
AARMS TROPICAL GEOMETRY - LECTURE 11

DIANE MACLAGAN

The goal of this lecture is to describe how to compute tropical varieties in general.
We begin with an example of the algorithm outlined for linear varieties last lecture.

Example: Let X = V (x0 − x1 + x3, x0 − x2 + x4, x1 − x2 + x5) ⊂ T 6. Then

A =

 1 −1 0 1 0 0
1 0 −1 0 1 0
0 1 −1 0 0 1

 , and B =

 −1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1

 .

If we add the additional first row of (1, 1, 1, 0, 0, 0) to B, which lies in the row space
of B, then the columns of B are the positive roots of the root lattice of A3. We have

B =


 −1

0
0

 ,

 0
−1

0

 ,

 0
0

−1

 ,

 1
−1

0

 ,

 1
0

−1

 ,

 0
1

−1

 .

The lattice of flats L(B) is then illustrated in Figure 1. Here 013 means span(b0,b1,b3).
The order complex then has 18 cones, which are indexed by the edges in Figure 1
connecting two proper nontrivial flats. The cones in trop(X) ⊂ R6 are then three-
dimensional, as expected. When we quotient by the lineality space span(1), we get a
two-dimensional fan in R5 ∼= R6/ span(1). Intersecting this with the sphere S4 ⊂ R5

gives a the graph that is shown in Figure 2. This is a refinement (subdividing the
edges 05, 14, and 23) of a well-studied graph called the Peterson graph.

We now describe how to use a computer to compute tropical varieties. That first
raises the following question:
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Question: What sort of examples can we expect to do on a computer?
We cannot enter a general Puiseux series into a computer, as it cannot be described

by a finite amount of information. Similarly, we cannot describe most real numbers
in finite space. This suggests that the best field we can hope to work with is the
algebraic closure Q(t) of the ring of rational functions in t with coefficients in Q.
Note that every example we have seen so far as lived in this field!

Any ideal in Q(t) actually lives in some finite extension L of Q(t), since the ideal is
finitely generated, and a finite generating set has only a finite number of coefficients.
We can write L ∼= Q(t)[a1, . . . , as]/J , where J is an ideal. As a point of comparison,
recall that C = R[x]/〈x2+1〉. We’ll now discuss how to reduce this case to computing
in Q[x±1

1 , . . . , x±1
n ].

If I ⊂ Q(t)[x±1
1 , . . . , x±1

n ], then let J = I ∩Q[t±1, x±1
1 , . . . , x±1

n ]. Fix w ∈ Rn. Then
w ∈ trop(V (I)) ⊂ Rn, where V (I) ⊂ T n, if and only if (1, w) ∈ trop(V (J) ⊂ Rn+1,
where V (J) ⊂ T n+1. This is the case because if p(t) is a polynomial in t, then
val(p(t)) is the smallest exponent of t occuring in p.

If I ⊂ L[x±1
1 , . . . , x±1

n ] where L = Q(t)[a1, . . . , as]/J is a finite extension of Q(t),
then let vi = val(ai). Consider the map

φ : Q[a±1
1 , . . . , a±1

s , t±1, x±1
1 , . . . , x±1

n ] → L[x±1
1 , . . . , x±1

n ].

Fix w ∈ Rn. Then w ∈ trop(V (I)) if and only if (v1, . . . , vs, 1, w) ∈ trop(V (J)),
where J = φ−1(I), and V (J) ⊂ T n+s+1.

Example: Let f = 1 + x + xy + ty ∈ C{{t}}[x±1, y±1] or in Q(t)[x±1, y±1]. Then
trop(V (f)) is shown in Figure 3. Let g = 1 + x + xy + ty ∈ Q[t±1, x±1, y±1]. Then
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trop(g) = min(0, x, x + y, y + 1), and

trop(V (g)) = {(w1, w2, w3) :w2 = 0 ≤ w2 + w3, w1 + w3 or

w2 + w3 = 0 ≤ w2, w1 + w2 or

w1 + w3 = 0 ≤ w2, w2 + w3 or

w2 = w2 + w3 ≤ 0, w1 + w3 or

w2 = w1 + w3 ≤ 0, w2 + w3 or

w2 + w3 = w1 + w3 ≤ 0, w2}.

For example {(w1, w2, w3) : w2 = 0 ≤ w2 + w3, w1 + w3} = {(w1, w2, w3) : w2 =
0, w3 ≥ 0, w1 + w3 ≥ 0} = pos((−1, 0, 1), (1, 0, 0)).

