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Stability analysis of perturbed plane Couette flow
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Plane Couette flow perturbed by a spanwise oriented ribbon, similar to a configuration investigated
experimentally at the Centre d’Etudes de Saclay, is investigated numerically using a
spectral-element code. Two-dimensional~2-D! steady states are computed for the perturbed
configuration; these differ from the unperturbed flows mainly by a region of counter-circulation
surrounding the ribbon. The 2-D steady flow loses stability to three-dimensional~3-D! eigenmodes
at Rec5230, bc51.3 for r50.086 and Rec'550, bc'1.5 for r50.043, whereb is the spanwise
wave number and 2r is the height of the ribbon. Forr50.086, the bifurcation is determined to be
subcritical by calculating the cubic term in the normal form equation from the time series of a single
nonlinear simulation; steady 3-D flows are found for Re as low as 200. The critical eigenmode and
nonlinear 3-D states contain streamwise vortices localized near the ribbon, whose streamwise extent
increases with Re. All of these results agree well with experimental observations. ©1999
American Institute of Physics.@S1070-6631~99!00305-0#
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I. INTRODUCTION

It is well known that, of the three shear flows most co
monly used to model transition to turbulence, plane P
seuille flow is linearly unstable for Re.5772, whereas pipe
Poiseuille flow and plane Couette flow are linearly stable
all Reynolds numbers; see, e.g., Ref. 1. Yet, as is also
established, in laboratory experiments, plane and pipe
seuille flows actually undergo transition to three-dimensio
~3-D! turbulence for Reynolds numbers on the order of 10
For plane Couette flow, the lowest Reynolds numbers
which turbulence can be produced and sustained has
shown to be between 300 and 400 both in numer
simulations2,3 and in experiments.4,5

The gap between steady, linearly stable flows which
pend on only one spatial coordinate and three-dimensio
turbulence can be bridged by studying perturbed version
Couette and Poiseuille flow. Plane Couette flow perturbed
a wire midway between the bounding plates and oriente
the spanwise direction has been the subject of labora
experiments by Dauchot and co-workers6–8 at CEA-Saclay.
Our goal in this paper is to study numerically the flows a
transitions in a configuration similar to that of the Sacl
experiments.

Previous studies of plane channel flows have used a
riety of approaches. We briefly review these, emphasiz
computational investigations and the plane Couette case

One approach is to seek finite amplitude solutions
transition Reynolds numbers and to understand the dyna
of transition in terms of these solutions. Finite amplitu
solutions for plane Couette flow have been found for R
nolds numbers as low as Re5125 by numerically continuing
steady states or traveling waves from other flows: the w
Taylor vortices of cylindrical Taylor–Couette flow b
1181070-6631/99/11(5)/1187/9/$15.00
-
i-

r
ll
i-
l
.

at
en
l

-
al
of
y

in
ry

a-
g

t
ics

-

y

Nagata9,10 and Conley and Keller,11 and the wavy rolls of
Rayleigh–Be´nard convection by Busse.12 Most recently,
Cherhabili and Ehrenstein13,14 succeeded in continuing
plane-Poiseuille-flow solutions to plane Couette flow, via
intermediate Poiseuille–Couette family of flows. The
showed that in proceeding from Poiseuille to Couette flo
the wave speed of the traveling waves decreases and
streamwise wavelength increases, as does the number of
monics needed to capture them. When the Couette lim
reached, the finite amplitude solutions are high
streamwise-localized steady states. The minimum Reyn
number achieved in these continuations is Re51500. None
of these steady solutions of plane Couette flow obtained
far are stable.

A second, highly successful, approach has been to s
the transient evolution of linearized plane Couette flow. A
though all initial conditions must eventually decay and t
most slowly decaying mode must be spanwise invariant
Squire’s theorem, the non-normality of the evolution ope
tor allows large transient growth. Butler and Farrel15

showed that a 1000-fold growth in energy could be achie
from an initial condition resembling streamwise vortic
which are approximately circular and streamwise invaria
Reddy and Henningson16 computed the maximum achievab
growth for a large range of Reynolds numbers. An interp
tation is given by these authors and by Trefethenet al.17 in
terms of pseudospectra: the spectra of non-normal opera
display an extreme sensitivity to perturbations of the ope
tor. Thus, slightly perturbed plane Couette or Poiseu
flows may be linearly unstable for much lower Reynol
numbers than the unperturbed versions.

