
BIFURCATION ANALYSIS FOR TIMESTEPPERSLAURETTE S. TUCKERMAN � AND DWIGHT BARKLEY yAbstract. A collection of methods is presented to adapt a pre-existing time-stepping code to perform various bifurcation-theoretic tasks. It is shown that the im-plicit linear step of a time-stepping code can serve as a highly e�ective preconditioner forsolving linear systems involving the full Jacobian via conjugate gradient iteration. Themethods presented for steady-state solving, continuation, direct calculation of bifurca-tion points (all via Newton's method), and linear stability analysis (via the inverse powermethod) rely on this preconditioning. Another set of methods can have as their basisany time-stepping method. These perform various types of stability analyses: linearstability analysis via the exponential power method, Floquet stability analysis of a limitcycle, and nonlinear stability analysis for determining the character of a bifurcation. Allof the methods presented require minimal changes to the time-stepping code.Key words. bifurcation analysis, continuation, Stokes preconditioning, Newton'smethod, Arnoldi's methodAMS(MOS) subject classi�cations. 35B32, 58F39, 65F10, 65F50, 65H10,65H17, 65Mxx, 76Exx1. Introduction. The goal of the dynamical systems approach totime-evolution equations is a full conceptual picture resting on such basicbuilding blocks as steady states, limit cycles, and bifurcations. For partialdi�erential equations, constructing such a picture this is a formidable chal-lenge, whether the approach is analytical or numerical. From a numericalperspective, the spatial discretization of �elds results in a high dimensionalphase space. The vectors representing phase-space points are then so largethat the matrix operations required by standard dynamical systems algo-rithms are prohibitively expensive. (See [21] for a survey and references.)In addition, the basic interface for communication with dynamical systemssoftware is generally the right-hand-side of the evolution equation. For par-tial di�erential equations, this function may not be immediately availabledue to constraints such as incompressibility and boundary conditions.Instead, the basic numerical tool for studying partial di�erential equa-tions such as the Navier-Stokes or reaction-di�usion equations has usuallybeen temporal integration, or time-stepping. Since time-stepping codes canrepresent a considerable investment { on the order of a few years for devel-opment and veri�cation { it is desirable to be able adapt a time-steppingcode to carry out bifurcation analysis.Any timestepping scheme can already be, and often is, used for bi-furcation analysis without further modi�cation. Integration can proceeduntil a stable steady state is reached, or a control parameter gradually in-�LIMSI, B.P. 133, 91403 Orsay Cedex France. Email: laurette@limsi.fryMathematics Institute, University of Warwick, Coventry CV4 7AL, United King-dom. Email: barkley@maths.warwick.ac.uk1



2 LAURETTE S. TUCKERMAN AND DWIGHT BARKLEYcreased until a transition takes place, indicating a bifurcation. However,these techniques rely on waiting out slow exponential decay, or on arduousbinary searches, and make highly ine�cient use of both machine and hu-man resources. Other tasks cannot be carried out using time-integration atall: time-stepping will never converge to an unstable steady state nor to aneigenvector. Rapid algorithms have been developed for obtaining steadystates, bifurcation points, and eigenvectors directly, rather rather than asby-products of time-integration. Our goal is to adapt time-stepping codesto perform these algorithms e�ciently.We consider the Navier-Stokes equation in the following symbolic form:@tU = �(U � r)U �rP + �r2U(1.1a) = �(I �rr�2r�)(U � r)U + �r2U(1.1b) = N(U) + LU(1.1c)In equation (1.1b), we have set the pressure P to the solution of a Poissonequation whose right-hand-side is the divergence