Then

trop(V (g)) ∩ {w1 = 1} ={(1, 0, w3) : w3 ≥ 0}
∪{(1, w2,−w2) : 0 ≤ w2 ≤ 1}
∪{(1, w2,−1) : w2 ≥ 1}
∪{(1, w2, 0) : w2 ≤ 0}
∪∅
∪{(1, 1, w3) : w3 + 1 ≤ 0}.

Labelling these cones A through E, these are shown in Figure 4.
These reductions mean that if I ⊂ Q(t)[x±1

1 , . . . , x±1
n ] then we can compute trop(V (I))

by doing computations in a Laurent polynomial ring with coefficients in Q, so we
need only discuss how to compute tropical varieties in this context.

A first algorithm to compute trop(V (I)) in this context is to first homogenize the
ideal I to get an ideal Ih ∈ Q[x0, . . . , xn]. We can then compute the Gröbner fan
of Ih, and throw away those cones containing some w in their relative interior with
inw(Ih) containing a monomial. A problem with this, however, is that it is quite
inefficient, as there can be many more cones in the Gröbner fan than there are in
the tropical variety. In [BJS+07] an example is givien of a family of ideals in three
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variables indexed by p ∈ N where the tropical varieties all have four rays, but the
Gröbner fan of the ideal Ip has at least 1/4(p + 1) rays.

The key fact for the algorithm used by gfan is the following theorem.

Theorem 1. [BJS+07] Let X ⊂ T n
K, where char(K) = 0, be an irreducible variety of

dimension d. Then X is a pure polyhedral complex of dimension d that is connected
in codimension one.

Here “connected in codimension one” means that there is a path

σ = σ1 � τ1 ≺ σ2 � τ2 ≺ σ3τ3 . . . τs ≺ σs = σ′

connecting any two d-dimensional polyhedra σ, σ′ of trop(X), where τ ≺ σ means “τ
is a facet ((d-1)-dimensional face) of σ. This is illustrated in Figure 5.

The algorithm used by gfan starts by computing a d-dimensional cone in the
Gröbner fan of Ih for which the initial ideal does not contain a monomial. For each
facet of this cone, it computes the neighbouring cones in the tropical variety, and
then “walks” around the tropical variety until all cones have been visited. Theorem 1
guarantees that every cone will be found in this fashion. The computation of com-
puting neighbouring cones can be effectively reduced to the case d = 1. For more
details, see [BJS+07].

The program gfan [Jen], written by Anders Jensen, can be accessed via your
schwartz accounts, or by using Andrew Hoefel’s applet available at

http://www.mathstat.dal.ca/~handrew/gfan/index.php

To use it, create a file containing content like:
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Q[x_1,x_2,x_3,x_4,x_5]

{x_1+x_2+x_3+x_4+x_5, x_1+2*x_2+3*x_3}

Note that unlike M2 there is only one Qx in the name of the rational numbers. To
get the starting cone, type gfan tropicalstartingcone < myfile >myfile.cone,
where myfile is the name of the file you created above, and you can change the name
of myfile.cone. This will give output like:

Q[x_1,x_2,x_3,x_4,x_5]

{

x_2+2*x_3,

x_1-x_3}

{

x_2-x_5-x_4+2*x_3,

x_1+2*x_5+2*x_4-x_3}

This is a list of the initial ideal, and then the ideal. If you are using the web-applet,
you will enter the input in the dialogue box, and the output will be on the screen
below, which you will need to paste back into the dialogue box for the next step.
Next type gfan tropicaltraverse <myfile.cone >myfile.output. This will give
output of the form:

_application PolyhedralFan

_version 2.2

_type PolyhedralFan

AMBIENT_DIM

5

DIM

3

LINEALITY_DIM

1

RAYS

-1 0 0 0 0 # 0

0 -1 0 0 0 # 1

-1 -1 -1 0 0 # 2

0 0 -1 0 0 # 3

1 1 1 1 0 # 4

0 0 0 -1 0 # 5

N_RAYS

6

LINEALITY_SPACE

1 1 1 1 1
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ORTH_LINEALITY_SPACE

0 0 0 1 -1

0 0 1 0 -1

0 1 0 0 -1

1 0 0 0 -1

F_VECTOR

1 6 10

CONES

{} # Dimension 1

{0} # Dimension 2

{1}

{2}

{3}

{4}

{5}

{0 2} # Dimension 3

{2 3}

{1 2}

{0 4}

{1 4}

{0 5}

{1 5}

{4 5}

{3 4}

{3 5}

MAXIMAL_CONES

{0 2} # Dimension 3

{2 3}

{1 2}

{0 4}

{1 4}

{0 5}

{1 5}

{4 5}

{3 4}

{3 5}

PURE

1

MULTIPLICITIES

1 # Dimension 3

1
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1

1

1

1

1

1

1

1

This says that the tropical variety has lineality space span(1), and is three-dimensional
The quotient by the lineality space gives a fan with six rays, and ten two-dimensional
cones, which are listed.