A third broad category of computational investigation
the study of nonlinear temporal evolution in relatively tam
turbulent plane channel flows. Orszag and Kells18 and
7 © 1999 American Institute of Physics
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Orszag and Patera19 showed that finite amplitude spanwis
invariant states of plane Poiseuille flow are unstable to 3
perturbations; this is also true of quasiequilibria for pla
Poiseuille and Couette flow. Lundbladh and Johanss2

showed that turbulent spots evolved from initial disturban
resembling streamwise vortices if the Reynolds number
ceeded a critical Reynolds number between 350 and 3
Numerical simulations by Hamilton, Kim, and Waleffe3 of
turbulent plane Couette flow at Re5400 indicated that
streamwise vortices and streaks played an important role
quasicyclic regeneration process. Coughlin20 used weak forc-
ing to stabilize steady states containing streamwise vort
and streaks. These became unstable and underwent a s
regeneration cycle when the forcing or Reynolds num
was increased. The critical Reynolds numbers displaye
all of these numerical simulations are in good agreem
with experiments by Tillmark and Alfredsson4 and by Davi-
aud et al.,5 who reported turbulence at Re*360 and Re
*370, respectively.

The last approach we discuss, and the most relevan
this study, is perturbation of the basic shear profile, to el
instabilities that are in some sense nearby. If a geome
perturbation breaks either the streamwise or spanwise inv
ance of the basic profile, then the flow is freed from t
constraint of Squire’s theorem, which would otherwise imp
that the linear instability at lowest Reynolds number is to
spanwise invariant two-dimensional~2-D! eigenmode. A
perturbed flow with broken symmetry may directly under
a 3-D linear instability. One can hope to understand the
havior of the unperturbed system by considering the limit
which the perturbation goes to zero. For some tim
experimentalists21 have used perturbations to produ
spanwise-invariant Tollmien–Schlichting waves arising s
critically. More recently, for example, Schatzet al.22 inserted
a periodic array of cylinders in a plane Poiseuille experim
to render this bifurcation supercritical. In plane Couette flo
Dauchot and co-workers at Saclay6–8 found that streamwise
vortices could be induced for Reynolds numbers around
when a wire was placed in the flow~the exact range in Rey
nolds number for which the vortices occur depends on
radius of the wire!. They suspected that these vortices ar
from a subcritical bifurcation from the perturbed profile, b
did not determine this.

In this paper, we numerically study the destabilization
plane Couette flow when a ribbon is placed midway in
channel gap~Fig. 1!. The ribbon is infinitely thin in the
streamwise~x! direction, occupies a fractionr of the cross-
channel~y! direction, and is infinite in the spanwise~z! di-
rection. This geometry is similar, though not identical, to th
used in the Saclay experiments. In the experiments, the
turbation is a thin wire with cylindrical cross section. He
we use a ribbon because it is much easier to simulate num
cally. For the experimental or numerical results to be
wider importance, the particular shape of the perturbat
should not be important, as long as it is small.

We shall address the extent to which a small geome
perturbation of the plane Couette geometry affects the sta
ity of the flow. We will show that a small geometric pertu
bation does indeed lead to a subcritical bifurcation to stre
D
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wise vortices, at Reynolds numbers and wave numb
which agree well with the Saclay experiments.

II. NUMERICAL COMPUTATIONS

The computations consist of three parts:~1! obtaining
steady 2-D solutions of the Navier–Stokes equations,~2! de-
termining the linear stability of these solutions to 3-D pe
turbations, and~3! classifying the bifurcation via a nonlinea
stability analysis. Here we outline the numerical techniqu
for carrying out these computations.

A. 2-D steady flows

Our computational domain has been shown in Fig. 1.
nondimensionalize lengths by the channel half-heighth, ve-
locities by the speedU0 of the upper channel wall, time by
the convective timeh/U0 . There are two nondimensiona
parameters for the flow, which we take to be the usual R
nolds number for plane Couette flow, Re5hU0 /n, wheren is
the kinematic viscosity of the fluid, and the nondimension
half-height of the ribbonr, hereafter called its radius fo
consistency with the Saclay experiments. We view the~non-
dimensionalized! streamwise periodicity length 2L as a nu-
merical parameter which we take sufficiently large that
system behaves as though it were infinite in the streamw
direction.

The fluid flow is governed by the incompressib
Navier–Stokes equations:

]u

]t
52~u–“ !u2“p1

1

Re
¹2u in V, ~1a!

“–u50 in V, ~1b!

subject to the boundary conditions:

u~x2L,y!5u~x1L,y!, ~2a!

u~x,y561!56 x̂, ~2b!

FIG. 1. Flow geometry considered in the paper. The upper and lower c
nel walls are separated by distance 2h and move with velocitiesU0x̂ and
2U0x̂, respectively. An infinitely thin ribbon~the bold line! is located
midgap in the channel and has height 2rh (r50.086 for the case shown!.
The computational mesh~macro elements! used in our calculations is
shown, as is the~fine! collocation mesh for polynomial orderN58 ~five
elements in the enlargement!. The ribbon is formed by setting no-slip
boundary conditions on the edges of two adjoining elements. Peri
boundary conditions are imposed over length 2Lh in the horizontal direc-
tion. The full geometry shown has aspect ratioL510. The system is homo-
geneous in the spanwise~z! direction normal to the figure.
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u~x50,y!50 for 2r<y<r, ~2c!

whereu[(u,v,w) is the velocity field,p is the nondimen-
sionalized static pressure, andV is the computational do
main. The pressurep, like u, satisfies periodic boundary con
ditions in x.