of the nonlinear inertialterm. The boundary conditions for this Poisson equation, and for theNavier-Stokes equations, are chosen and imposed in various ways, depend-ing on the particular numerical method. Equation (1.1c) serves to de�ne Nas the nonlinear operator corresponding to the combined inertial and pres-sure terms, and L as the linear operator corresponding to viscous di�usion.Formulation (1.1) can be generalized to include additional �elds, such astemperature, by including the corresponding balance equations, althoughwe continue to refer to U as the velocity.The velocity �eld U , and hence the operators L and N , are spatiallydiscretized according to the numerical method chosen. We denote the sizeof U byM . M is the number of spatial gridpoints (x; y; z) multiplied by thenumber of �elds (Ux, Uy, Uz, temperature, etc. ) and so can be quite large,on the order of 1000{50000. We shall use U to denote both the continuous�elds appearing in the partial-di�erential equations, e.g. (1.1c), and also asingle vector of length M of discretized values.It is a fortunate feature of the Navier-Stokes equations and of manyreaction-di�usion equations that the fastest timescales in the system arisefrom the linear operator L. Hence it is L which poses the severest constrainton numerical timestepping. Stability restrictions on the timestep arisingfrom the linear operator are overcome by treating the linear term implicitly,leaving the nonlinear term to be integrated by an easier, explicit method.The simplest implicit/explict scheme is �rst-order Euler timestepping:U(t+�t) = U(t) + �t [N(U(t)) + LU(t+�t)]= (I ��tL)�1(I +�tN)U(t)(1.2)We will assume that a computer program for time stepping by thismethod is available for the equations or applications of interest. (It is



BIFURCATION ANALYSIS FOR TIMESTEPPERS 3generally easy to transform a higher-order timestepping scheme, such asAdams-Bashforth, to a �rst-order Euler scheme.) Note that in equation(1.2) the operator (I � �tL)�1 need not be computed as a inverse ma-trix; most spatial discretization methods include tricks for acting with(I � �tL)�1 economically. It is precisely these tricks which we wish toexploit.Most bifurcation-theoretic tasks are speci�ed in terms of the JacobianNU + L of N + L, i.e. for the discretized system the matrix of partialderivatives @(NU + LU)i=@Uj where 1 � i; j � M . Although NU + L isde�ned formally as an M �M matrix, we emphasize that we never intendfor it to be constructed explicitly; our methods are all matrix-free. Instead,we require only the action of NU + L on a vector u. In the case of theNavier-Stokes equations, the action of the operator NU +L on a vector u isobtained from (1.1) by replacing (U � r)U by (U � r)u+ (u � r)U . Similarreplacements lead to the linearization of other nonlinear terms such asthe advection of temperature U � rT . It is straightforward to adapt thetimestepping algorithm (1.2) to carry out timestepping of the linearizedsystem, i.e. u(t+�t) = (I ��tL)�1(I +�tNU )u(t)(1.3)2. Steady-state solving. Steady states are solutions to:N(U) + LU = 0(2.1)Equations of type (2.1) are solved by Newton's method. One Newton stepfor (2.1) is: (NU + L)u = (N + L)U(2.2) U  � U � uU is the current estimate for the steady state, and u is a decrement whosesubtraction from U would yield an exact solution if (2.1) were linear.Although NU + L may be full (depending on the choice of spatialdiscretization method) in the sense that most of its elements are non-zero,it should be considered as sparse in the sense that acting with NU + L ona vector u requires far fewer than the M2 operations required to multiplyby an arbitrary M �M matrix. No matter what spatial discretization isused, NU + L will have some kind of regular structure.If NU +L is too large to be stored (M2 words), it certainly cannot beinverted or factored directly (operation count O(M3)). Conjugate gradi-ent iteration, or one of its variants for matrices which are not symmetricpositive de�nite, is the method of choice for solving sparse linear systems.(We will use the name conjugate gradient iteration to mean any of thesevariants.) Conjugate gradient algorithms can be written in matrix-free im-plementations, where only the action of the matrix on a vector is required,



