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DIANE MACLAGAN

In this lecture we discuss the tropicalization of the Grassmannian. We first review
this beautiful classical variety.

Let V be an n-dimensional vector space. We will use k to denote the field of V by
default, but the constructions will make sense over an arbitrary vector space. The
Grassmannian G(d, n) parameterizes all d-dimensional subspaces of V ∼= kn. It is a
smooth projective variety of dimension d(n− d) (so “locally” looks like affine space
of dimension d(n− d)), whose points correspond to d-dimensional subspaces of V .
Example: The Grassmannian G(1, n) parameterizes all one-dimensional subspaces
of V , which are lines through the origin in kn. Thus G(1, n) ∼= Pn−1.

We’ll describe two ways to see that G(d, n) is a variety.
Approach 1: We’ll describe G(d, n) by giving an affine cover. An affine cover
is open cover (in the Zariski topology) of the set G(d, n) by affine varieties. It is
analogous to giving charts for a manifold.

Fix a basis for V , and thus an isomorphism of V with kn. Given a d-dimensional
subspace W ⊆ V ∼= kn, choose a basis for W and write this basis, in the basis for V ,
as the rows of a d× n matrix Wmat with entries in k. For each set σ ⊂ {1, . . . , n} of
size d we consider the set

Gσ = {W ⊂ V : the submatrix of Wmat indexed by the columns of σ is invertible}.
Given W ∈ Gσ, there is a unique basis for W for which Wmat|σ is the identity matrix.
Example: Consider G(2, 4), and σ = {1, 2}. Then if W ∈ Gσ, then there is a
choice of basis for W in which

(1) Wmat =

(
1 0 a b
0 1 c d

)
,

where a, b, c, d ∈ k. So Gσ
∼= A4. We can glue together all the different Gσ to get a

variety.
Example: G12 ∩G13. Then if W ∈ G12 ∩G13 then there is a choice of basis for W
as above, where c 6= 0. Thus G12 ∩ G13

∼= A3 × k∗. There is also a version of Wmat

of the form

Wmat =

(
1 −a/c 0 b− ad/c
0 1/c 1 d/c

)
.

We identify the two copies of A4 on their overlap using the above transitions.

Approach 2: We can embed G(d, n) into P(n
d)−1 by sending W ∈ G(d, n) to the

vector of d× d minors of Wmat. This is the Plücker embedding of G(d, n). Note that
if we choose a different basis for W , then the vector of minors changes by at most a

multiplicative constant, so the map to P(n
d)−1 is well-defined. This map is injective,

and the image is a subvariety cut out by the Plucker relations, which we explain in
the case d = 2.
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Example: Consider G(2, 4). Then
(
4
2

)
= 6. Label the coordinates of P5 as

x12, x13, x14, x23, x24, x34. The Plücker relation is x12x34−x13x24+x14x23. For example,
for the matrix Wmat of Equation 1, the Plücker image is (1 : c : d : −a : −b : ad− bc).
This satisfies the Plücker relation.

Theorem 1. Let

I2,n = 〈pijkl = xijxkl−xikxjl+xilxjk : 1 ≤ i < j < k < l ≤ n〉 ⊂ k[xij : 1 ≤ i < j ≤ n].

Then G(2, n) = V (I2,n) ⊂ P(n
2)−1.

There is a similar description for G(d, n) for d > n.

Let AG(2, n) = V (I2,n) ⊂ A(n
2). Then AG(2, n) is the affine cone over the Grass-

mannian G(2, n). Let T be torus of A(n
2). Then T = {(x12, x13, . . . , x(n−1)n] ∈ A(n

2) :
xij 6= 0}. Let X = AG(2, n) ∩ T .
Claim: The set of Plücker relations forms a tropical basis for I2,n ⊆ K[x±1

ij ], so

trop(X) =
⋂

1≤i<j<k<l≤n

trop(V (pijkl)).

For a proof, see [SS04].

Thus trop(X) = {w ∈ R(n
2) : for all 1 ≤ i < j < k < l ≤ m either wij + wkl =

wik +wjl ≤ wil +wjk, or wij +wkl = wil +wjk ≤ wik +wjl, or wik +wjl = wil +wjk ≤
wij + wkl}. This is the space of Phylogenetic trees.

Definition 2. A tree is a graph with no cycles. The degree of a vertex in a tree is the
number of edges incident to that vertex. A tree is trivalent if every vertex has degree
three or one. The vertices of degree one are called leaves. A tree is leaf-labelled if all
leaves have a label from some set S. A phylogenetic tree is a trivalent leaf-labelled
tree.

The name comes from the fact that diagrams illustrating closeness of species are
trivalent graphs. See Figure 1.

Given a phylogenetic tree τ drawn in the plane, we can record the tree-distance
between two vertices.
Example: For the tree of Figure 2, the tree-distance between vertices 1 and 2 is
a + b. Ordering the pairs (i, j) as 12, 13, 14, 23, 24, 34, we have the distance between
vertices i and j recorded in the vector

(a + b, a + c + d, a + c + e, b + c + d, b + c + e, d + e).

This equals

a


1
1
1
0
0
0

 + b


1
0
0
1
1
0

 + c


0
1
1
1
1
0

 + d


0
1
0
1
0
1

 + e


0
0
1
0
1
1

 .
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Figure 1. Some phylogenetic trees
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Figure 2.

If we let the leaf lengths become negative, this cone is then

span




1
1
1
0
0
0

 ,


1
0
0
1
1
0

 ,


0
1
0
1
0
1

 ,


0
0
1
0
1
1



 + pos




0
1
1
1
1
0



 ,

which equals

{w : w13 + w24 = w14 + w23 ≥ w12 + w34}.
In general, a vector is the tree-distance vector for a trivalent tree with n leaves

if and only if it satisfies the four point condition: for any four leaves i, j, k, l, if
we form the three possible sums of distances between disjoint pairs d(i, j) + d(k, l),
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d(i, k) + d(j, l), and d(i, l) + d(j, k), then two of these sums are equal and greater
than or equal to the third.

For trees with four leaves the other two options are shown in Figure 3. Setting

V = span(


1
1
1
0
0
0

 ,


1
0
0
1
1
0

 ,


0
1
0
1
0
1

 ,


0
0
1
0
1
1

),

these cones are V + pos((1, 0, 1, 1, 0, 1)) and V + pos((1, 1, 0, 0, 1, 1)).
Note that the union of these three cones is − trop(X)!

Summary: The set − trop(X) is the set of tree-distance vectors for phylogenetic
trees with n leaves. This is the space of phylogenetic trees, and has one cone for each
combinatorial type of labelled tree. It is a polyhedral fan, with an n-dimensional
lineality space. The quotient by the lineality space is a pure fan of dimension n− 3.
Note that n− 3 is the number of internal (not adjacent to a leaf) edges of a trivalent
tree with n leaves.

When n = 4 we get the three cones described above. When n = 5 the quotient by
the five-dimensional lineality space is a two-dimensional fan in R5. The intersection
of this with the sphere S4 is the graph shown in Figure 4.

For more details on all this, see [SS04].
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