closed sets and the arbi-
trary intersection of closed sets are closed. We denote by U the closure in the Zariski
topology of a set U . This is the smallest set of the form V (I) for some I that contains
U .
Another operation on varieties

(3) V (I) \ V (J) = V (I : J∞), where

I : J∞) = {f ∈ S : for all g ∈ J there exists N > 0 with fgN ∈ I}
is the saturation of the ideal I by the ideal J .

Important (for us) example: Let J = 〈
∏n

i=1 xi〉. Then V (J) = V (
∏n

i=1 xi) =
∪n

i=1V (xi). For example, when n = 2, so S = C[x1, x2], then J = 〈x1x2〉, and V (J)
is the union of the two coordinate axes. The complement An \ V (J) = T n = (C∗)n,

and for I ∈ S, V (I) \ V (J) = V (I) ∩ T n.
Example: I = 〈x2

1+3x1x2〉, J = 〈x1x2〉. Then (I : J∞) = {f ∈ S : ∃N such that fxN
1 xN

2 ∈
I〉 = 〈x1 + 3x2〉.

Definition 5. A variety X is irreducible if it cannot be written as the union of two
proper subvarieties. This is a topological notion.

Proposition 6. Let X ⊂ An be a variety. Then X can be written uniquely (up to or-
der) as an irredundant union of irreducible varieties. These are called the irreducible
components of X.

Proof. We first show that such a decomposition exists. If X is irreducible then we
are done. Otherwise we can write X = X1∪X2 where the Xi are proper subvarieties.
Given a variety Y we write I(Y ) for the radical ideal defining Y . We must have
I(X) ( I(Xi) for i = 1, 2. Suppose now that we have a decomposition I = ∪s

i=1X
s
i .

If all of the Xi are irreducible, we are done. Otherwise there is some Xj that can be
written in the form Xj = X ′

j ∪X ′′
j where X ′

j, X
′′
j are proper subvarieties of Xj, so we

replace Xj by X ′
j and X ′′

j in the decomposition and renumber to have Xs+1
1 , . . . , Xs+1

s+1 .

In this fashion we can get a decreasing sequence X1
i1

) X2
i2

) X3
i3

) . . . s with
corresponding increasing sequence I(X1

i1
) ( I(X2

i2
) ( I(X3

i3
) ( . . . . Since S is
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Noetherian this sequence must terminate at some stage s, at which point each Xs
i is

irreducible, and X = Xs
1 ∪ · · · ∪Xs

s is an irreducible decomposition.
Now suppose that X = X1 ∪ · · · ∪Xs = Y1 ∪ . . . Yr are two irredundant irreducible

decompositions of X. Since Y1 ⊂ X, ∪s
i=1(Y1 ∩ Xi) = Y1, so since Y1 is irreducible

there must be 1 ≤ ji ≤ s with Y1 ⊂ Xji
. Similarly for all other Yk there is jk with

Yk ⊂ Xjk
. Reversing the roles of Xi and Yi, we also get for each 1 ≤ i ≤ s there is li

with Xi ⊆ Yli . But this means that Yi ⊆ Xji
⊆ Yk for k = lji

, so we must have k = i,
so for each 1 ≤ i ≤ r there is k with Xk = Yi. Since the decomposition in the Xi is
irredundant, the Xi must equal to the Yj up to order. �

Example: Let I = 〈x2
1 + 3x1x2〉. Then I = 〈x1〉 ∩ 〈x1 + 3x2〉, so V (I) = V (x1) ∪

V (x1 + 3x2). The varieties V (x1), V (x1 + 3x2) are both irreducible, so these are the
irreducible components. The saturation of I by J = 〈x1x2〉 removes the component
V (x1) that does not intersect the torus.

Definition 7. The coordinate ring of X is S/I(X). This is the ring of polynomial
functions on X.

Projective Varieties.

Definition 8. Projective space Pn = (Cn+1 \ 0)/ ∼ where v ∼ λv for all λ 6= 0.
The points of Pn are the equivalence classes of lines through the origin 0. We write
[x0 : x1 : · · · : xn] for the equivalence class of x = (x0, x1, . . . , xn) ∈ Cn+1. A line in
Pn is the equivalence class of a two-dimensional subspace in Cn+1.