4 LAURETTE S. TUCKERMAN AND DWIGHT BARKLEYrather than the individual matrix elements. However, (NU + L) is poorlyconditioned meaning, roughly, that it has a large range of eigenvalues.Hence, iterative solution via conjugate-gradient type methods convergesslowly. A poorly conditioned linear system will requireO(M) matrix-vectormultiplications to converge, or may not even converge at all.The remedy for this slow convergence is preconditioning, i.e. multipli-cation of both sides of (2.2) by a matrix which is an approximate inverseof NU + L. Recall from section 1 that L is responsible for the large rangeof timescales in the temporal evolution (1.1). For the same reason, L isthe primary cause of the poor conditioning of NU +L. However, the solu-tion to this problem in timestepping, i.e. implicit timestepping by operatorinversion as in (1.2), provides a ready preconditioner for the steady stateproblem.We multiply both sides of (2.2) by the operator (I � �tL)�1�t andperform some formal algebraic manipulations:(I ��tL)�1(NU + L)u = (I ��tL)�1�t(N(U) + LU)(I ��tL)�1[I +�tNU � (I ��tL)]u =(I ��tL)�1[I +�tN(U)� (I ��tL)]U[(I ��tL)�1(I +�tNU )� I ]u =[(I ��tL)�1(I +�tN(U))� I ]U(2.3)The key point is that the right-hand-side of (2.3) is the action ofthe time-stepping operator (1.2) minus the identity, i.e. the di�erence be-tween consecutive timesteps, and thus easily constructed using the existingtimestepping code. More importantly, the left-hand-side of (2.3) is theaction of the linearized time-stepping operator (1.3) minus the identity,i.e. the di�erence between two consecutive linearized timesteps.Note that, unlike the time-stepping scheme (1.2), whose validity inapproximating the solution to the di�erential equation (1.1c) is limited to�t � 1, the derivation of (2.3) does not depend at all on the size of �t.The replacement of (2.2) by (2.3) is legitimate for all �t, no matter howlarge. The criterion to be used in choosing the value of �t in (2.3) isexclusively that of e�ciency: how fast does conjugate gradient iterationon (2.3) converge? Empirically, for the problems we have investigated, wehave found that the fastest convergence is achieved for a �t which is 10-1000 times the �t used for timestepping. Heuristically, we reason that,since L is the source of the most widely spaced eigenvalues of NU + L,we seek a preconditioner that resembles L�1. Because (I ��tL)�1 is thetime-stepping operator for Stokes 
ow (where there is no nonlinear term),we call this technique Stokes preconditioning.We have used the BCGS (Bi-Conjugate Gradient Squared) algorithmimplemented in the NSPCG (Non-Symmetric Preconditioned ConjugateGradient) software package [18] For cases which we have studied, the solu-tion of (2.3) has taken on the order of 30-60 iterations, far fewer than our



BIFURCATION ANALYSIS FOR TIMESTEPPERS 5M of 5000-10000. Three to �ve Newton steps usually su�ce to converge toa steady state. Otherwise, a better initial guess, i.e. closer to a previouslycomputed steady state, is usually necessary.This method has been used to calculate steady states in sphericalCouette 
ow [15] and in a wide variety of convective 
ows: buoyancy-driven [2, 9, 22, 23, 24, 25] and capillary-driven [7, 9], in rectangular [7, 25]and axisymmetric [2, 9, 22, 23, 24] geometries, with vertical [2, 7, 22, 23, 24]and horizontal gradients [9, 25], in a magnetic �eld [22], and in a binary
