AARMS TROPICAL GEOMETRY - EXERCISES 4

DIANE MACLAGAN

These questions cover Wednesday of week two to Tuesday of week three.

- (1) Show that the definition of the star of a polyhedron σ in a polyhedral complex Σ does not depend on the choice of the point $w \in \sigma$.
- (2) For each of the following polynomials f
 - (a) Compute $\operatorname{trop}(V(f))$.
 - (b) For each polyhedron σ in the polyhedral complex trop(V(f)) compute $in_w(I)$ for any w in the relative interior of σ , and compute directly $\operatorname{trop}(V(\operatorname{in}_w(I)))$. Check that this is the appropriate star.
 - (c) Let A be an $r \times n$ matrix of rank r with entries in k, and let B be a $(n-r) \times n$ matrix whose rows form a basis for ker(A). Show that if the first $(n-r) \times (n-r)$ submatrix of B is invertible, then the last $r \times r$ submatrix is also invertible.
 - (d) Check that trop(V(f)) is a weighted balanced polyhedral cone. (The polynomials have been chosen so that all weights are one).

(I do not expect to see all of these written up completely - do enough until you are satisfied you understand what is going on).

- (a) $f = x + ty + t^3 \in \mathbb{C}\{\!\{t\}\!\}[x^{\pm 1}, y^{\pm 1}];$
- (b) $f = x^2 + txy + x + y + t \in \mathbb{C}\{\{t\}\}[x^{\pm 1}, y^{\pm 1}];$ (c) $f = x + y + x^2y + xy^2 + x^2y^2 \in \mathbb{C}\{\{t\}\}[x^{\pm 1}, y^{\pm 1}];$ (d) $f = x + y + z + 1 \in \mathbb{C}\{\{t\}\}[x^{\pm 1}, y^{\pm 1}, z^{\pm 1}].$
- (3) For each of the following linear varieties compute $\operatorname{trop}(X)$. Repeat the verifications of parts (b) and (c) of the previous question in this context.
 - (a) $X = V(x_1 + x_2 + x_3 + x_4, x_1 + 2x_2 + 4x_3 x_4) \subset T^4$;
 - (b) $X = V(x_1 + x_2 + x_3 + x_4 + x_5, x_1 x_2 + 3x_3 + 4x_4 + 7x_5) \subset T^5;$
 - (c) $X = V(x_1 + x_2 + x_3 + x_4 + x_5, x_1 + x_2 + x_3 + 3x_4 x_5) \subset T^5$.
- (4) Let $X \subset T^n$ be defined by linear equations with coefficients in k. Show that the multiplicity of each cone in trop(X) is one.
- (5) The goal of this exercise is to explain in detail how to compute $in_w(I)$ using a computer algebra package such as Macaulay 2.
 - (a) Read the proof of Lemma 8 and Corollary 9 of Lecture 8.
 - (b) Given $I = \langle f_1, \ldots, f_r \rangle \subseteq \mathbb{k}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Let \tilde{f}_i be the polynomial obtained from f_i by clearing denominators. Check that $I = \langle \tilde{f}_1, \ldots, \tilde{f}_r \rangle \subset$ $\Bbbk[x_1^{\pm 1}, \dots, x_n^{\underline{\star}1}].$
 - (c) Let $\overline{I} = (\langle \tilde{f}_1, \dots, \tilde{f}_r \rangle : (\prod_{i=1}^n x_i)^\infty) \subset \mathbb{k}[x_1, \dots, x_n]$. Show that $\overline{I} =$ $I \cap \mathbb{k}[x_1, \ldots, x_n].$
 - (d) Let $I = \langle x^2 y, y^2 x \rangle \subset K[x^{\pm 1}, y^{\pm 1}]$. Use I to show that the saturation step is necessary in the previous exercise.

DIANE MACLAGAN

- (e) Let f'_i be the homogenization of \tilde{f}_i using the variable x_0 . Let $J = (\langle f'_1, \ldots, f'_r \rangle : x_0^{\infty}) \subseteq \Bbbk[x_0, \ldots, x_n]$. Show that $V(J) \subset \mathbb{P}^n$ is the closure of the image under the map $x \mapsto (1 : x)$ of $V(\bar{I}) \subset \mathbb{A}^n$. (The saturation step is again necessary here: an optional exercise is to find an example showing this).
- (f) Show that for most choices of $v \in \mathbb{R}^n$ we have that $\operatorname{in}_v(\operatorname{in}_w(J))$ is a monomial ideal.
- (g) Use the previous parts of this exercise to describe how to use a computer algebra package to compute $in_w(I)$.
- (h) In Macaulay 2 we describe a ring using $R=QQ[x_0..x_5, Weights=>\{1,2,3,4,5,6\}].$ In this example $\tilde{w} = (1,2,3,4,5,6)$. If $f = \sum a_u x^u$, let $in_{\tilde{w}}(f) = \sum_{\tilde{w} \cdot u \text{ is maximal}} a_u x^u$. (Note the difference between min and max here!) Show that $in_{\tilde{w}}(f) = in_{\tilde{w}+\lambda 1}(f)$, where $\mathbf{1} \in \mathbb{R}^{n+1}$ is the all-ones vector, and $\lambda \in \mathbb{R}$. The command leadTerm(1,J) computes generators for the ideal $\langle in_{\tilde{w}}(f) : f \in J \rangle$. Weights must be positive in Macaulay 2. Conclude that if $w \in \mathbb{R}^n$, setting Weights=>w2 where $w_2 = N\mathbf{1} - (0, w)$ for $N \gg 0$ lets leadTerm(1,J) compute $in_w(I)$.
- (6) The goal of this exercise is to prove that $\operatorname{trop}(X)$ is a weighted balanced complex when X is a curve in T^2 . Since the balanced condition is a local condition, we only need to consider ideals in $\Bbbk[x_1, \ldots, x_n]$, so $\operatorname{trop}(X)$ is a one-dimensional fan. Let