Time-dependent simulations of these equations in
dimensions (w[0, ]/]z[0) are carried out using the spe
tral element23 program PRISM.24,25 In the spectral elemen
method, the domain is represented by a mesh of macro
ments as shown in Fig. 1. The channel height is spanne
5 elements while the number of elements spanning
streamwise direction depends on its length: 24 elements
used forL532 and 36 elements forL556. The no-slip con-
dition ~2c! is enforced by setting zero velocity boundary co
ditions along the edges of two adjoining mesh elements: T
interface defines the ribbon. If continuity were impos
along this interface, as is done on all other element bou
aries, then the flow would reduce to unperturbed plane C
ette flow. Thus the ribbon is modeled by a small~but signifi-
cant! change in the boundary conditions on just two edges
elements in the computational domain. Within each elem
both the geometry and the solution variables~velocity and
pressure! are represented usingNth order tensor-produc
polynomial expansions. The collocation mesh in Fig. 1~en-
largement! corresponds to an expansion withN58.

A time-splitting scheme is used to integrate the unde
ing discretized equations.26 Based on simulations with poly
nomial orderN in the range 6<N<12 and time stepsDt in
the range 1023<Dt<1022 we have determined thatN58
andDt50.005 give valid results over the range of Re co
sidered. These numerical parameter values~typical for stud-
ies of this type! have been used for most of the results
ported. Each velocity component is thus represented
about 7500 scalars forL532.

Steady flows used for our stability calculations ha
been obtained from simulations with Reynolds numbers
the range 100<Re<600. In all cases, the simulations we
run sufficiently long to obtain asymptotic, steady veloc
fields. We shall denote these steady 2-D flows byU(x,y).

B. Linear stability analysis

Let U(x,y) be the 2-D base flow whose stability
sought. An infinitesimal three-dimensional perturbati
u8(x,y,z,t) evolves according to the Navier–Stokes equ
tions linearized aboutU. Because the resulting linear syste
is homogeneous in the spanwise directionz, generic pertur-
bations can be decomposed into Fourier modes with sp
wise wave numbersb:

u8~x,y,z,t !5~ û cosbz,v̂ cosbz,ŵ sinbz!,
~3!

p8~x,y,z,t !5 p̂ cosbz

or an equivalent form obtained by translation inz. The vector
û(x,y,t)5(û,v̂,ŵ) of Fourier coefficients evolves accordin
to:
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]û

]t
52~ û–“ !U2~U–“ !û2~“2b ẑ! p̂

1
1

Re
~¹22b2!û in V, ~4a!

~“1b ẑ!–û50 in V, ~4b!

where “, etc., are two-dimensional differential operato
Equation ~4! is solved subject to homogeneous bounda
conditions:

û~x2L,y!5û~x1L,y!, ~5a!

û~x,y561!50, ~5b!

û~x50,y!50 for 2r<y<r. ~5c!

Equation~4! with boundary conditions~5! can be integrated
numerically by the method described in Sec. II A. For fix
b, this is essentially a two-dimensional calculation.27,28After
integrating~4!–~5! a sufficiently long time, only eigenmode
corresponding to leading eigenvalues remain. We use th
find the leading eigenvalues~those with largest real part! and
corresponding eigenmodes for fixed values of Re andb as
follows. A Krylov space is constructed based on integrat
~4!–~5! over K58 successive~dimensionless! time intervals
of T55. More precisely, we calculate the fieldsû(t), û(t
1T),...,û(t1(K21)T) and orthonormalize these to form
basisv1 ,v2 ,...,vK . We then define theK3K matrix Hi j

[^v i ,Lv j& whereL is the operator on the right-hand side
the linearized Navier–Stokes equations and^ & is an inner
product. Approximate eigenvaluess and eigenmodes
ũ(x,y,z) are calculated by diagonalizingH and using~3! to
reconstruct 3-D fields. Their accuracy is tested by comput
the residual r[isũ2Lũ i . If the eigenvalue–eigenmod
pairs do not attain a desired accuracy (r ,1025 for the case
here!, then another iteration is performed. The new vecto
added to the Krylov space and the oldest vector is discard
This is effectively subspace iteration initiated with a Krylo
subspace. More details can be found in Refs. 22, 27, and

We conclude this section by considering the effect of
streamwise periodicity length 2L on the computations. Re
call that we viewL as a quasinumerical parameter in that w
seek solutions valid for largeL. Figure 2 shows the depen
dence of the leading eigenvalues on streamwise length a
Re5250, b51.3 ~values near the primary 3-D linear insta
bility !. It can be seen that forL*32 the eigenvalue is inde

FIG. 2. Leading eigenvalue as a function of streamwise periodicity h
lengthL for Re5250,b51.3. ForL*32 the eigenvalue is independent ofL.
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pendent ofL. This is consistent with the structure of the ba
flow and eigenmodes shown in Sec. III. Most of the comp
tations reported have usedL532.

