AARMS TROPICAL GEOMETRY - EXERCISES 2

DIANE MACLAGAN

Valuations

- (1) Show that the residue field of $\Bbbk\{\{t\}\}\$ is isomorphic to \Bbbk .
- (2) Let $K = \mathbb{Q}$ with the *p*-adic valuation. Show that the residue field of K is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.
- (3) Show that if K is an algebraically closed field with a valuation val : $K^* \to \mathbb{R}$, and $\mathbb{k} = R/\mathfrak{m}$ is its residue field, then \mathbb{k} is algebraically closed. Give an example to show that if \mathbb{k} is algebraically closed it does not automatically follow that K is algebraically closed.
- (4) In the proof that $\Bbbk\{\{t\}\}$ is algebraically closed, explain why f_i has degree k_i and has a nonzero constant term.
- (5) Apply the algorithm implicit in the proof that $\mathbb{C}\{\{t\}\}\$ is algebraically closed to compute (the start of) a solution to the equation $x^2 + t + 1 = 0$. Check your answer with a computer algebra package (eg puiseux in maple).

Gröbner bases

- (1) Let $I = \langle f \rangle \subset \mathbb{k}[x_0, \dots, x_n]$ be a principal ideal. Show that f is a Gröbner basis for I.
- (2) Compute all the initial ideals $in_w(f)$ of $f = 7x_0^2 + 8x_0x_1 x_1^2 + x_0x_2 + 3x_2^2$ as w varies in \mathbb{R}^2 . Draw the Gröbner fan of $\langle f \rangle$. (Hint: start by choosing some particular values of w).
- (3) Show that if $\operatorname{in}_w(I)$ is a monomial ideal for $I \subset S = \Bbbk[x_0, \ldots, x_n]$ then the monomials not in $\operatorname{in}_w(I)$ form a k-basis for S/I.
- (4) In this question you will compute the Gröbner fan of a principal ideal. The Newton polytope of a polynomial $f = \sum_{u \in \mathbb{N}^{n+1}} c_u x^u \in \mathbb{k}[x_0, \dots, x_n]$ is the convex hull in \mathbb{R}^{n+1} of the exponents $\{u : c_u \neq 0\}$.

(a) Draw the Newton polytope of $x_0^2 + x_0x_1 + x_1^2 + x_2^2$.

If P is a polytope in \mathbb{R}^n , a point $\mathbf{v} \in P$ is a *vertex* if there is $\mathbf{w} \in \mathbb{R}^n$ for which $\mathbf{w} \cdot \mathbf{v} < \mathbf{w} \cdot x$ for all $x \in P \setminus \mathbf{v}$. The *normal cone* to P at \mathbf{v} is the closure of the set of all such \mathbf{w} .

(b) Let P = conv((0,0), (2,0), (0,2), (1,1), (2,2)). What are the vertices of P? Draw the normal cone to each.

The normal fan of P is the union of the normal cones to vertices of P. It is a polyhedral fan.

- (c) Draw the normal fan to the P of the previous question.
- (d) Show that the Gröbner fan (as we have defined it) of $\langle f \rangle$ is the $x_0 = 0$ slice of the normal fan to the Newton polytope of f.
- (5) (For people who already knew something about Gröbner bases). It is more standard to define an initial ideal using a term order on the polynomial ring.

DIANE MACLAGAN

- (a) Let $f = x_0^2 + x_0 x_1 + x_1^2 + x_2^2$. For each lexicographic or degree reverse lexicographic term order \prec find $w \in \mathbb{R}^2$ with $\operatorname{in}_w(f) = \operatorname{in}_{\prec}(f)$.
- (b) In fact every term order can be represented by a vector w. You can read a proof, for example, in Proposition 2.4.4 of the notes available at www.warwick.ac.uk/staff/D.Maclagan/papers/indialectures.pdf.gz. See elsewhere in that chapter for hints on how to compute $in_w(I)$ using your favourite computer algebra package.
- (6) Let $f = t^2 x + 3ty + t^4 \in K[x^{\pm 1}, y^{\pm 1}]$, where $K = \mathbb{C}\{\{t\}\}$. Compute $in_w(f)$ for w = (2, 5), and w = (1, 2).
- (7) Let f = x + y + 1. Draw $\{w \in \mathbb{R}^2 : in_w(f) \neq \langle 1 \rangle\}$. Repeat this with $f = tx^2 + xy + ty^2 + x + y + t$. Compare your pictures with trop(V(f)) in each case.
- (8) Fix $I \subset \mathbb{k}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$. Let $\overline{I} = I \cap \mathbb{k}[x_1, \dots, x_n]$, and let $\tilde{J} = \langle \tilde{f} : f \in \overline{I} \rangle \subset \mathbb{k}[x_0, \dots, x_n]$, where \tilde{f} is the homogeneization of f using the variable x_0 . Show that

$$\operatorname{in}_w(J)|_{x_0=1} = \operatorname{in}_w(I).$$

Optional extra: repeat with K.

(9) (Open ended for the more computationally minded:) Play with the software gfan (freely available from

http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html).

(10) (Less open ended). If you don't download gfan, find someone else in the class who has.