uid [7, 25].3. Continuation. The most common steady bifurcations are saddle-nodes, also called turning points. At a saddle-node bifurcation, the solutionvector U ceases to be a function of the control parameterR. However, thereremains a single smooth curve of solutions (U;R). Locally, near a saddle-point bifurcation ( �U;R) is a function of Um, where Um is some typicalcomponent of U and �U is the vector consisting of all components of Uexcept Um; see, e.g. , [13]. Techniques which calculate steady states alonga branch, recognizing and adapting to saddle-node bifurcations, are calledcontinuation techniques. These techniques include strategies for extrapo-lating to predict the new steady state, for choosing the stepsize in R or inUm, for backtracking along a branch when Newton iteration does not suc-ceed, and for determining when a bifurcation is imminent. For discussionsof these important issues, see, e.g. , [21].The method described in section 2 for �nding steady states can beadapted to continuation. We rewrite our schematic equations (1.1) so thatR multiplies the nonlinear term. The system to be solved for (U;R) is:0 = RN(U) + LU(3.1a) 0 = p(U;R)� p� where p(U;R) � � Um near a saddle-nodeR otherwise(3.1b)The projection p(U;R) in (3.1b) serves to distinguish whether it is Um orR that is to be �xed. For the Navier-Stokes equations, the usual controlparameter R is the Reynolds number. For convection, R is the Rayleighnumber. The prescribed value p� depends on which of Um or R is �xed.Specifying a solution to (3.1a) by appending an equation of type (3.1b) iscalled local [21] or natural [13] parametrization.Substituting (U �u;R� r) for (U;R) in (3.1a), and expanding to �rstorder we obtain the linear system to be solved for the decrements (u; r),either: � RNU + L N(U): : : 0 : : : 1 �� ur � = � RN(U) + LUR� p� �(3.2a)or near a saddle-node:� RNU + L N(U): : : 1 : : : 0 �� ur � = � RN(U) + LUUm � p� �(3.2b)



6 LAURETTE S. TUCKERMAN AND DWIGHT BARKLEYIn (3.2a) and (3.2b), the vector of decrements (u; r) and the right-hand-side are (M + 1)-dimensional. In adapting a time-stepping code toperform continuation, it is desirable that vectors remain M -dimensional,in order to facilitate communication between subroutines performing taskslike Newton and conjugate gradient iteration and those performing 
uid-mechanical computations such as N(U) or (I ��tL)�1.In fact, although it is notationally convenient to write (3.2a) and (3.2b)as (M +1)� (M +1) systems, because the last equation involves only oneunknown, each of the systems is easily reduced to an M �M system. R orUm may immediately be set to its prescribed value p� (this would would betrue after one Newton iteration, since the last equation is linear) and r orum set to zero. Equation (3.2a) is then merely a restatement of equation(2.2), while equation (3.2b) reduces to(RNU + L)�u+N(U)r = RN(U) + LU(3.3)where �u = u except that �um = 0. Thus (3.3) is an equation for the Munknowns (�u; r).We wish to use the same data structures for conjugate gradient itera-tion as for 
uid-mechanical computations. We therefore store the controlparameter decrement r in the location, um, of the velocity decrement whichis �xed at zero. In the subroutine which computes the left-hand-side in(3.3), we precede the matrix-vector multiplicaion by unpacking the data:�ui  ui; for i 6= m(3.4a) �um  0(3.4b) r  um(3.4c)i.e. (�u; r) u. When the conjugate gradient iteration converges, the solu-tion vector must again be unpacked via (3.4) to update U and R.The system (3.3) can be preconditioned in the same way as system(2.2). By multiplying both sides of (3.3) by (I ��tL)�1�t(I ��tL)�1�t[(RNU + L)�u+N(U)r] =(I ��tL)�1�t(RN(U) + LU)we obtain[(I ��tL)�1(I +�t(RNU +N(U)r) � I ]�u =[(I ��tL)�1(I +�tRN)� I ]U(3.5)The right-hand-side of (3.5) is again the di�erence between consecutivetimesteps. The left-hand-side is the di�erence between consecutive lin-earized timesteps, with the additional replacement RNUu ! RNUu +N(U)r. The system (3.5) with a large �t is again rapidly solved by conju-gate gradient iteration, e.g. by BCGS.