We can think of Pn as An with some points “at infinity” added. For example, there
is a bijection between An and the points of Pn of the form [1 : x1 : · · · : xn]. The
“points at infinity” are then those with first coordinate 0.
Example: P2 = (C3 \ (0, 0, 0))/ ∼. Then P3 = {[1 : x1 : x2] : (x1, x2) ∈ A2} ∪ {[0 :
x1 : x2] : x1, x2 ∈ C2} = {[1 : x1 : x2] : (x1, x2) ∈ A2} ∪ {[0 : 1 : x2] : x2 ∈ C} ∪ {[0 :
0 : 1]}. So we see that the points at infinity are a copy of P1.
Note: Polynomials don’t make sense as functions on Pn. For example, [1 : 2 : 3] =
[2 : 4 : 6] ∈ P2, but the function x1 + x2 has different values (5 or 10) on these two
points. However if f ∈ S is homogeneous, then {x ∈ Pn : f(x) = 0} is well-defined.
This is because if f(x) = 0, then f(λx) = 0 for all λ 6= 0, since if f is homogeneous
of degree k, then f(λx) = λkf(x).

We call an ideal I ⊂ k[x0, . . . , xn] homogeneous if it has a homogeneous generating
set.

Definition 9. Let I be a homogeneous ideal in S = k[x0, . . . , xn]. Then the variety
of I is

V (I) = {[x] ∈ Pn : f(x) = 0 ∀[x] ∈ Pn}.

Example: V (x0 + x1 + x2) = {[1 : t : −1− t] : t ∈ C} ∪ {[0 : 1 : −1]}.
Example: V (x0, x1, x2) = ∅.

The same rules apply for varieties in Pn as for An:

(1) V (I) ∩ V (J) = V (I + J);
(2) V (I) ∪ V (J) = V (I ∩ J) = V (IJ);

(3) V (I) \ V (J) = V (I : J∞).
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As in the affine case, there is not a bijection between homogeneous ideals and
projective varieties. Let m = 〈x0, . . . , xn〉. We call m the “irrelevant ideal”, as it is
the largest ideal not corresponding to a nonempty subvariety of Pn.

Lemma 10. Let V (I), V (J) be subvarieties of Pn. Then V (I) = V (J) 6= ∅ if and
only if √

I =
√

J

. Also, V (I) = ∅ if and only if I = 〈1〉 or
√

I = m.

Proof. We first consider the case V (I) 6= ∅. Let Ṽ (I), Ṽ (J) denote the subvarieties

of An+1 defined by I and J . Note that if x ∈ Ṽ (I) then λx ∈ Ṽ (J) for all λ 6= 0 (and

similarly for V (J)). Thus V (I) = V (J) if and only if ˜(V (J)) \ {0)} = ˜(V (J)) \ {0)}.
Now if f ∈ S satisfies f(λx) = 0 for all x ∈ Ṽ (I) \ 0 then f(0) = 0, so Ṽ (I) \ 0 =

Ṽ (I). Thus Ṽ (I) \ 0 = Ṽ (J) \ 0 if and only if
√

I =
√

J by the Nullstellensatz.

Also V (I) = ∅ if and only if Ṽ (I) = ∅ or Ṽ (I) = {0}, so if and only if I = 〈1〉 or√
I = m. �

Definition 11. The homogeneous coordinate ring of a projective variety X = V (I)
is S/I, where S = k[x0, . . . , xn].

Subvarieties of tori.
The last case of varieties that we will consider is that of subvarieties of tori. This

is actually a special case of affine varieties. Let S = k[x±1
1 , . . . , x±1

n ] be the ring of
Laurent polynomials.
Example: f = 3x1x

2
2 + 5x1x

3
2 + 7x−5

1 x2 ∈ S.
The ring S is the coordinate ring of the algebraic torus T n ∼= (k∗)n. The name

comes from the fact that (C∗)n deformation retracts to the standard topological
n-dimensional torus (S1)n. The ring S is the ring of all those rational functions
(quotients of polynomials) that are defined everywhere on T n.

An ideal I ⊂ S determines a subvariety

V (I) = {x ∈ T n : f(x) = 0 for all f ∈ I} ⊆ T n.