$$f = \sum_{(i,j)\in\mathbb{Z}^2} a_{ij} x^i y^j,$$

Let

$$P = \operatorname{conv}((i, j) : a_{ij} \neq 0) \subset \mathbb{R}^2.$$

where $a_{ij} \in \mathbb{k}$. Then *inner normal* to an edge e of P is a vector $w \in \mathbb{R}^2$ with $w \cdot (i, j) < w \cdot (i', j')$ if $(i, j) \in e$ and $(i', j') \in P \setminus e$.

(a) Let $f = x + y + x^2y + xy^2 + x^2y^2$. Draw P, and the inner normal to each edge of P. Check that this picture is trop(V(f)).

Note that we can always choose the inner normal w to an edge e to be in \mathbb{Z}^2 . A vector $w \in \mathbb{Z}^2$ is *primitive* if $gcd(w_1, w_2) = 1$.

- (b) Show that every edge $e \in P$ has a unique primitive inner normal $w_e \in \mathbb{Z}^2$.
- (c) Show that for any $f \in \mathbb{k}[x^{\pm 1}, y^{\pm 1}]$ the tropical variety trop(V(f)) is equal to $\bigcup_e \operatorname{pos}(w_e)$, where the union is over all edges e of P.
- (d) Let w_e be the primitive inner normal to an edge w_e of P. Show that there is a monomial $m = x^a y^b$ and a polynomial $g \in \mathbb{k}[m]$ for which

$$V(\operatorname{in}_{w_e}(f) = V(g))$$

and deg(g) is the *lattice length* of the edge e (one less than the number of lattice points in e). Thus conclude that the multiplicity m_e of the ray $pos(w_e)$ of trop(V(f)) is the lattice length of e.

(e) Verify the previous question for $f = x + y + x^2y + xy^2 + x^2y^2$.

- (f) Conclude that $\sum_{e} m_e w_e = 0$, so trop(V(f)) is a balanced weighted polyhedral fan. Hint: Let **e** be the vector corresponding to the edge *e*, oriented clockwise. Note that $\sum_{e} \mathbf{e} = \mathbf{0}$.
- (7) Let $f = tx^2 + xy + ty^2 + x + y + t \in \mathbb{C}\{\{t\}\}[x^{\pm 1}, y^{\pm 1}]$. Compute trop(V(f)), and compare with trop $(V(g)) \cap \{w_1 = 1\}$ for $g = tx^2 + xy + ty^2 + x + y + t \in \mathbb{C}[t^{\pm 1}, x^{\pm 1}, y^{\pm 1}]$.
- (8) Play with gfan. Plug in some of the examples we have computed in lectures and from the notes and check that gfan agrees. Warning: Remember that gfan uses the max convention instead of our min convention.
- (9) Use **gfan** to compute the tropical variety of $X = V(I) \subset T^{10}$, where $I = \langle x_{12}x_{34} x_{13}x_{24} + x_{14}x_{23}, x_{12}x_{35} x_{13}x_{25} + x_{15}x_{23}, x_{12}x_{45} x_{14}x_{35} + x_{15}x_{24}, x_{13}x_{45} x_{14}x_{35} + x_{15}x_{34}, x_{23}x_{45} x_{35}x_{24} + x_{25}x_{34} \rangle \subset \mathbb{k}[x_{12}^{\pm 1}, x_{13}^{\pm 1}, x_{14}^{\pm 1}, x_{15}^{\pm 1}, x_{23}^{\pm 1}, x_{25}^{\pm 1}, x_{34}^{\pm 1}, x_{35}^{\pm 1}, x_{45}^{\pm 1}].$ Also compute the tropical variety of $X = V(J) \subset T^6$ where $J = \langle 1 - y_1 + y_3, 1 - y_2 + y_4, y_1 - y_2 + y_5 \rangle \subset \mathbb{k}[y_1^{\pm 1}, \dots, y_5^{\pm 1}]$ (Hint: you will need to homogenize first). Compare your answers. Can you explain what you observe?
- (10) Let $X = V(xy+y^2+2xz+2yz-xw-yw, x^2-y^2-3xz-3yz+3xw+3yw) \subset T^4$. Show that X is not irreducible. Hint: The decompose and intersect commands in M2 may help. What does gfan think is the tropical variety of X? Is this correct?
- (11) (Only for the very computationally inclined). Look at the paper math.AG/0507563 for details of the algorithm gfan uses to compute tropical varieties.
- (12) Describe the tropical variety of the Grassmannian G(2,6). How many cones of each dimension are there?