AARMS TROPICAL GEOMETRY - LECTURE 1

DIANE MACLAGAN

These notes mostly represent what I intend to do in class, rather than broader
background. Please let me know (D.Maclagan at warwick.ac.uk) if you find any
typos, no matter how small. Since these are just lecture notes, no claim is made for
completeness or full references.

What is tropical geometry?

First answer: (Algebraic) geometry where instead of working over the complex
numbers (or some other field) we work over the tropical semiring (R, ®, ®). Here &
is the usual minimum, and ® is the usual addition.

Example: (5®6)®7=12.

When necessary we consider (R U oo, @, ®), so oo becomes the additive identity.
Then (RUoco, @, ®) is a semiring (ie associative, distributative etc - just no additative
inverse).

In algebraic geometry we often work with polynomials. In tropical geometry we
“tropicalize” these polynomials, which turns them into piecewise linear functions.
Example: f(z,y) = 2> + y* — 1. This tropicalizes to trop(f) = 2> @ y>* ® 0 =
min(2z, 2y, 0). This is a piecewise linear function. (See below for why the —1 turns
into 0). See Figure 1.
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FIGURE 1.

In algebraic geometry we study the common zeros of polynomial equations (Warn-
ing: Oversimplification!). These are called varieties. Tropically this corresponds to
taking the nonlinear locus of the polynomial trop(f).

Example: Let f(z,y) = z +y + 1. The variety of f is the set {(x,y) € C? :
r+y+1 =0}, which is a line in C2. Then trop(f) = min(z,y,0). This is a piecewise
1
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linear function with graph shown in Figure 2. The nonlinear locus is the three line
segments r =y <0, z =0 <y, and y =0 < z. This is also shown in Figure 2.

r=0<y

T y=0<z

z=y<0

FIGURE 2.

Thus varieties turn into polyhedral complexes under the tropicalization map.
Warning: An issue with this first answer is that not everything tropicalizes well. In
particular, maps between varieties do not tropicalize precisely as expected. (“Trop-
icalization is not functorial”). For this reason we will be careful over the next two
weeks to define things formally.

Motivation

Why tropicalize? A first reason is that polyhedral geometry is (often) easier than
algebraic geometry. Many invariants of the variety become invariants of the resulting
polyhedral complex.

Example: Let f = 2 +y+ 1. Then the set f = 0 is the line {(t,—-1—1t) : t € C}
in C2, so is one-dimensional. The tropical variety, shown on the right in Figure 2, is
also one-dimensional.

It is true in general (we will see later) that dimension is preserved under tropical-
ization. Other (primarily intersection theoretic) invariants are also preserved.
Motivating Example: Counting Curves

One of the first successful applications of tropical geometry has been to enumerative
geometry, primarily in the work of Mikhalkin. This allows a simple answer to the
classical question of counting the number of rational curves in P? of a given degree d
passing through a set of fixed points in general position. A curve C in P? is given by
a homogeneous polynomial f(z,y,z) = 0. The curve C is rational if it is isomorphic
to P! (informally, if there is a parameterization ¢ : C — C' so C'is the Zariski closure
of the image of ¢). The degree of the curve is the degree of the polynomial. In order
for this number to be finite, we ask that the points be in general position, and that
there be 3d — 1 of them. Here “general position” means that there is a (Zariski) open
set in (P?)3?71/S3, 4 for which this number is constant.

Definition 1. Let Ny 4 be the number of rational curves of degree d passing through
a collection of 3d — 1 points in P? in general position.

Example:
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d =1 A curve of degree one is a straight line, which is rational. Thus Ny, is one,
as there is a unique line joining any two distinct points in P2.

d = 2 All curves of degree two are rational, and there is a unique curve through any
five points in general position in P? (see exercises). Thus Nyo = 1.

d =3 Nys = 12. This was computed by Steiner in 1848, and was possibly known

earlier.

