AARMS TROPICAL GEOMETRY - EXERCISES 5

DIANE MACLAGAN

(1) Let I be an ideal in $\mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ generated by linear forms, and let \mathcal{C} be the set of circuits of I. Recall that a circuit is a polynomial $f=\sum_{i=1}^{n} a_{i} x_{i} \in I$ with support $\left\{i: a_{i} \neq 0\right\}$ minimal with respect to inclusion. Show that \mathcal{C} is a tropical basis for I.
(2) Let τ be a trivalent tree with n leaves. Show that τ has $2 n-3$ edges.
(3) Let $\phi: T^{n} \rightarrow T^{m}$ be a morphism of tori, given by $\phi(t)_{i}=t^{\mathbf{u}_{i}}$, and let U be the $n \times m$ matrix with columns $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$. Show that ϕ is surjective if and only if U has rank m.
(4) Let $X=V(x+y+z+1) \subseteq T^{3}$. For each of the following maps of tori $\phi: T^{3} \rightarrow T^{m}$ compute $\overline{\phi(X)} \subset T^{m}$, and verify that $\operatorname{trop}(\overline{\phi(X)})=\left\{U^{T} w:\right.$ $w \in \operatorname{trop}(X)\}$, where U is the $3 \times m$ matrix with columns $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ for $\phi(t)_{i}=t^{\mathbf{u}_{i}}$.
(a) $\phi: T^{3} \rightarrow T^{2}$ given by $U=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$.
(b) $\phi: T^{3} \rightarrow T^{2}$ given by $U=\left(\begin{array}{rr}1 & 1 \\ 2 & -1 \\ 1 & 0\end{array}\right)$.
(c) $\phi: T^{3} \rightarrow T^{4}$ given by $U=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$.
(5) For which of the following $X \subset T^{3}$ is $0 \in \bar{X} \subset \mathbb{A}^{3}$? Compute $\operatorname{trop}(X)$ and verify the statement of the Theorem.
(a) $X=V\left(3 x^{2}+3 x y+2 x+y\right)$;
(b) $X=V\left(3 x^{2}+3 x y+2 x+y+1\right)$;
(c) $X=V(x+y+z, x+2 y)$;
(d) $X=V(x+y+z+1, x+2 y+3 z)$;
(6) (a) Check that $T^{2} \subset \mathbb{P}^{2}$ is a Zariski-dense subset, and that there is an action of T^{2} on \mathbb{P}^{2} that extends the action of T^{2} on itself.
(b) List the orbits of T^{2} in \mathbb{P}^{2}.
(c) Let $X=V\left(x+y+x^{2} y+x y^{2}\right) \subset T^{2}$, and let \bar{X} be the closure of X in \mathbb{P}^{2}. How does \bar{X} intersect each of the T^{2}-orbits of \mathbb{P}^{2} ?
(d) Draw $\operatorname{trop}(X) \subset \mathbb{R}^{2}$. How does this relate to your previous answer?

