AARMS TROPICAL GEOMETRY - EXERCISES 4

DIANE MACLAGAN

These questions cover Wednesday of week two to Tuesday of week three.
(1) Show that the definition of the star of a polyhedron σ in a polyhedral complex Σ does not depend on the choice of the point $w \in \sigma$.
(2) For each of the following polynomials f
(a) Compute $\operatorname{trop}(V(f))$.
(b) For each polyhedron σ in the polyhedral complex $\operatorname{trop}(V(f))$ compute $\mathrm{in}_{w}(I)$ for any w in the relative interior of σ, and compute directly $\operatorname{trop}\left(V\left(\mathrm{in}_{w}(I)\right)\right.$. Check that this is the appropriate star.
(c) Let A be an $r \times n$ matrix of rank r with entries in \mathbb{k}, and let B be a $(n-r) \times n$ matrix whose rows form a basis for $\operatorname{ker}(A)$. Show that if the first $(n-r) \times(n-r)$ submatrix of B is invertible, then the last $r \times r$ submatrix is also invertible.
(d) Check that $\operatorname{trop}(V(f))$ is a weighted balanced polyhedral cone. (The polynomials have been chosen so that all weights are one).
(I do not expect to see all of these written up completely - do enough until you are satisfied you understand what is going on).
(a) $f=x+t y+t^{3} \in \mathbb{C}\{\{t\}\}\left[x^{ \pm 1}, y^{ \pm 1}\right]$;
(b) $f=x^{2}+t x y+x+y+t \in \mathbb{C}\{\{t\}\}\left[x^{ \pm 1}, y^{ \pm 1}\right]$;
(c) $f=x+y+x^{2} y+x y^{2}+x^{2} y^{2} \in \mathbb{C}\{\{t\}\}\left[x^{ \pm 1}, y^{ \pm 1}\right]$;
(d) $f=x+y+z+1 \in \mathbb{C}\{\{t\}\}\left[x^{ \pm 1}, y^{ \pm 1}, z^{ \pm 1}\right]$.
(3) For each of the following linear varieties compute trop (X). Repeat the verifications of parts (b) and (c) of the previous question in this context.
(a) $X=V\left(x_{1}+x_{2}+x_{3}+x_{4}, x_{1}+2 x_{2}+4 x_{3}-x_{4}\right) \subset T^{4}$;
(b) $X=V\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}, x_{1}-x_{2}+3 x_{3}+4 x_{4}+7 x_{5}\right) \subset T^{5}$;
(c) $X=V\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}, x_{1}+x_{2}+x_{3}+3 x_{4}-x_{5}\right) \subset T^{5}$.
(4) Let $X \subset T^{n}$ be defined by linear equations with coefficients in \mathbb{k}.. Show that the multiplicity of each cone in $\operatorname{trop}(X)$ is one.
(5) The goal of this exercise is to explain in detail how to compute $\mathrm{in}_{w}(I)$ using a computer algebra package such as Macaulay 2.
(a) Read the proof of Lemma 8 and Corollary 9 of Lecture 8.
(b) Given $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle \subseteq \mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Let \tilde{f}_{i} be the polynomial obtained from f_{i} by clearing denominators. Check that $I=\left\langle\tilde{f}_{1}, \ldots, \tilde{f}_{r}\right\rangle \subset$ $\mathbb{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.
(c) Let $\bar{I}=\left(\left\langle\tilde{f}_{1}, \ldots, \tilde{f}_{r}\right\rangle:\left(\prod_{i=1}^{n} x_{i}\right)^{\infty}\right) \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$. Show that $\bar{I}=$ $I \cap \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.
(d) Let $I=\left\langle x^{2}-y, y^{2}-x\right\rangle \subset K\left[x^{ \pm 1}, y^{ \pm 1}\right]$. Use I to show that the saturation step is necessary in the previous exercise.
(e) Let f_{i}^{\prime} be the homogenization of \tilde{f}_{i} using the variable x_{0}. Let $J=$ $\left(\left\langle f_{1}^{\prime}, \ldots, f_{r}^{\prime}\right\rangle: x_{0}^{\infty}\right) \subseteq \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$. Show that $V(J) \subset \mathbb{P}^{n}$ is the closure of the image under the map $x \mapsto(1: x)$ of $V(\bar{I}) \subset \mathbb{A}^{n}$. (The saturation step is again necessary here: an optional exercise is to find an example showing this).
(f) Show that for most choices of $v \in \mathbb{R}^{n}$ we have that $\operatorname{in}_{v}\left(\mathrm{in}_{w}(J)\right)$ is a monomial ideal.
(g) Use the previous parts of this exercise to describe how to use a computer algebra package to compute $\mathrm{in}_{w}(I)$.
(h) In Macaulay 2 we describe a ring using
$R=Q Q\left[x _0 . . x_{-} 5\right.$, Weights $\left.=>\{1,2,3,4,5,6\}\right]$.
In this example $\tilde{w}=(1,2,3,4,5,6)$. If $f=\sum a_{u} x^{u}$, let $\mathrm{in}_{\tilde{w}}(f)=$ $\sum_{\tilde{w} \cdot u \text { is maximal }} a_{u} x^{u}$. (Note the difference between min and max here!) Show that $\mathrm{in}_{\tilde{w}}(f)=\operatorname{in}_{\tilde{w}+\lambda \mathbf{1}}(f)$, where $\mathbf{1} \in \mathbb{R}^{n+1}$ is the all-ones vector, and $\lambda \in \mathbb{R}$.
The command leadTerm ($1, \mathrm{~J}$) computes generators for the ideal $\left\langle\mathrm{in}_{\tilde{w}}(f)\right.$: $f \in J\rangle$. Weights must be positive in Macaulay 2. Conclude that if $w \in \mathbb{R}^{n}$, setting Weights=>w2 where $w_{2}=N 1-(0, w)$ for $N \gg 0$ lets leadTerm ($1, \mathrm{~J}$) compute $\mathrm{in}_{w}(I)$.
(6) The goal of this exercise is to prove that $\operatorname{trop}(X)$ is a weighted balanced complex when X is a curve in T^{2}. Since the balanced condition is a local condition, we only need to consider ideals in $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, so $\operatorname{trop}(X)$ is a one-dimensional fan. Let