BIFURCATION ANALYSIS FOR TIMESTEPPERS 74. Bifurcation points. We now wish to calculate bifurcation pointsdirectly using the techniques described in sections 1{3 above. A steadystate U undergoing a steady bifurcation at control parameter value R toan eigenvector H satis�es the following system:0 = RN(U) + LU(4.1a) 0 = RNUH + LH(4.1b) 0 = p(H)� p� � Hm � 1(4.1c)Equation (4.1c) represents one choice of normalization for the eigenvector,and serves to exclude H = 0.Writing these equations for the decremented vector (U�u;H�h;R�r)and expanding to linear order we get:24 RNU + L 0 N(U)RNH RNU + L NUH0 : : : : : : 1 : : : 0 3524 uhr 35 = 24 RN(U) + LURNUH + LHHm � 1 35(4.2)In writing (4.2), we have expanded (4.1b) for our quadratic nonlinearityN(U) as follows:NU�u(H � h) = ((U � u) � r)(H � h) + ((H � h) � r)(U � u)= (U � r)H � (u � r)H � (U � r)h+ (H � r)U � (H � r)u� (h � r)U +O(u; h)2= NUH �NHu�NUh+O(u; h)2so that (R� r)NU�u(H � h) =RNUH �RNHu�RNUh�NUHr +O(u; h; r)2It may be that a continuous known branch of solutions U exists forall R. This situation is widespread, at least in the literature, since thestudy of the stability of and bifurcations from a known branch of solu-tions is amenable to analysis. Examples of such branches of solutions arethe motionless conductive state in convection, azimuthal Couette 
ow inTaylor-Couette 
ow, and plane Couette and Poiseuille 
ows. Rather thansaddle-nodes, the steady bifurcations that occur are transcritical and, ifthe system has a symmetry of some kind, pitchforks.Elimination of (4.1a) by using a known solution U greatly reduces(4.2). The linear system to be solved for (h; r) at each Newton step becomes� RNU + L NUH: : : 1 : : : 0 � � hr � = � RNUH + LHHm � 1 �(4.3)Henry [7] observed that system (4.3) is almost identical to (3.2b) and canbe preconditioned and solved in the same way.This method has been used to calculate bifurcation points in varioustwo-dimensional convective 
ows [7, 9, 22, 25].



8 LAURETTE S. TUCKERMAN AND DWIGHT BARKLEY5. Linear stability analysis. We now consider the problem of deter-mining the linear stability of steady states. The stability of U is governedby the eigenvalues � of the Jacobian A � NU + L:(NU + L)u = �u(5.1)This follows from the fact that in�nitesimal perturbations from a steadystate U evolve according to the linear stability equations:@tu = (NU + L)u;(5.2)(we suppress the dependence on R). Knowing whether any eigenvaluehas a positive real part is su�cient to determine the stability of U . Inaddition, it is also useful to know how many eigenvalues are positive, ifothers are negative but close to zero, and the structure of the correspondingeigenvectors. In other words, we wish to know several leading eigenpairs {the eigenvalues of maximal real part and corresponding eigenvectors.Our matrices are considered to be su�ciently large that diagonaliza-tion, i.e. calculating all of the eigenvectors and eigenvalues via the QRalgorithm (operation count O(M3)), is not an option. Indeed, the vastmajority of the eigenvalues are super
uous for our needs.The basic technique for iterative calculation of selected eigenvaluesis the power method. In its simplest form, one acts repeatedly with amatrix A on an arbitrary initial vector u0. The sequence of vectors un �Anu0 approaches the dominant eigenvector, i.e. that whose correspondingeigenvalue is largest in magnitude, and the sequence of Rayleigh quotientshn � uTnAun=uTnun converges to that eigenvalue.The power method algorithm must be modi�ed in two respects forour purposes. First, we seek more than one eigenpair. Since several, pos-sibly complex, eigenvalues may be competing, we generally want to com-pute 2-4 eigenpairs accurately. The 2-4 eigenpairs desired are calculatedmore accurately if we also calculate, to lower accuracy, an equal numberof unneeded eigenpairs; these serve as an error-absorbing bu�er. Thus, wetypically compute 4-8 eigenpairs. The calculation of several eigenpairs isaccomplished by the Arnoldi method, or the block power or orthogonal sub-space iteration methods, which are all closely related generalizations of thepower method [1, 19] We form a sequence u0; Au0; : : : AK�1u0, whose spande�nes the Krylov space. K is the number of eigenpairs sought, i.e. about8. These vectors are orthonormalized to form a basis v1; v2; : : : vK for theKrylov space. We de�ne the M �K matrix V (i; k) � vk(i) and the K�KHessenberg matrix H � V TAV . (H is a K-dimensional generalization ofthe Rayleigh quotient.) When H is diagonalized, its eigenvalues approx-imate K of the eigenvalues of A, and its eigenvectors, multiplied by V ,approximate K of the eigenvectors of A. Care should be taken not to splita complex conjugate pair; if this situation occurs, it is easily remedied byincrementing K by 1.