C. 3-D simulations

For the nonlinear stability analysis and for obtaini
steady 3-D flows, we carry out 3-D simulations of~1!–~2!
using the same spectral element representation in~x,y! de-
scribed above together with a Fourier representation in
spanwise directionz. We impose periodicity in the spanwis
direction by including wave numbersmbc for integersumu
,M /2, wherebc is the critical wave number found in th
linear stability analysis. The simulations we report useM
516.

III. RESULTS

A. 2-D steady flows

A typical steady 2-D flow for the perturbed Couette g
ometry is shown in Fig. 3. It is representative of base flo
for Reynolds numbers on the order of a few hundred wit
ribbon of sizer50.086. This was chosen to correspond
the radius of one of the cylinders used in the Sac
experiments.6–8 The Reynolds number Re5250 of the flow
shown is close to the threshold for the 3-D instability th
will be discussed in Sec. III B. Unless otherwise stated,
sults are forr50.086, Re5250, andL532.

In Fig. 3~a! it can been seen that, except near the ribb
the steady flow is essentially the parallel shear of unp
turbed plane Couette flow. The streamlines are as repo
experimentally in Ref. 6. As noted there, the Reynolds nu
ber based on the radius of the ribbon and the local velo
near the ribbon is very small compared to Reynolds numb
where separation or vortex shedding could be expected
Fig. 3~b! we plot the streamfunction of the deviationU

FIG. 3. The steady two-dimensional base flowU(x,y) at Re5250 for a
ribbon with r50.086. Only the central portion of the fullL532 domain is
shown.~a! Streamfunction contours ofU. The flow is nearly identical to the
parallel shear of plane Couette flow except very near the ribbon.~b! Stream-
function contours of the deviationU2UC highlighting the difference be-
tween the perturbed and unperturbed Couette flows. A region (uxu&3) of
positive circulation is established around the ribbon. The flow is centros
metric. ~c! The deviation over a larger streamwise extent showing regi
(3&uxu&24) further from the ribbon whose circulation is negative, like th
of UC . The flow is very weak; contours of the dominant part of this flow a
not shown. The slight lack of centrosymmetry is a graphical artifact.
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2UC whereUC5yx̂ is the unperturbed plane Couette profil
The primary effect of the ribbon is to establish a regi
(uxu&3) of positive circulation~opposing that of plane Cou
ette flow! surrounding the ribbon. Figure 3~c! shows U
2UC over a larger streamwise extent. Further from the r
bon are wider regions (3&uxu&24) in which the deviation is
weak, but has the same negative circulation as plane Cou
flow.

The size of the counter-rotating region is remarkab
uniform over the ribbon radii and Reynolds numbers that
have studied. We define the streamwise extent of
counter-rotating region as delimited byc(x,y50)50, i.e.,
the x values at which the streamfunction at midheighty50
has the same value as at the channel wallsy561. For r
50.086, the counter-rotating region varies fromuxu<2.18
for Re5150 to uxu<3.00 for Re5300, while for r50.043
the counter-rotating region varies fromuxu<2.10 for Re
5150 touxu<2.87 for Re5600. This insensitivity to the size
of r is significant in light of the 2-D finite-amplitude stead
states calculated by Cherhabili and Ehrenstein.13,14The states
found by these authors in unperturbed plane Couette fl
strongly resemble that in Fig. 3. These too have a cen
counter-rotating region surrounded by larger regions of ne
tive circulation. At Re52200, the counter-rotating region i
their flow occupiesuxu<2.31~see Figs. 10 and 11 of Ref. 13
Figs. 2 and 3 of Ref. 14! The similarity between the 2-D
flows for r50.086,r50.043, and, effectively,r50 leads us
to hypothesize that our 2-D perturbed plane Couette flo
are connected~via the limit r→0) to those computed by
Cherhabili and Ehrenstein.

We may also quantify the intensity of the counte
circulation. One measure is the maximum absolute value
v, which is attained very near the ribbon, at (x,y)
5(60.081,0). This value is approximately independent
Reynolds number, but decreases strongly with ribbon rad
vmax'0.031 forr50.086 andvmax'0.013 forr50.043.

An important qualitative feature of the flow can be se
in Figs. 3~b! and 3~c!: The flow is centrosymmetric, i.e., it is
invariant under combined reflection inx and y, or equiva-
lently rotation by anglep about the origin. It can be verified
that the governing equations~1! and boundary conditions~2!
are preserved by the centrosymmetric transformation:

u~x,y!→2u~2x,2y!. ~6!

