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A dielectric elastomer whose edges are held fixed will buckle, given a sufficiently applied

voltage, resulting in a nontrivial out-of-plane deformation. We study this situation numerically

using a nonlinear elastic model which decouples two of the principal electrostatic stresses acting

on an elastomer: normal pressure due to the mutual attraction of oppositely charged electrodes

and tangential shear (“fringing”) due to repulsion of like charges at the electrode edges. These

enter via physically simplified boundary conditions that are applied in a fixed reference domain

using a nondimensional approach. The method is valid for small to moderate strains and is

straightforward to implement in a generic nonlinear elasticity code. We validate the model by

directly comparing the simulated equilibrium shapes with the experiment. For circular electrodes

which buckle axisymetrically, the shape of the deflection profile is captured. Annular electrodes

of different widths produce azimuthal ripples with wavelengths that match our simulations. In

this case, it is essential to compute multiple equilibria because the first model solution obtained

by the nonlinear solver (Newton’s method) is often not the energetically favored state. We

address this using a numerical technique known as “deflation.” Finally, we observe the large

number of different solutions that may be obtained for the case of a long rectangular strip.

Published by AIP Publishing. https://doi.org/10.1063/1.5012848

I. INTRODUCTION

Dielectric elastomers (DEs) are a class of soft and flexible

actuating devices that deform when subjected to electric

fields. The significant mechanical strains available in DE sys-

tems, compared with competitive technologies, have driven

their development in numerous contexts, particularly in engi-

neering.1 In a number of applications, including pumps,2–4

loudspeakers,5,6 tactile displays,7,8 and others,9,10 a key com-

ponent is a purposefully induced buckling instability.

Typical DE setups involve a thin elastomer membrane

coated on opposite faces with areas of conducting material,

thereby partitioning the surface into electrically “active” and

“inactive” regions. A connecting circuit turns the active

regions into oppositely charged electrodes. This creates a

flexible capacitor in which the intervening dielectric (the

elastomer) is apt to deform under the influence of electro-

static forces. The conducting material is fabricated so that it

is free to bend and stretch with the elastomer without con-

straining its movement.

Figure 1(a) shows an example DE geometry in its zero

strain configuration, before any electric field E has been

applied. The medium is a thin cuboid, on which the top elec-

trode can be seen, shaded in gray. Typical materials used in

applications are isotropic and incompressible. They produce

significant strains in response to applied voltages on the

order of kilovolts. Figure 1(b) demonstrates the effect of an

applied electric field, in a simple situation in which the

lateral sides of the medium are unconstrained. When the

voltage is turned on, attractive forces arising from the charge

imbalance on the two electrodes push the top and bottom

faces of the elastomer together. This compression is coupled

to lateral expansion of the film via incompressibility. If

instead, the edges of the elastomer are held fixed in space,

the active region and surrounding area will buckle out-of-

plane as shown in Fig. 1(c). This is an inevitable conse-

quence of the incompressible material preserving its volume

under the compression of the electrodes. The equilibrium

shape adopted by a deformed elastomer is frequently non-

trivial and can contain waves or wrinkles.11–15

Figure 1(d) sketches the electric field lines between the

active regions in the ideal undeformed setting. For most of

the part, the field is constant between the electrodes and elec-

trostatic forces act perpendicular to the top and bottom surfa-

ces of the elastomer. At the conductor edges, the field lines

become slightly curved because mutual repulsion of like sur-

face charges does not balance, as it does in the center. The

result is a fringing field with a small nonzero component tan-

gent to the elastomer surface. This picture also holds approx-

imately for DEs after buckling due to the small interstitial

length scale. It should be noted that the electric field sche-

matic is based on an idealized understanding of a classical

parallel-plate capacitor and may not always reflect the exper-

imental situation in a DE, where the charge distribution may

not be completely uniform. Nevertheless, it suits our pur-

poses here, as will become clear.

The aim of this paper will be to numerically model

buckled DE shapes and make direct comparisons with exper-

imental deformation profiles and images. We propose a
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straightforward approach to DE modeling based on a signifi-

cant simplification of the underlying physics (including the

fringing effect), which is nonetheless able to match nontriv-

ial buckling shapes.