BIFURCATION ANALYSIS FOR TIMESTEPPERS 9The second modi�cation required to adapt the power method for lin-ear stability analysis is to change the region of the complex plane in whicheigenvalues are sought. The dominant eigenvalues are of no interest to us:in the Navier-Stokes equations and in most reaction-di�usion equations,it is the negative eigenvalues corresponding to the most quickly dampedmodes that have the largest magnitude. This property of the Jacobian, in-herited fromL, has already been encountered in our discussions of timestep-ping (where fast timescales necessitate implicit timestepping) and steady-state solving (where poor conditioning requires preconditioning). We areinstead interested in the leading eigenvalues, i.e. those of largest real part.We consider two options.5.1. Exponential power method. The solution to the linearizedevolution equation (5.2) isu(t+�t) = e�t(NU+L)u(t)(5.3)The leading eigenvalues of any matrixA are the dominant ones of exp(�tA)for any positive �t. For �t� 1, the linearized time-stepping schemeu(t+�t) = (I ��tL)�1(I +�tNU )u(t)(5.4)that is already available provides an approximation to (5.3). The poweror Arnoldi method can be carried out on exp(�tA) by integrating the lin-earized equations via (5.4). Each linearized timestep serves as one iterationof the power method.The drawback of this comes from the requirement that �t� 1 in orderfor (5.4) to approximate (5.3). (Other timestepping schemes can be usedthat are more accurate than the �rst-order Euler scheme of (5.4), but thishas a minimal e�ect on the maximum �t allowed.) Let �1 > �2 > : : : bethe leading eigenvalues of A (all real, for simplicity), so that exp(�t�1) >exp(�t�2) : : : are the dominant eigenvalues of exp(�tA). Suppose we seekto calculate �1 via the simple power method on exp(�tA). It is easilyshown that one multiplication reduces the component in un correspondingto �2 by a factor of exp(�t(�2 � �1)). For �t � 1, this factor is closeto one, and convergence thus very slow. Similar reasoning applies to theblock power or Arnoldi methods. However, the exponential power methodis easily implemented and very reliable. Complex eigenpairs can be foundas easily as real ones. The exponential power method has been successfullyused to compute leading eigenpairs in many problems of hydrodynamicstability [2, 5, 6, 7, 9, 10, 11, 15, 16, 17, 20, 22, 23, 25].5.2. Inverse power method. In the most straightforward case, weseek the eigenvalue(s) nearest zero. The method of choice is then the inversepower method, which calls for acting repeatedly with A�1 instead of withA. The simple convergence analysis above then shows that the error ateach step is reduced by a factor of �1=�2. Near bifurcations, where �1 � 0,the convergence is thus extremely rapid.