The unperturbed plane Couette problem is also centros
metric. It is in fact symmetric under the Euclidean groupE1

of translations and the ‘‘reflection’’ consisting of the ce
trosymmetric transformation~6!. The ribbon in the perturbed
flow breaks the translation symmetry, but leaves the c
trosymmetry intact. Note that reflections inx or y alone are
not symmetries of either the unperturbed or the pertur
plane Couette problem because either reflection alone
verses the direction of the channel walls, violating t
boundary conditions~2b!.

In Fig. 4 we present streamwise velocity profiles near
ribbon. Foruxu.0.5, the Couette profile is very nearly reco
ered. Figure 4~b! shows streamwise velocity profiles of th
deviation from the linear Couette profile across the full cha

-
s
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nel. Close examination reveals that these profiles are not
in y, consistent with the fact that the system is neither sy
metric nor antisymmetric under reflection iny. The symmet-
ric partners to the profiles shown are at negativex values.

The profiles in Fig. 4 are similar to those Bottinet al.8

obtained in the Saclay experiments under similar conditio
It is not possible to compare directly with experiment b
cause of the difficulty in obtaining experimental veloci
profiles and because the geometric perturbations differ in
computations and experiments. The only noticeable dif
ence between experiments and computations is that the
files Fig. 4~b! are very nearly odd iny, whereas in experi-
ment this lack of symmetry is more pronounced.

Finally in Fig. 5 we quantify the deviation between pe
turbed and unperturbed plane Couette flow by plott

the energy per unit lengthE(U2UC)[*21
1 dy1

2uU(x,y)
2UC(y)u2 as a function ofx for 256<x<56. The data show
a narrow central region, corresponding to the regionuxu
<2.76 of positive circulation seen in Fig. 3~b!, where the
deviation falls sharply and approximately exponentially inx.
For uxu.2.76, the deviation, while very small, decays ve
slowly ~and not exponentially! with uxu. The boundariesx
5623.78 terminating the outer region of negative circu
tion can also be seen in Fig. 5. The precision of the com

FIG. 4. Streamwise velocity profiles in the perturbed geometry.~a! U(x,y)
as a function ofy for x50.081 ~dotted!, x50.25 ~dashed!, and x50.5
~solid!. Only the central portion of the channel is shown. Only very close
the ribbon does the velocity differ significantly from the linear profile.~b!
DeviationU(x,y)2y over the full range ofy.

FIG. 5. Energy of deviation between perturbed and unperturbed Cou
flows as a function ofx. Parameters are the same as in Fig. 3 except
hereL556. Abrupt changes in slope atuxu52.76,uxu523.78 correspond to
changes in the sign of the circulation ofU2UC . For uxu*40, the deviation
is below the precision of the computations.
dd
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e
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ro-
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-
u-

tations is surpassed beyonduxu540. Figure 5 shows that fo
uxu.32 the deviation of the base flow from Couette is inde
very weak and this supports our choice ofL532 as an ad-
equate domain size for most computations.

B. 3-D linear stability results

The two-dimensional steady flows just discussed beco
linearly unstable to three-dimensional perturbations when
Reynolds number exceeds a critical value Rec . To determine
this value and the associated wave number, we have
formed a linear stability analysis of the steady flows via t
procedure described in Sec. II B.

Figure 6 shows the growth rates of the most unstable
three-dimensional eigenmodeû as a function of Re and span
wise wave numberb for a ribbon withr50.086. For each
value Re, we have fit a piecewise-cubic curve, shown in F
6, through the eigenvalue data to determine the wave num
bmax(Re) which maximizess. The critical Reynolds numbe
Rec is then determined by linear interpolation o
s@bmax(Re),Re# through these maxima and finding its ze
crossing. From this we find critical values for the onset
linear instability to be Rec5230 andbc51.3 for the ribbon
with r50.086. These values are consistent with what is s
experimentally, but we delay discussion until the conclusi

Figure 7 shows similar eigenvalue spectra for a ribb
half as large:r50.043. The critical wave numberbc'1.5 is
only slightly larger than the previous value. However, t
critical Reynolds number is much larger: Rec'550. The

tte
t

FIG. 6. Growth rates of most unstable three-dimensional eigenmode a
function of spanwise wave numberb for Re5150,200,250,300 with ribbon
radiusr50.086. Critical values for instability are Rec5230 andbc51.3.

FIG. 7. Growth rate of the most unstable eigenmode as a function ofb and
Re for r50.043. Critical values are Rec'550 andbc'1.5.
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critical Reynolds number must increase asr is decreased
since, when no ribbon is present, the problem reduce
classical plane Couette flow which is linearly stable for
finite Re, i.e., limr→0 Rec(r)5`.