Note that it makes sense to consider f(x) for x ∈ T n, since any f ∈ S has the form
g/(

∏n
i=1 xi)

N for some polynomial g and N ≥ 0, so is defined at any x ∈ T n.
Note that a subvariety of T n is actually also an affine variety, which can be em-

bedded into An+1. If X = V (I) ⊂ T n, choose a generating set for I consisting
of polynomials {f1, . . . , fs}. This can always be done, since every monomial is a
unit in S. Let S ′ be the polynomial ring k[x1, . . . , xn, y], and let J be the ideal
〈f1, . . . , fs, y

∏n
i=1 xi − 1〉, where we consider the fi here as elements of S ′. Then the

affine variety of J in An+1 consists of the points {(x, 1/
∏n

i=1 xi) ∈ An+1 : x ∈ V (I) ⊂
T n}.
Warning: You’ll notice I’m using S for three different rings here: S = k[x1, . . . , xn],
the coordinate ring of An; S = k[x0, . . . , xn], the homogeneous coordinate ring of Pn;
and S = k[x±1

1 , . . . , x±1
n ], the coordinate ring of T n. The meaning should always be

clear from context, and this has the advantage that one can summarize the previous
discussion in the following form:
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Note also that in each case there is a largest ideal defining a variety X, which we
denote by I(X). For example if X = V (I) ⊆ An, then I(X) =

√
I.

Summary:
Let X, Y be subvarieties of An, Pn or Tn, with ideals I(X), I(Y ) in the respective

coordinate ring. Then

(1) I(X ∪ Y ) = I(X) ∩ I(Y ) = I(X)I(Y );
(2) I(X ∩ Y ) = I(X) + I(Y );

(3) I(X \ Y ) = I(X) : I(Y )∞;
(4) The coordinate ring of X is S/I(X).

Dimension
We will study many invariants of a variety X. A basic one is the dimension of X.

We first give an intuitive definition of dimension. Nice (“smooth” or “nonsingular”)
complex varieties are real manifolds of dimension 2d for some integer d. We say that
the (complex) dimension of such an X is d.
Example: The projective variety P1 is equal to the two-dimensional sphere S2 as
a set. This has real dimension two as a manifold, so the dimension of P1 is one.

Saying that dim(X) = d is intuitively saying that near most points X looks like
Cd. (Intentionally vague sentence!)

Formally, the dimension of an irreducible variety X is the length d of the longest
chain

∅ 6= X0 ( X1 ( · · · ( Xd = X

of irreducible subvarieties. (Note that this definition works for subvarieties of An, Pn, T n.)
Example: {V (x1, x2) = (0, 0)} ( V (x1) ( A2, so dim(A2) ≥ 2. In fact dim(A2) = 2
(and dim(An) = n for all n, but this is (surprisingly?) not trivial.
Example: {(1, 1) = V (x1 − 1, x2 − 1) ( V (x2

1 + x2
2 − 1), so the dimension of

V (x2
1 + x2

2 − 1) is at least one. Again, in this case it is exactly one.
There is an equivalent algebraic definition of dimension. The Krull dimension of

a ring R is the length d of the longest chain

P0 ( P1 ( · · · ( Pd = R

of prime ideals. If X ⊂ An or X ⊂ T n then dim(X) is the Krull dimension of the
coordinate ring S/I(X). If X ⊂ Pn then dim(X) is one less than the dimension of
S/I(X). For an overview of Krull dimension, see [Eis95, Chapter 8].

Intersection multiplicity.
An affine variety (or subvariety of a torus) is zero-dimensional if and only if

dimk S/I is finite. When two affine varieties X and Y have a zero-dimensional in-
tersection, we will be interested in the multiplicity of this intersection. This is the
number dimk S/(I(X) ∩ I(Y )).
Example: I = 〈x2

1 + x2〉, J = 〈x2〉 ⊂ S = k[x1, x2]. Then I ∩ J = 〈x2
1, x2〉, so the

multiplicity is dimk k[x1, x2]/〈x2
1, x2〉 = 2.

Notes

(1) You may recognize this number from Bézout’s theorem, one form of which
says that when the variety in Pn defined by n polynomials f1, . . . , fn of degrees
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d1, . . . , dn is zero-dimensional, then it consists of
∏n

i=1 di points, counted with
multiplicity.

(2) In fancier language, the multiplicity is the length of the scheme-theoretic
intersection of I and J . We will not use the language of schemes this month,
but as a (very!) first approximation take the word “scheme-theoretic” to mean
“take the intersection of the defining ideals, without taking the radical”.

(3) When V (I), V (J) are projective varieties, we replace the multiplicity by the
(scheme-theoretic) degree of the zero-dimensional intersection. This is the
number dimk(S/I ∩ J)l for l � 0, where (S/I ∩ J)l is the degree lth graded
piece of the graded S-module S/I ∩ J .
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