
AARMS TROPICAL GEOMETRY - EXERCISES 1

DIANE MACLAGAN

These questions cover approximately Monday - Wednesday of week one. You do
not need to do every question! This week some of you may have seen some of the
content before, so concentrate on the new material. Do at least one question from
each days material - ask me for advice on which questions are most appropriate for
your background if you’re not sure. You are strongly encouraged to work together.
I will ask you to create a solution set as a group. This will involve typing up the
answer to approximately one question each a week.

Tropical Questions

(1) Check that (R,⊕,⊗) is a semiring.
(2) Draw a picture of the tropical curve corresponding to the following polyno-

mials in K[x, y]:
(a) f = t3x + (t + 3t2 + 5t4)y + t−2;
(b) f = (t−1 + 1)x + (t2 − 3t3)y + 5t4;
(c) f = t3x2 + xy + ty2 + tx + y + 1;
(d) f = 4t4x2 + (3t + t3)xy + (5 + t)y2 + 7x + (−1 + t3)y + 4t;
(e) f = tx2 + 4xy − 7y2 + 8;
(f) f = t6x3 + x2y + xy2 + t6y3 + t3x2 + t−1xy + t3y2 + tx + ty + 1.

(3) The goal of this exercise is to show the connection between tropical curves
in the plane and triangulations of a certain point configuration. It requires
some basic knowledge of polyhedral geometry (and is probably the hardest
exercise in this problem set). Ask for hints/help once you’ve thought about
it a little.

Fix d > 0. Let Ad = {(a, b) : a + b ≤ d, a, b ≥ 0}. Fix a polynomial f =∑
(a,b)∈Ad

cabx
ayb with cab ∈ C{{t}}. The regular triangulation of Ad induced

by f is obtained by taking the convex hull of the points {(a, b, val(cab) : (a, b) ∈
A} and taking the (projections of the) set of lower faces. These are the faces
that you can see if you look from (0, 0,−N) for N � 0.

Example: Let d = 2, so A2 = {(2, 0), (1, 1), (0, 2), (1, 0), (0, 1), (0, 0)}.
Let f = tx2 + xy + ty2 + x + y + t6. We form the convex hull of the points
{(2, 0, 1), (1, 1, 0), (0, 2, 1), (1, 0, 0), (0, 1, 0), (0, 0, 6)}. The lower faces of this
polytope are illustrated in Figure 1.
(a) Draw the regular triangulation of A2 corresponding to the polynomial

f = tx2 + xy + t3y2 + x + ty + 1.
(b) Draw the regular triangulation of A1 corresponding to the polynomial

f = t5x + t3y + t10.
(c) Draw the regular triangulation of A3 corresponding to the polynomial

f = t3x3 + tx2y + txy2 + t3y3 + tx2 + xy + ty2 + tx + ty + t3.
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Figure 1.

The dual graph to a triangulation has a vertex for every triangle. There
are two types of edges. The finite edges join two adjacent triangles, and
have direction orthogonal to the common edge of the triangles. The infinite
edges start at the triangles adjacent to the boundary of the large triangle
conv((d, 0), (0, d), (0, 0)), and have direction orthogonal to the external edge.
This is defined up to the lengths of the finite edges.

Example: In the example above, a dual graph for the regular triangula-
tion is shown in Figure 2.

Figure 2.

(d) Draw a dual graph to the regular triangulation of A2 corresponding to
f = tx2 + xy + t3y2 + x + ty + 1.

(e) Draw a dual graph to the regular triangulation of A1 corresponding to
f = t5x + t3y + t10.

(f) Draw a dual graph to the regular triangulation of A3 corresponding to
f = t3x3 + tx2y + txy2 + t3y3 + tx2 + xy + ty2 + tx + ty + t3.

(g) Let f =
∑

(a,b)∈Ad
cabx

ayb with cd0, c0d, c00 6= 0. Show that the tropical
curve defined by f is the image under x 7→ −x of a dual graph to the
regular triangulation defined by f .

(h) Check the previous claim for the examples of the first question.
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(i) Conclude that for sufficiently general f there are d tentacles pointing in
each direction. What can you say about the genericity condition? What
happens in the other cases?

Varieties

(1) If you haven’t already done so, read a proof of the Nullstellensatz. Suggested
references: Cox, Little, O’Shea, or Eisenbud’s commutative algebra course.

(2) Show that if 〈f1, . . . , fs〉 = 〈g1, . . . , gr〉 then V (f1, . . . , fs) = V (g1, . . . , gr).
(3) Show that V (I) ∩ V (J) = V (I + J).
(4) Show that V (I) ∪ V (J) = V (IJ) = V (I ∩ J).

(5) Show that V (I) \ V (J) = V (I : J∞).

(6) Let I = 〈x2, xy3, y2z, z4〉 ⊂ k[x, y, z]. Compute
√

I. What are the irreducible
components of V (I)?

(7) Show that the Zariski topology is a topology.
(8) Describe the subvariety of P3 defined by the ideal I = 〈x0x2 − x1x3, x0x2 −

x2
1, x1x3 − x2

2〉. Repeat for I = 〈x2
2 − x1x3, x

2
1 − x0x2, x1x2x3 − x0x

2
3, x0x1x2 −

x2
0x3〉. Explain what you notice. (You may find a computer algebra system

helps here - ask around until you find a fellow student who knows how to use
one if you don’t).

(9) Show that if X is an affine or projective variety or a subvariety of a torus, then
there is a largest ideal I ⊂ S with X = V (I) in the sense that if X = V (J)
then J ⊆ I.

(10) What is the dimension of the affine variety V (I) for I = 〈x1, x2〉 ⊂ A5? What
about the affine variety V (x2

1 − 3x2x3) ⊂ A3? What is the dimension of the
projective variety V (〈x0x2 − x1x3, x0x2 − x2

1, x1x3 − x2
2〉)?

(11) Let I = 〈x2
1 + x2, x

2
2 + x3〉 ⊂ k[x1, x2, x3]. What is the multiplicity of the

intersection of the affine varieties V (I) and V (xi) for i = 1, 2, 3?
(12) Show that there is a unique curve of degree two through any five points in P2

in general position. What is the genericity condition?