We note that Cherhabili and Ehrenstein14 also calculate
3-D instability for their 2-D finite amplitude plane Couet
flows. Despite the resemblance of their 2-D flows to ours,
spanwise wave number corresponding to maximal growt
much larger in their case:b'23.

A computed eigenvectorũ5(ũ,ṽ,w̃) is shown in Figs. 8
and 9. This eigenvector is near marginal: Re5250, close to
Rec5230. The spanwise wavelength isl5lc[2p/bc

54.83. The other parameters arer50.086 andL532.
Figure 8 shows (ṽ,w̃) velocity plots at four streamwise

locations. In thex50 plane containing the ribbon, the flow
reflection symmetric iny, and the flow is primarily spanwise
The trigonometric dependence inz with the choice of phase
~3! can be seen. In the planesx51, x52, and x53, two
counter-rotating streamwise vortices are present. The fl
for negativex is obtained by reflection iny.

Figure 9 presents two complementary views of the
genvectorũ for 21,x,13. Above is a plot of (ũ,ṽ) in the

FIG. 8. Velocity field of near-marginal eigenvector in the planesx50, x
51, x52, andx53. Parameters are Re5250,r50.086,L532,l54.83. At
x50, the velocity is reflection-symmetric iny and primarily spanwise. The
ribbon is seen as the areauyu,r50.086 with no flow. Streamwise vortice
are visible forx>1. The scale for distances inx is stretched by a factor o
3.333 relative to distances iny,z.

FIG. 9. Velocity field of near-marginal eigenvector in the planesz50 and
y50.
to
l

e
is

w

i-

planez50 where they are maximal@cf. Eq. ~3!#. Below is a
plot of (ũ,w̃) in the planey50 at midchannel height.

Figure 10 shows thex dependence of the spanwis
averaged energy per unit length

E~ ũ![
1

lc
E

0

lc
dzE

21

11

dy
1

2
uũu2. ~7!

Here, the eigenvector was computed in a larger domainL
556) in order to determine its long-range behavior. The
genvector is localized: the energy decays exponentially w
uxu and does not reflect the counter- and corotating region
the 2-D base flow seen in Fig. 5. The flow deficit due to t
ribbon produces the local minimum atx50.

We have also computed the vorticity of the eigenvect
Despite the streamwise vortices visible in Fig. 8,vx is the
smallest vorticity component andvz by far the largest over
most of the domain.

C. 3-D nonlinear stability results

Our method of nonlinear stability analysis has pre
ously been used to determine the nature of the bifurcatio
three dimensionality in the cylinder wake.28 The method is
based on tracking the nonlinear evolution of the 3-D flo
starting from an initial condition near the bifurcation at Rec .
‘‘Near’’ refers both to phase space~i.e., a small 3-D pertur-
bation from the two-dimensional profile! and to parameter
space~i.e., at a Reynolds number slightly above the line
instability threshold!. In essence we follow the dynamic
along the unstable manifold of the 2-D steady flow f
enough to determine how the nonlinear behavior devia
from linear evolution. From this we can determine very si
ply whether the instability is subcritical or supercritical.

Three-dimensional simulations are carried out forr
50.086 at Re5250, slightly above Rec5230, starting with
an initial condition of the form:

u~x,y,z!5U~x,y!1eũ~x,y,z!, ~8!

whereU is the 2-D base flow at Re5250, ũ is its eigenmode
at wave numberbc51.3, ande is a small number controlling
the size of the initial perturbation.

The restriction to wave numbers which are multiples
bc accurately captures the evolution from initial conditio
~8!, since the Navier–Stokes equations preserve this s

FIG. 10. Energy of near-marginal eigenvector as a function ofx. Parameters
are the same as in Figs. 8 and 9 except that hereL556. Vertical scale is
arbitrary.
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space of 3-D solutions. That is, we seek only to follow t
evolution in the invariant subspace containing the criti
eigenmode. We do not address the issue of whether
lc-periodic flow is itself unstable to long-wavelength pertu
bations.

To analyze the nonlinear evolution, we define the~real!
amplitudeA of the 3-D flow as

A[F 1

lc
E

0

lc
dzE

21

11

dyE
2L

1L

dx
1

2
uu1u2G1/2

, ~9!

whereu1(x,y,z,t) is the component of the 3-D velocity fiel
at wave numberbc , i.e.,A is the square root of the energy o
the flow at wave numberbc . ~A complex amplitude, not
required here, would include the phase of the solution in
spanwise direction.!

Figure 11 shows the time evolution ofA from our simu-
lations. The value ofe is such that the initial energy of th
3-D perturbation,eũ, is E5A251.6631025; the energy of
the base flowU is E521.3.

To interpret the nonlinear evolution, consider the norm
form for a pitchfork bifurcation including terms up to thir
order in the amplitude:

Ȧ5sA1aA3. ~10!