10 LAURETTE S. TUCKERMAN AND DWIGHT BARKLEYIn section 2, we showed that the linear system involving NU +L aris-ing from Newton's method could be rapidly solved by conjugate gradientiteration if preconditioned with (I ��tL)�1�t, The following calculationsshow that the same preconditioning can be used to carry out the inversepower iteration un+1 = A�1un: un+1 = (NU + L)�1un(NU + L)un+1 = un(I ��tL)�1�t(NU + L)un+1 = (I ��tL)�1�tun(I ��tL)�1 [(I +�tNU )� (I ��tL)]un+1 = (I ��tL)�1�tun�(I ��tL)�1(I +�tNU )� I�un+1 = (I ��tL)�1�tun(5.5)We see that, just as in equation (2.3), the left-hand-side of (5.5) re-quires taking only the di�erence of consecutive linearized timesteps. Theright-hand-side consists of taking one linear (not linearized) timestep, mul-tiplied by �t. System (5.5), like (2.3) is well-conditioned in many cases ofinterest, and thus is solved rapidly by the same conjugate gradient variants,such as BCGS and GMRES. Equation (5.5) can be incorporated into theArnoldi or block power methods to compute the eigenpair more accuratelyand to calculate several eigenpairs whose eigenvalues are closest to zero.The calculation of complex leading eigenpairs by the inverse powermethod is more complicated. The eigenvalues sought are no longer neces-sarily those closest to zero. Shifting must be used to bring the eigenvaluesof interest close to zero: instead of solving Aun+1 = un, one solves(A� �(n)I)un+1 = un(5.6)where �(n) is the current estimate of one member of the complex conjugatepair of leading eigenvalues. Although shifting is in principle accomplishedmerely by substituting NU ��(n)I for NU in (5.4), several di�culties arise:Initial estimates of �(n)n may be di�cult to obtain. Di�erent shifts arerequired for eigenvalues with di�erent imaginary parts. Finally, for complexshifts either complex arithmetic must be used or equivalently a real problemof twice the size must be solved.This method has been used to compute real leading eigenvalues inspherical Couette 
ow [4] and complex leading eigenvalues in natural con-vection [8].6. Floquet stability analysis. Often one is interested in the stabil-ity of periodic orbits rather than of steady states. The exponential powermethod described in section 5.1 can be applied to this case with little mod-i�cation. Consider a T -periodic solution U(t mod T ) of equation (1.1).Through its dependence on U , the operator NU appearing in the linear-stability equations (5.2) is now also time periodic and the stability of aperiodic solution cannot be determined from the eigenvalues of the con-stant Jacobian matrix. Rather, stability is determined by the eigenvalues



BIFURCATION ANALYSIS FOR TIMESTEPPERS 11of the monodromy operator (matrix) B de�ned formally by:B = exp(Z t0+Tt0 dt0(NU (t0) + L)):(6.1)The operator B takes an in�nitesimal perturbation u of U at an initialtime t0 and evolves it forward under the linear 
ow to give the perturbationat time t0 + T . Heuristically (6.1) can be understood as stating that thestability or instability of a periodic orbit is a consequence of the way lineargrowth and decay combine around the entire orbit. Hence it is necessaryto follow a perturbation once around the orbit to assess overall growth ordecay. In practice, the action of B is approximated by integrating (5.2)over T=�t timesteps.The eigenvalues � of B are known as Floquet multipliers and are in-dependent of t0. The corresponding eigenmodes do depend on t0. For aninitial condition u(t0) to (5.2) which is an eigenmode of B, the solution to(5.2) is of the form u(t) = ~u(t mod T )e�t(6.2)where � = log(�=T ) is called a Floquet exponent and ~u(t mod T ) is calleda Floquet mode.The dominant Floquet multipliers (leading Floquet exponents) arethose of interest for stability and bifurcation analysis. These can be com-puted by applying the power method to the matrix B. In fact one can viewB as a generalization of the operator exp(�t(NU +L)) of (5.3), consideredin the exponential power method for steady states. The generalization toFloquet analysis leads to the following new considerations:The �rst issue for implementation is that acting with B on a vectoru means integrating the linear stability equations over one period and thismeans knowing the base solution U at a large number of time points (theintegration time steps). Because the solutions are periodic it is natural torepresent U(t) as a Fourier series and keep only enough modes to representU(t) to some desired accuracy. Then U can be found at any time byinterpolation. In studies of cylinder wake 