4 Ny = 620. This was computed by Zeuthen in 1873.

5 Nos = 87304. This (and all later ones) were unknown until the early 90s.

6 Nog = 26312976.

d
d
d

In 1994 Kontsevich gave a recursive formula that determines all of these numbers
from Ny; = 1. This involved developing the moduli space of stable maps, which is
at the foundations of Gromov-Witten theory. Giving a self-contained proof of this
would take more than this entire course. However in the last week we will (hopefully)
give a self-contained proof of the Kontsevich recursion using tropical methods.

We now return to the question of tropicalizing polynomials. Earlier we said
trop(z? + y* — 1) = min(2z,2y,0). The —1 turned mysteriously into a 0. We will
now partially explain this (though a full explanation will be later in the week).

Let

K = C{{t}} = U,s:C((t"™,)),

where by C((t'/™)) we mean the ring of Laurent series in the variable ¢'/". This ring
K is the ring of Puiseuz series. An element a € K has the form

a= Z aqt?,
qeQ

where {q € Q : a, # 0} is bounded below and has a common denominator.
Write K* = K \ {0}. Let val : K* — R be given by val(a) = min{q : a, # 0}.
This lets us define the tropicalization of a polynomial formally.

Definition 2. Let S := C[zy,...,z,], and write

f - Z Cuxua

u€eN™

where 2 := [, z;". Then

trop(f) = min (val(c,) + Zuzm,)
i=1

uEN:c,, #0

The tropical hypersurface of f is
trop(V(f)) = {w € R" : the minimum in the definition of trop(f)(w) is achieved twice}.

Note that we could also define val: K — R U oo by setting val(0) = oco. Then
trop(f) = ming,enn val(e,) + > 1, w;z;). Note also that val(—1) = 0, so this explains
the earlier zero.

Example: Let f = tz? + 2xy + 3ty* + 5z + Ty — (1> + t°). Then trop(f) =
min(2x + 1,z +y,2y + 1, x,y,2). This function is illustrated in Figure 3.
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FIGURE 3.
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FIGURE 4.

Example: Let f = (t2 — t*/2)y? 4+ 52% — 7oy + 8y — to + 3. Then trop(f)
min(2 + 2y, 2x,x + y,y,x + 1,3). This is illustrated in Figure 4.

Example: Let f = ta? + 3y — 7(t3 + t°)y* + ty — Tz + 5. Then trop(f)
min(2x + 1,z +y,2y + 3,y + 1,2,0). This is illustrated in Figure 5.
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FIGURE 5.

Example: Let f = t*x — 7(t +¢3)y + t°. Then trop(f) = min(z + 2,y + 1,5). This
is illustrated in Figure 6.
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FIGURE 6.

Example: Let f = t32% — Ttz + 8xy — Ty*> + 6. Then trop(f) = min(2z + 3,z +
1,z +y,2y,0). This is illustrated in Figure 7.

Example: Let f = t*2? + t?2%y + ta?y? + t*y3 + ta® + oy +ty> +x +y +t. Then
trop(f) = min(2x +4,2x+y+2,2+2y+2,3y+4,2x+ 1,z +y,2y+1,x,y,1). This
is illustrated in Figure 8.

Example: Let f = 22+ 2xy+3y*+ 4z +5y+6. Then trop(f) = min(2z, 2y, z,y,0).
This is illustrated in Figure 9.

Note two important aspects of these pictures: Firstly, in almost all cases, there are
the same number of “tentacles” in each of three directions, and that number is the
degree of the polynomial. Secondly, in almost all cases, at each vertex of the graph,
the sum of the three vectors emanating from that vertex add to zero. In fact, with
the appropriate notion of multiplicity (see next week), both of these are true in all
cases.
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FIGURE 7.
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FIGURE 8.

Outline of Course:

Week 1: Introduction to varieties. Background tools, such as valuations and
Grobner bases.

Week 2: Fundamental theorems on tropical varieties. Some basic examples.

Week 3: More examples. Connections to toric varieties.

Week 4: Enumerative geometry. Presentations.

Presentations: During this month you will read a research paper or two in small
groups (3-5) and do a presentation on the material during the last few class periods.
There is a list of possible papers on the webpage. Check that out today!!
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