The leading nonlinear term is cubic because the 3-D bi
cation is of pitchfork type@an O(2) symmetric pitchfork
bifurcation#. The Landau coefficienta determines the non
linear character of the bifurcation. Ifa.0, then the nonlin-
earity is destabilizing at lowest order and the bifurcation
subcritical; if a,0, then the cubic term saturates the ins
bility and the bifurcation is supercritical.

Figure 11 includes curves for first-order evolution~i.e.,
Ȧ5sA) and the third-order evolution given by Eq.~10!. For
the first-order evolution, the eigenvalues for the bifurcation
has been computed via the linear stability analysis in S
III B. For the third-order evolution we have simply fit the on
remaining parameter,a, in the normal form. We followed

FIG. 11. Nonlinear growth of the amplitudeA of the 3-D flow from simu-
lation ~solid! at Re5250 plotted on linear and logarithmic scales. First-ord
~dotted! and third-order~dashed! dynamics are shown withs50.004 669
anda50.9. The faster than exponential nonlinear growth~i.e., positivea!
shows that the instability at Rec is subcritical.
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the approach in Ref. 28 of using the time seriesA(t) and the
known value ofs to estimatea from a.(Ȧ2sA)/A3. This
givesa50.960.05, a constant value forT<500, which de-
termines how long the third-order truncation is valid in th
case. The value ofa is essentially unchanged when the me
is refined by increasing the polynomial orderN to 10 or the
numberM of Fourier modes to 32. The magnitude ofa de-
pends on the definition ofA, but its sign does not. The fac
that a is positive indicates that the instability is subcritica
Figure 11 indicates that the 3-D flow has become steady
t'1000. The nonlinear saturation seen in the time serie
not captured by including a fifth-order term in the norm
form.

We have verified that the instability is subcritical b
computing nonlinear states below Rec . In Fig. 12, we show
the steady 3-D flow at Re5200. Figure 12 is analogous t
Fig. 8 depicting the eigenvector, so we will emphasize h
the ways in which the two flows differ. Small streamwis
vortices can be seen in each of the four corners of thx
50 plane containing the ribbon. The lower (y,0) pair
evolve with x into the strong pair of vortices atx51. The
vortices atx53 are tilted with respect to their counterpar
in the eigenvector, attesting to the nonlinear generation
the second spanwise harmonic 2b. The 3-D flow in they
50 andz50 planes~after subtraction of the dominant 2-D
base flow! is sufficiently similar to the eigenvector~Fig. 9!
that we do not present it here.

Streamwise velocityu contours of the 3-D flow atx
52 are shown in Fig. 13. The (v,w) projections of our 3-D
flow in Fig. 12, showing the tilted streamwise vortices, r
semble the depictions of optimally growing modes by But
and Farrell,15 of instantaneous turbulent flows by Hamilto
et al.3 and of weakly forced states by Coughlin.20 However,
our streamwise velocityu pictured in Fig. 13 differs signifi-
cantly from Refs. 3 and 20 in that theiru contours are much
more strongly displaced at the vortex boundaries. This

FIG. 12. 3-D velocity field in the planesx50, x51, x52, andx53. Pa-
rameters are Re5200, r50.086, L532, l54.83. At x50, four small
streamwise vortices can be seen in the corners of the domain. The l
(y,0) vortex pair evolves into the large vortices seen atx51. The scale for
distances inx is stretched by a factor of 3.333 relative to distances iny,z.
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probably due to the fact that our Reynolds number of 200
substantially lower than their Re5400.

Far from the ribbon, the 3-D flow returns to plane Co
ette flow. Figure 14 compares the energy distributionE(U
2UC) defined by~7! of the deviation of the 3-D flow from
plane Couette flow at Re5200 with that at Re5250. Note
that the 3-D flow is less localized than the correspond
eigenvector~Fig. 10!. It can be seen that at the higher Re
nolds number the deviation has higher energy, and imp
tantly, occupies a larger streamwise extent. This is in acc
with the experimental observation that the streamwise ex
of vortices in the perturbed flow increases with increas
Reynolds number.

We have attempted to determine the location of
saddle-node bifurcation marking the lower Reynolds num
limit of this branch of steady 3-D states; we believe tha
occurs just below Re5200. There remains nevertheless
slight uncertainty regarding the lower bound for these sta
because we have found evidence of two different types
branches of steady 3-D states over the range 200<Re
<250. The study of these states is further complicated by
fact that the time evolution to many of them is oscillator
indicating that their least stable eigenvalues are a com
conjugate pair. Further investigation is required to ascer
the full nonlinear bifurcation diagram.

We have also sought to determine how the scen
changes as the ribbon radiusr is decreased. Recall from Se
III B that for r50.043, we found Rec'550. At these param
eter values, 3-D simulations display chaotic time evoluti

FIG. 13. Streamwise velocity contours in the planex52 for the 3-D field.
Solid contours correspond tou.0, dashed contours tou,0.