ow [3, 12] it was found that16 Fourier modes (corresponding to 32 time points over one period) weresu�cent to represent U(t) at arbitrary times to within the accuracy of thesimulation that produced U .The second issue is that, if the period T is long, the �rst few dom-inant eigenvalues of B may di�er greatly from one another. It shouldalways be possible to calculate the dominant eigenvalue by the exponentialpower method, but smaller multipliers may be di�cult or impossible to ob-tain if multiplication by B makes the corresponding components orders ofmagnitude smaller than the dominant ones. The method will break downaltogether if the periodic orbit approachs a homoclinic or heteroclinic sit-uation in which the period T goes to in�nity. See [14] for ways to handlesuch situations.



12 LAURETTE S. TUCKERMAN AND DWIGHT BARKLEYThis method has been used to calculate the three-dimensional insta-bility of limit cycles in two-dimensional open 
ows, in particular cylindricalwake 
ow [3, 12] and perturbed plane Poiseuille 
ow [20].7. Nonlinear stability analysis. In addition to computing bifurca-tion points, we want to distinguish between those which are subcritical andthose that are supercritical. The distinction arises in pitchfork and Hopfbifurcations and it can be explained most simply in terms of the normalform for a pitchfork bifurcation written as:@ta = �(R �Rc)a+ �a3(7.1)where a is the amplitude of the bifurcating solution, Rc is the bifurcationpoint, � is a positive constant of proportionality relating changes in Rto changes in the leading eigenvalue at the bifurcation, and �, called theLandau coe�cient, determines the nonlinear characture of the bifurcaton:� < 0 describes a supercritical bifurcation and � > 0 describes a subcriticalbifurcation. One can view the di�erence between these two cases eitherin terms of the direction of the bifurcating branches or in terms of thenonlinear 
ow along the center manifold at the bifurcation. Viewed thesecond way, the distinction is between a nonlinear 
ow at R = Rc that isstable (supercritical case) and a 
ow at R = Rc that is unstable (subcriticalcase).We can exploit the di�erence in the dynamics along the center man-ifold to distiguish the two cases through a relatively simple computation.We evolve the nonlinear equations (1.1) starting near the bifurcation point(near refers both to parameter space and to phase space) and ascertainwhether the nonlinear term is stabilizing or destabilizing. In practice we�nd that setting R slightly above Rc is the best approach (in part becauseRc is not known exactly). We compute the steady (slightly unstable) solu-tion U at this R. (In the case of a symmetry-breaking pitchfork bifurcation,this can be accomplished by time-stepping the equations restricted to thesymmetric subspace.) We then compute its leading eigenvector u by theexponential power method. We then start a nonlinear simulation using theinitial condition U + �u for some small �. Initially the simulation showslinear growth consistent with a small positive eigenvalue: �(R � Rc) > 0.When the dynamics deviates from linear growth, it is simple to estimate� from the time series and to thereby determine whether the bifurcationis subcritical or supercritical. Note that the dynamics in the two cases isvery di�erent. In the subcritical case, the nonlinear growth is faster thanthe linear growth, whereas in the supercritical case it is the other wayaround. Therefore the sign of �, which is the essential bit, can be foundvery reliably.This method has been used to demonstrate the subcriticality of pitch-fork bifurcations in cylindrical wake 
ow [3, 12], in perturbed plane Couette
ow [5], and in double-di�usive natural convection [25].
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