II. EXPERIMENT

The DEs used in the experiments are made of polyvinyl

siloxane (PVS) with a Young’s modulus of 250 6 15 kPa,

estimated with a standard tensile test on a strip. After mixing

equal amounts of the base and catalyst, the liquid PVS is

spincoated at 500 rpm for 15 s and cured, obtaining a solid

disc of approximate thickness 150 lm. The electrodes are

made of carbon black powder brushed onto the top and bot-

tom surfaces of the cured polymer using a stencil. They do

not change the mechanical properties of the surface.

Moreover, the adhesion of the powder is remarkably good

and the conductivity of the surface is maintained across the

full range of strains that we achieve. The resistivity of the

coating is in the order of a few hundred kilo-ohms.

Figure 2 shows the experiment in use. The DE is

clamped in a rigid circular polyvinyl chloride (PVC) frame

of diameter 10 cm without prestretching the material. In the

absence of applied voltage, it sags under its own weight. A

laser sheet is projected across the diameter of the active

region at an oblique incidence angle. Its deflection—moni-

tored using a camera directly above the experiment—is pro-

portional to the deflection of the elastomer surface, allowing

us to measure the vertical deformation of the system. At the

beginning of the experiment, as the voltage is increased from

zero, the membrane sags more and more as the central region

grows. However, after a threshold voltage is reached, the

system buckles, undergoing an axisymmetric deformation

that is strongly localized in the active region. In this paper,

we are concerned with capturing deformations after this ini-

tial buckling instability, for a variety of active region shapes.

For DEs with circular electrodes at still higher voltages, a

secondary instability has been observed that causes azi-

muthal wrinkling at the electrode edges.15

III. MODEL

Anticipating the nontrivial deformations observed in

applications, we place our elastomers in a nonlinear elastic-

ity setting. At equilibrium, they obey the elastostatics

equation

r � rðxÞ þ bðxÞ ¼ 0; (1)

where r is the Cauchy stress tensor, b is a body force (den-

sity), and the equation is posed over all of the material points

x that comprise the deformed object. By specifying both an

appropriate constitutive law and boundary conditions, this

equation can be solved for the deformation of the elastic

body. In our model, electrostatic forces enter the system via

the prescribed traction boundary conditions, which we shall

detail shortly.

Equation (1) is closed by specifying a particular strain

energy density function W. We shall use the isotropic

Mooney-Rivlin constitutive law, which in its incompressible

formulation is

W ¼ c1ðI1 � 3Þ þ c2ðI2 � 3Þ; (2)

for phenomenological model parameters c1, c2, where I1 and

I2 denote the first and second principal invariants of the

Cauchy-Green strain tensor. A variety of more sophisticated

laws, including the Ogden, Gent, Yeoh, and Arruda-Boyce

models, have been used in prior DE modeling studies. These

capture elastomer strain responses with greater accuracy,

especially at large strains.16–20 However, no prestretch is

applied to the elastomers in our experiments and we consider

only moderate strains. In this regime, we find the Mooney-

Rivlin law to be more than adequate for our purposes.

Moreover, an advantage to this model is that it only depends

on two parameters: c1 and c2. While elastomers can exhibit

viscoelastic properties,21,22 we shall work in the static setting

only and therefore need not consider viscoelasticity here.

FIG. 2. Overhead view of the experiment with the circular active region of

diameter 30 mm, before and after actuation. The applied voltages are: (a)

0 kV and (b) 4 kV.

FIG. 1. Diagrams of a dielectric elastomer in different situations. In parts

(a)–(c), the top electrode (active region) is shaded in gray. (a) DE with no

applied electric field (E ¼ 0). (b) DE with a strong applied electric field

(large jjEjj), which causes the elastomer to deform. If the boundaries of the

medium are free to move, the material compresses in the thickness direction

and extends laterally. (c) If the edges of the medium are instead held fixed,

the electrostatic forces between the electrodes force the elastomer to buckle

out-of-plane. (d) Two-dimensional cross-section through the middle of the

elastomer showing the fringing of the electric field E. The top and bottom

electrodes are represented by thick gray lines. The dashed lines with arrows

indicate the direction of the electric field. At the center, the field lines are

uniformly spaced and normal to the electrodes. At the edges, they warp,

leaving a small nonzero component of the electric field tangent to the

medium surface.
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We account for the effect of gravity with a constant

body force density b that acts vertically downwards. It has

magnitude qg, where q is the material density (assumed to

be constant) and g is the gravitational acceleration. This is

the only body force that appears in the model.