FIG. 14. Energy of deviation from plane Couette flow of 3-D velocity fiel
at Re5200 ~dashed! and Re5250 ~solid! as a function ofx. The range inx
is taken larger than the computational domain (L532) to match the range o
Figs. 5 and 10.
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By decreasing Re, we have succeeded in computing a st
3-D steady state at Re5350. Since the simulation showe
chaotic oscillation for a long time~3000 time units! before
showing signs of approaching a steady state, there rem
the possibility that stable 3-D steady states are also attain
for higher Re. Simulations at Re5300 result in decay to the
basic 2-D state~although we do not exclude the possibility o
maintaining 3-D states by a more gradual decrease in R!.
This is consistent with simulations of the unperturbed pla
Couette geometry (r50) by Hamiltonet al.,3 who observed
chaotic oscillation for Re>400 and plane Couette flowUC

5yx̂ for Re5300. Other numerical2 and experimental4,5 in-
vestigations in the unperturbed plane Couette geometry
indicate a critical Reynolds number of 360–375 for tran
tion to turbulence. We plan to investigate ther dependence
of the steady 3-D states and their stability in a future pub
cation.

IV. CONCLUSION

We have performed a computational linear and nonlin
stability analysis of perturbed plane Couette flow in order
understand experiments recently performed at Saclay,6–8 and
more generally, three-dimensional flows in the plane Cou
system. We have accurately determined the extent to wh
the basic steady 2-D profile is modified by the presence o
small spanwise-oriented ribbon in the flow. We have det
mined that such a ribbon, comparable in size to the cylind
used in the Saclay experiments, is large enough to ind
linear instability of the basic profile at Reynolds numbers
order a few hundred.

We elaborate further on how our analysis compleme
the Saclay results. An experimental diagram was obtaine7,8

for the Reynolds number range of existence of various ty
of flows: 2-D, 3-D with streamwise vortices, intermitten
and turbulent. In these experiments it was not determi
whether the 3-D streamwise vortices arise from a linear
stability of the 2-D flow. Our results show that a small ge
metric perturbation does destabilize the 2-D flow in a su
critical instability and that the bifurcating solution is a 3-
flow with streamwise vortices. Specifically, for a nondime
sional radiusr50.086, we find Rec5230 and forr50.043,
we find Rec5550. The computed spanwise wavelength of t
most unstable mode is in good agreement with the value s
experimentally. The streamwise extent occupied by th
vortices decreases with decreasing Reynolds number, as
served in experiment, and is finite at the lower Reyno
limit of the 3-D flows.

The Reynolds number ranges for the steady 3-D flo
we have computed differ somewhat from those seen exp
mentally. Forr50.086, streamwise vortices were observ
experimentally over the range 150&Re&290. For r
50.086, we have thus far found steady 3-D flows only
Re>200. In experiments withr50.043, streamwise vortice
have been observed over the range 190&Re&310; we have
thus far found steady 3-D flows only for Re near 350. Ho
ever, a full study of the 3-D flows is still pending and ma
resolve these discrepancies.
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There are also minor qualitative differences between
results and the experimental findings. The first is that 2
flows in our computations are more nearly antisymmetric
the cross-channel directiony than in experiment~our Fig. 4
vs Fig. 4 of Ref. 8!. This is probably due to the fact that w
perturb our flow with an infinitely thin ribbon and not a wir
~cylinder! as in the experiment. However, based on the e
tence of instability in both cases, this small difference in
basic 2-D flow is probably not very significant. The oth
difference is due to the fact that our 3-D simulations impo
spanwise periodicity with a single critical wavelengthlc .
Experimentally, it is observed that the streamwise vorti
are not always regularly spaced in the spanwise directio

As stated in Sec. I, streamwise vortices can be mad
appear in channel flows via a number of approaches. Bu
and Farrell15 and Reddy and Henningson16 show that under
linear evolution, modes of this type can achieve very h
amplitude before eventually being damped. In the ps
dospectrum interpretation of Trefethenet al.,17,16 non-
normality leads to sensitivity of the spectrum: streamw
vortices are unstable modes of a slightly perturbed lin
stability matrix. Our results are entirely consistent with th
interpretation: the ribbon or wire serves as a specific real
tion of a perturbation to the stability matrix, and has inde
rendered the flow linearly unstable to streamwise vortice

Future computational work is needed to explore th
flows. Calculating complete bifurcation diagrams for the tw
casesr50.086 andr50.043 is the first priority. We plan to
study quantitatively and qualitatively the bifurcations
which the steady 3-D flows terminate at low Re and lo
stability at high Re. Our goal is to continue 2-D and 3
solutions of the perturbed system to the plane Couette c
r50.
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