AARMS TROPICAL GEOMETRY - EXERCISES 5

DIANE MACLAGAN

- (1) Let *I* be an ideal in $\mathbb{k}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ generated by linear forms, and let \mathcal{C} be the set of *circuits* of *I*. Recall that a circuit is a polynomial $f = \sum_{i=1}^n a_i x_i \in I$ with support $\{i : a_i \neq 0\}$ minimal with respect to inclusion. Show that \mathcal{C} is a tropical basis for *I*.
- (2) Let τ be a trivalent tree with n leaves. Show that τ has 2n 3 edges.
- (3) Let $\phi : T^n \to T^m$ be a morphism of tori, given by $\phi(t)_i = t^{\mathbf{u}_i}$, and let U be the $n \times m$ matrix with columns $\mathbf{u}_1, \ldots, \mathbf{u}_m$. Show that ϕ is surjective if and only if U has rank m.
- (4) Let $X = V(x + y + z + 1) \subseteq T^3$. For each of the following maps of tori $\phi: T^3 \to T^m$ compute $\overline{\phi(X)} \subset T^m$, and verify that $\operatorname{trop}(\overline{\phi(X)}) = \{U^T w : w \in \operatorname{trop}(X)\}$, where U is the $3 \times m$ matrix with columns $\mathbf{u}_1, \ldots, \mathbf{u}_m$ for $\phi(t)_i = t^{\mathbf{u}_i}$.

(a)
$$\phi: T^3 \to T^2$$
 given by $U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$.
(b) $\phi: T^3 \to T^2$ given by $U = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 1 & 0 \end{pmatrix}$.
(c) $\phi: T^3 \to T^4$ given by $U = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 1 & 0 \end{pmatrix}$.

- (5) For which of the following $X \subset T^3$ is $0 \in \overline{X} \subset \mathbb{A}^3$? Compute trop(X) and verify the statement of the Theorem.
 - (a) $X = V(3x^2 + 3xy + 2x + y);$
 - (b) $X = V(3x^2 + 3xy + 2x + y + 1);$
 - (c) X = V(x + y + z, x + 2y);
 - (d) X = V(x + y + z + 1, x + 2y + 3z);
- (6) (a) Check that $T^2 \subset \mathbb{P}^2$ is a Zariski-dense subset, and that there is an action of T^2 on \mathbb{P}^2 that extends the action of T^2 on itself.
 - (b) List the orbits of T^2 in \mathbb{P}^2 .
 - (c) Let $X = V(x + y + x^2y + xy^2) \subset T^2$, and let \overline{X} be the closure of X in \mathbb{P}^2 . How does \overline{X} intersect each of the T^2 -orbits of \mathbb{P}^2 ?
 - (d) Draw trop(X) $\subset \mathbb{R}^2$. How does this relate to your previous answer?