Finally and most importantly, we model the electrostatic

forces present in the system, due to the surface charge distri-

butions on the electrodes. These dictate components of the

Cauchy stress across the surfaces of the elastic medium and

hence the boundary conditions for Eq. (1). Specifically, if an

(area) force density s impinges on the surface of the

deformed body with unit normal n, then rn ¼ s. The trac-
tion vector s is determined by modeling considerations.

The principal traction is due to attractive forces between

the oppositely charged electrodes. The electrostatic pressure

(force density) p between the charged surfaces held at a volt-

age V and at a separation distance D is

p ¼ � 1

2
�

V

D

� �2

; (3)

where � is the permittivity of the region between the charges.

This dictates the Cauchy stress acting in the surface normal

direction within the active regions.

Towards the edges of the active regions, the electrostatic

force on the charge distribution has an additional component

that is tangent to the surface of the elastomer film. This arises

because the repulsive forces between like charges there are

not balanced, as they are in the center. This is indicated in

Fig. 1(d), which shows the resultant fringing of the electric

field lines at the edges. The tangential forces are small, com-

pared with the normal attraction between the electrodes.

Nevertheless, they cause the compliant electrodes to stretch

and pull on the material to a certain extent.

In this work, we make the simplifying assumption that

the above surface forces can be effectively captured by two

regions of constant traction corresponding to the normal

pressure and tangential fringing effect. A schematic of our

approach is shown in Fig. 3.

While the electrostatic forces are physically manifest on

the surfaces of the deformed body, in practice, our numerical

simulations use a standard Lagrangian coordinate system

corresponding to a fixed, zero-strain reference domain X0, as

seen in the figure. Hence, Eq. (1) and its boundary conditions

must be referred back to this configuration. Specifically, we

solve

r � SðXÞ þ b0ðXÞ ¼ 0; (4)

where S is the (first) Piola-Kirchhoff stress tensor and b0 is

the body force. These quantities are r and b, respectively,

written in the Lagrangian frame and are defined over all ref-

erence points X 2 X0. Spatial derivatives in Eq. (4) are taken

with respect to the reference co-ordinates. The traction

boundary condition in this setting is SN ¼ s0, where N is the

unit normal vector field on the surface of X0. Specification of

the reference traction vector s0 is the point at which electro-

static forces enter our model.

The normal electrostatic pressure is set by a constant

traction at the top and bottom electrode surfaces of magni-

tude sn, directed into the reference material body. The tan-

gential fringing effect is applied in a small annular

neighborhood of width s0, along the active region perimeter

(see Fig. 3). Its magnitude st is constant across this region

and its direction is given by the outward normal to the

boundary of the annulus. The sum of these two orthogonal

vectors at each point comprises the model reference traction

s0. It is important to note that in the physical system, the two

traction directions lie perpendicular and tangent to the sur-

face of the deformed configuration. By posing them in the

Lagrangian frame, we introduce a computationally conve-

nient assumption that is only reasonable when strains are

not too large. The values of sn and st will be discussed

momentarily.

In addition to the width s0, there are two important

length scales present in the model: the thickness of the

unstrained domain D0 and the characteristic length of the

active region l0. The exact definition of l0 depends on the

shape of the particular active region. In the case of the circle,

it refers to the diameter.

For a particular DE configuration, any ratio of electro-

static force components will not change if the potential dif-

ference across the plates is altered. This is simply because

the electrostatic equations are linear. Therefore, the ratio st/

sn seems like a natural candidate for a dimensionless param-

eter that determines the relative strength of the tangential

traction applied in the model. However, a better choice is

j :¼ s0

D0

st

sn
; (5)

which takes into account the length scales of the problem.

To see why this is necessary, let us consider a potential dif-

ference V between the active surfaces in the undeformed

geometry of Fig. 3. We know from Eq. (3) that the normal

pressure on each surface scales with (V/D0)2. Likewise, it

may be shown (e.g., using the Maxwell stress tensor) that the

fringing force at the active region edges scales with V2/D0.