$$
f=\sum_{(i, j) \in \mathbb{Z}^{2}} a_{i j} x^{i} y^{j}
$$

Let

$$
P=\operatorname{conv}\left((i, j): a_{i j} \neq 0\right) \subset \mathbb{R}^{2}
$$

where $a_{i j} \in \mathbb{k}$. Then inner normal to an edge e of P is a vector $w \in \mathbb{R}^{2}$ with $w \cdot(i, j)<w \cdot\left(i^{\prime}, j^{\prime}\right)$ if $(i, j) \in e$ and $\left(i^{\prime}, j^{\prime}\right) \in P \backslash e$.
(a) Let $f=x+y+x^{2} y+x y^{2}+x^{2} y^{2}$. Draw P, and the inner normal to each edge of P. Check that this picture is $\operatorname{trop}(V(f))$.
Note that we can always choose the inner normal w to an edge e to be in \mathbb{Z}^{2}. A vector $w \in \mathbb{Z}^{2}$ is primitive if $\operatorname{gcd}\left(w_{1}, w_{2}\right)=1$.
(b) Show that every edge $e \in P$ has a unique primitive inner normal $w_{e} \in \mathbb{Z}^{2}$.
(c) Show that for any $f \in \mathbb{k}\left[x^{ \pm 1}, y^{ \pm 1}\right]$ the tropical variety $\operatorname{trop}(V(f))$ is equal to $\cup_{e} \operatorname{pos}\left(w_{e}\right)$, where the union is over all edges e of P.
(d) Let w_{e} be the primitive inner normal to an edge w_{e} of P. Show that there is a monomial $m=x^{a} y^{b}$ and a polynomial $g \in \mathbb{k}[m]$ for which

$$
V\left(\mathrm{in}_{w_{e}}(f)=V(g)\right.
$$

and $\operatorname{deg}(g)$ is the lattice length of the edge e (one less than the number of lattice points in $e)$. Thus conclude that the multiplicity m_{e} of the ray $\operatorname{pos}\left(w_{e}\right)$ of $\operatorname{trop}(V(f))$ is the lattice length of e.
(e) Verify the previous question for $f=x+y+x^{2} y+x y^{2}+x^{2} y^{2}$.
(f) Conclude that $\sum_{e} m_{e} w_{e}=0$, so $\operatorname{trop}(V(f))$ is a balanced weighted polyhedral fan. Hint: Let \mathbf{e} be the vector corresponding to the edge e, oriented clockwise. Note that $\sum_{e} \mathbf{e}=\mathbf{0}$.
(7) Let $f=t x^{2}+x y+t y^{2}+x+y+t \in \mathbb{C}\{\{t\}\}\left[x^{ \pm 1}, y^{ \pm 1}\right]$. Compute trop $(V(f))$, and compare with $\operatorname{trop}(V(g)) \cap\left\{w_{1}=1\right\}$ for $g=t x^{2}+x y+t y^{2}+x+y+t \in$ $\mathbb{C}\left[t^{ \pm 1}, x^{ \pm 1}, y^{ \pm 1}\right]$.
(8) Play with gfan. Plug in some of the examples we have computed in lectures and from the notes and check that gfan agrees. Warning: Remember that gfan uses the max convention instead of our min convention.
(9) Use gfan to compute the tropical variety of $X=V(I) \subset T^{10}$, where $I=$ $\left\langle x_{12} x_{34}-x_{13} x_{24}+x_{14} x_{23}, x_{12} x_{35}-x_{13} x_{25}+x_{15} x_{23}, x_{12} x_{45}-x_{14} x_{35}+x_{15} x_{24}, x_{13} x_{45}-\right.$ $\left.x_{14} x_{35}+x_{15} x_{34}, x_{23} x_{45}-x_{35} x_{24}+x_{25} x_{34}\right\rangle \subset \mathbb{k}\left[x_{12}^{ \pm 1}, x_{13}^{ \pm 1}, x_{14}^{ \pm 1}, x_{15}^{ \pm 1}, x_{23}^{ \pm 1}, x_{24}^{ \pm 1}, x_{25}^{ \pm 1}, x_{34}^{ \pm 1}, x_{35}^{ \pm 1}, x_{45}^{ \pm 1}\right]$. Also compute the tropical variety of $X=V(J) \subset T^{6}$ where $J=\left\langle 1-y_{1}+\right.$ $\left.y_{3}, 1-y_{2}+y_{4}, y_{1}-y_{2}+y_{5}\right\rangle \subset \mathbb{k}\left[y_{1}^{ \pm 1}, \ldots, y_{5}^{ \pm 1}\right]$ (Hint: you will need to homogenize first). Compare your answers. Can you explain what you observe?
(10) Let $X=V\left(x y+y^{2}+2 x z+2 y z-x w-y w, x^{2}-y^{2}-3 x z-3 y z+3 x w+3 y w\right) \subset$ T^{4}. Show that X is not irreducible. Hint: The decompose and intersect commands in M2 may help. What does gfan think is the tropical variety of X ? Is this correct?
(11) (Only for the very computationally inclined). Look at the paper math. AG/0507563 for details of the algorithm gfan uses to compute tropical varieties.
(12) Describe the tropical variety of the Grassmannian $G(2,6)$. How many cones of each dimension are there?