Note that this is not what we got when we did this example on Friday. Firstly this
is because gfan uses the max convention instead of the min convention. Secondly, it
is because gfan has amalgamated some of the cones we constructed. We had rays ei

for 1 ≤ i ≤ 5, e1 + e2 + e3, and then ei + ej for 1 ≤ i < j ≤ 5 with {i, j} 6⊂ {1, 2, 3}.
Two of the cones were span(1)+pos(e1, e1 +e4), and span(1)+pos(e4, e1 +e4). The
union of these two cones is span(1) + pos(e1, e4).
Warning: The program gfan assumes that the ideal generated by your input
polynomials is prime, so the variety is irreducible. It will not (necessarily) give the
correct answer if your input variety is not irreducible.

Tropical Bases.

Definition 2. Let I ⊆ K[x±1
1 , . . . , x±1

n ]. A set {f1, ,̇fs} ⊂ I is a tropical basis for I if

trop(V (I)) =
s⋂

i=1

trop(V (fi)).

Example: Let I = 〈x + y + z, x + 2y〉 ⊂ C{{t}}[x±1, y±1, z±1]. Then trop(V (I)) =
span(1). Any two polynomials in the set

{x + 2y, y − z, x + 2z}

form a tropical basis for I, as trop(V (x+2y)) = {w ∈ R3 : w1 = w2}, trop(V (y−z)) =
{w ∈ R3 : w2 = w3}, and trop(V (x + 2z)) = {w ∈ R3 : w1 = w3}. The set {x + y +
z, x+2y} is not a tropical basis, as the vector (0, 0, 1) ∈ trop(V (x+y+z))∩trop(V (x+
2y)), but (0, 0, 1) 6∈ trop(V (I)). Note that trop(V (x + y + z)) ∩ trop(V (x + 2y)) is
not a balanced polyhedral complex.

Example: Let I = 〈f〉 be a principal ideal. Then {f} is a tropical basis for I.
This was Q4 of Exercises 3.

Proposition 3. Let I ⊆ K[x±1
1 , . . . , x±1

n ]. Then I has a finite tropical basis.

Proof. Let Ih be the homogenization of I in K[x0, . . . , xn], and let Σ be the Gröbner
complex of Ih. There are only finitely many polyhedra σ ∈ Σ, and for each σ ∈ Σ
the initial ideal inw(Ih) is constant for all w in the relative interior of σ, so we may
denote it by inσ(Ih). Given σ ∈ Σ with inw(Ih) containing a monomial for w in the
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relative interior of σ (so inw(I) = 〈1〉), we can find f̃σ ∈ Ih with inw(f̃σ) a monomial.

Let fσ ∈ K[x±1
1 , . . . , x±1

n ] denote the dehomogenization of f̃σ, and let

G = {fσ : inσ(Ih) contains a monomial }.
Note that G is a finite set, and⋂

fσ∈G

trop(V (fσ)) ⊆ trop(V (I)),

since relint(σ)∩trop(V (fσ)) = ∅. But since fσ ∈ I, we have trop(V (I)) ⊆ trop(V (fσ)),
so ⋂

fσ∈G

trop(V (fσ)) = trop(V (I)).

�

Open Problem: Give a good algorithm to compute a tropical basis.
There is an algorithm implicit in the above proof, but it involves knowing the

Gröbner complex of Ih, which is hard to compute.

Definition 4. Suppose k includes into K. Let I ⊂ k[x±1
1 , . . . , x±1

n ] be a linear ideal
(generated by linear polynomials). A linear polynomial f =

∑n
i=1 aixi is a circuit for

I if {i : ai 6= 0} is minimal with respect to inclusion. This means that there is no
g =

∑n
j=1 bjxj ∈ I with {j : bj 6= 0} ( {i : ai 6= 0}. Note that there are only a finite

number of circuits up to scaling.

Exercise: Let I be a linear ideal. Then the set of circuits form a tropical basis for
I.

Remark 5. There is also a stricter notion of tropical basis, where we require that the
tropical basis in addition be a Gröbner basis for I with respect to any w ∈ trop(V (I)).
This is also finite.
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