The corresponding quantity in our model is s0st. Therefore,

electrostatics implies that s0st/D0sn should be constant with

respect to changes in D0. This scaling might cease to hold in

cases where D0 becomes comparable to l0, but in all cases,

we consider D0� l0.

In the system with deformations, the fringing force ft
and normal pressure p will be such that ft/Dp is constant,

where D is the deformed thickness. To keep this constant in

FIG. 3. Schematic of the model reference configuration X0, showing the appli-

cation of normal pressure sn (purple arrows), tangential traction st (orange

arrows), body force density qg, and the important length scales D0, l0, and s0.
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our model, it would be strictly necessary to apply a correc-

tion, allowing both st/sn and the directions of the applied

tractions to vary with the deformed geometry. Whilst we

have investigated such an approach, it is fundamentally more

complicated and does not appear to be any more predictive

for the phenomena considered in this study. Hence, we have

opted for the simplicity of maintaining constant j, as defined

in Eq. (5).

Through the dimensionless parameter j, we dictate the

relative strength of the tangential fringing force applied in

the model in a geometry-independent way. Note that j¼ 0

means no tangential shear and that larger j corresponds to a

larger relative strength of st. The value of j is investigated in

Sec. V. An implicit, but reasonable assumption in defining j
the way we do is that solutions to the model system are not

significantly affected by the width s0, provided that s0 is suf-

ficiently small relative to D0 and l0. This was verified in

detail for the 3 kV result presented later in Fig. 5. In practice,

we observe that for the thin simulation domains considered

herein, setting s0 smaller than l0 is all that is essential.

Indeed, it was necessary for such geometries that s0 be com-

parable to D0 in order to ensure that s0 covered a sufficient

number of points in the spatial discretization of Eq. (4).

The above treatment is a deliberately straightforward

and practical attempt to access some of the shapes adopted

by buckling DEs. It is worth reiterating here that while it is

physically motivated, our model is a simplification of the

full physics. The complete picture is very complicated, since

it involves a spatially varying charge distribution whose

equilibrium configuration is coupled to the mechanical

deformation. Numerous prior studies have therefore opted to

solve electrostatic equations and an elasticity model (or vis-

coelasticity model) in concert.23–32 Further detail may be

added to the physical picture by accounting for complex

interactions arising from polarization of the dielectric and

strain-dependent permittivity.33,34

Of particular relevance to our study is the work of

Vertechy et al.25 who considered “diaphragm actuators”—

buckled circular electrodes within a rigid inactive region. By

solving for the electric field both inside the DE and in the

surrounding free space, fully coupled with the elastostatic

problem, they were able to accurately match experimentally

observed displacements. Also notable is the recent observa-

tion by Wang et al.32 of a (simulated) instability in a dia-

phragm actuator, similar in character to both the secondary

instability of Ref. 15 and the wavy patterns that we demon-

strate below for annular electrodes.

A simpler modeling approach, derived from the field

theory of Suo et al.35 treats the electric field in the

Lagrangian frame as constant and perpendicular to the elec-

trodes, its effect on the mechanical stress mediated via a

free-energy function defined throughout the material. This

level of detail can be sufficient to capture many out-of-plane

deformations and instabilities well.36,37 Another way to sim-

plify matters (at least computationally speaking) is to reduce

the underlying equations to two spatial dimensions. This was

used in Ref. 38 to model DEs attached to frames that bend

and curl when activated.

By making the various simplifications detailed above,

we sacrifice a certain degree of precision in favor of a more

conceptually straightforward model. We argue that there are

only two electrostatic effects of principle importance: the

normal pressure and the fringing traction. Moreover, we are

content to treat these in a fixed reference frame, independent

of medium deformation. When applying our model, we use a

nondimensional approach, explained in Sec. V. This means

that we need not worry about matching the effective pressure

with the exact voltage and deformed material thickness.

Instead, model parameters are fitted such that the applied

tractions scale in a manner consistent with Eq. (3).

IV. METHODS

We perform nonlinear elasticity simulations using the

finite element continuum mechanics solvers from the Chaste

software libraries,39 which provide an incompressible nonlin-

ear elasticity implementation that we modified for our own

purposes. The nonlinear solver is a damped Newton’s method

and the linear solver is GMRES with a PETSc’s additive

Schwarz preconditioner, using LU factorization blocks.40 The

deformation map is solved on a zero-strain reference domain

X0, as depicted in Fig. 3, using tetrahedral quadratic elements.

Meshes are constructed using Gmsh,41 with a minimum of

two layers of tetrahedra in the thickness direction. To reduce

the number of degrees of freedom, these are refined more at

the active region and towards the center where most of the

strain occurs. Furthermore, we allow elements in the reference

domain to be longer in the transverse direction than they are

in their thickness. The ratio of these respective dimensions is

approximately 1.5:1 near the active regions and 10:1 near the

outer Dirichlet boundaries where there is very little deforma-

tion. In spite of these optimizations, the aspect ratios of the

physical system dictate that even the coarsest possible meshes

have many elements—typically our simulations use on the

order of 105 degrees of freedom.

A. Multiple solutions

The elastostatics equation [Eq. (1)] can have multiple sol-

utions. Consequently, there may be many different shapes that

an elastomer can adopt in which the material is in equilibrium

with the external forces imposed on it. This presents us with a

problem when attempting to predict the shape of a DE: the

solution that nature selects may not be the one that we happen

to find using our nonlinear solver. To address this issue, we

implemented an algorithm called “deflation,” whose use in the

context of numerical partial differential equation (PDE) solv-

ing is due to Farrell et al.42

The basic idea behind deflation is to factor out solutions

from a PDE system that are already known. In our case, we

seek the zeros of a nonlinear operator F defined by

FðuÞ ¼ r � SðuÞ þ b0, subject to the boundary conditions of

our model. Suppose that we have found solutions u1;…; un

already. Then, we solve the deflated system

Gðu; u1;…; unÞ :¼ aþ
Xn

i¼1

1

jju� uijjq

 !
FðuÞ ¼ 0 (6)
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for some a, q> 0. The deflated system has the same solution

set as FðuÞ ¼ 0, apart from the known solutions u1;…; un.

Any solution that we find to GðuÞ ¼ 0 is therefore a new

equilibrium state for the DE. The inclusion of the parameter

a dissuades the numerical method from improperly minimiz-

ing the residual of G below the solver tolerance by pushing

intermediate guesses further and further from the known

solutions.

The procedure to solve Eq. (6) was implemented using

PETSc.40 The augmentation of the nonlinear operator results

in a rank-one update to the system Jacobian, causing it to

lose its sparsity. Consequently, whenever it is needed, its

application is performed in terms of the Jacobian of the orig-

inal system via matrix-free methods. Similarly, the precondi-

tioner is implemented matrix-free and is computed via the

original preconditioner using the Sherman-Morrison formula

as suggested in Ref. 42. Below, we give some practical

details concerning how deflation was used to find multiple

DE shapes.

Controlling the order of the singularities in the deflated

system with q affects how close any additional candidate sol-

utions can get to u1;…; un, as does varying a. Selection of

these parameters can greatly alter which solutions can be

found by the nonlinear solver. Unfortunately, there is cur-

rently no way to work out a priori what the good choices of

a and q will be. In the situations where deflation was used,

we have aimed to maximize the number of solutions

obtained by scanning through the (a, q)-parameter space. To

do this, whenever deflation is used in this work, we fix

q¼ 1.5 and try many different a values in the range (0, 1].

(Whilst it would be more comprehensive to scan through a

range of exponents as well, this is much more time consum-

ing and was found to be a comparatively less effective way

to locate additional solutions.) The exact values of the shifts

used are not as important as the need to cover a range

encompassing different orders of magnitude. We begin defla-

tion with an initial a0, typically in the range [0.5, 1] and find

successive solutions until the nonlinear solver fails (e.g., due

to exceeding the maximum allowed iterations). Each time a

new solution is found, it is used as the new initial condition

for the solver, after applying a small perturbation to ensure

that the deflated operator is finite. After exhausting the solu-

tions that we can find with the initial a0, we continue, scan-

ning through a geometric progression of shifts an :¼ ~ran�1,

until an< amin, whereupon deflation is halted. For the sys-

tems considered in this paper, ~r ¼ 2=3 and amin ¼ 5� 10�3

have been used. At higher values of a, the nonlinear solver

stays near to the previously deflated solutions since the non-

deflated part of the system Jacobian is more significant with

respect to the deflated part. As a decreases, more remote sol-

utions become accessible, often at the expense of those with

shapes that are structurally close to the deflated ones. For

small values of a, Newton’s method may take very large

steps that decrease the residual of the deflation operator, but

not the residual of the original system. This can cause

numerical instabilities if it produces an intermediate guess

which is highly strained. To avoid this, we set an upper limit

on the original system residual which, if reached, causes the

algorithm to reset the initial condition and move on to the

next an. Finally, we note that after a solution has been

deflated, this does not prevent Newton’s method from taking

steps towards it. In general, the solver is not guaranteed to

find a region where it will converge quadratically to a new

solution and can spend a long time approaching the already-

deflated results. It is not uncommon for the method to take

more than 100 iterations to converge. To catch most of the

solutions, we allow for a maximum of 300 iterations.

In addition to finding solutions with deflation, we were

able to find a few additional equilibria using parameter con-

tinuation. In this regard, the most useful control parameter is

j. Starting from an initial solution with j¼j0, we gradually

increment or decrement j until the system adopts a qualita-

tively different shape. Then, continuing j gradually in the

reverse direction may produce a distinct solution. The inter-

pretation of this procedure is that the system passed a bifur-

cation point, uncovering a new solution branch, which we

can trace back to j0.

Given a set of distinct solutions, it is desirable to deter-

mine which will be preferred by the physical system. The

potential energy P of the DE is given by integrating the

strain energy density over the whole body, minus the work

done by the body forces and tractions. This is

PðuÞ ¼
ð

X0

WðuÞ dV �
ð

X0

b0 � u dV �
ð
@X0

s0 � u dA; (7)

where u is a function that gives the displacement of a mate-

rial point, relative to its position in the undeformed configu-

ration X0 and s0 is the field of tractions on the domain

boundary. We perform these integrations numerically over

the discretization mesh that we use to solve Eq. (1). This

allows us to calculate the minimum energy solution from the

shapes found.

V. RESULTS

A. Circular active region

Before delving into the details of matching simulations

with the experiment, we present a representative simulation

of a buckled DE with applied normal and tangential trac-

tions. Figure 4(a) shows a solution for a circular disc-shaped

elastomer with a circular active region at the center. The plot

FIG. 4. (a) Oblique view of a typical deformed configuration for a thin disc

with a circular active region, showing the overall deflection and localized

buckling in the active region, which is shaded in cyan. The inactive part is

shaded in light gray and the fixed outer edge of the domain is indicated.

Only a quarter of the geometry is simulated—the rest is accounted for via

boundary conditions which enforce reflection symmetry in the planes x¼ 0

and y¼ 0. The diameter of the full geometry is 666 2/3D0 and the diameter

of the full active region is l0¼ 266 2/3D0. Other parameters are: j¼ 0.6,

sn¼ 0.5, st¼ 0.0225, and qg¼ 0. (b) Schematic showing the boundary con-

ditions for the circular disc.
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is an oblique view of the deformed configuration, with the

active region indicated. To save computational effort, we

solve the elastostatics equation for only a quarter of the axi-

symmetric geometry. Consequently, we see a cross-section

of the elastomer in the figure and may easily inspect the solu-

tion’s out-of-plane deflection. Starting from the outer edge,

the profile slopes gently downwards, before an abrupt transi-

tion at the edge of the active region where the gradient

becomes much steeper. In the bulk of the active region how-

ever, the profile levels out and is close to flat. Figure 4(b)

indicates the boundary conditions used. The outer arc of the

disc is fixed in place with a Dirichlet condition. The other

two edges are free to move both in the radial direction and

out-of-plane (z-direction), while their remaining degree of

freedom is fixed. Solutions for these boundary conditions

correspond to solutions of the full problem with at least

reflection symmetry in the x and y directions. (In practice,

our circular-electrode solutions possess continuous rotational

symmetry in the xy-plane.)

In each of the following cases, the geometry of the simu-

lation is set such that the dimensions of the finite element

mesh equal those of the experiment. We set our model

parameters using a nondimensional approach, taking the

undeformed material thickness D0 to be the natural length

unit for the system. We choose s0 such that the tangent force

is applied over a width of at least two (quadratic) finite

elements. In all results, 10� s0/D0� 20. After fixing the

geometry, there are five free parameters in the model:

the Mooney-Rivlin constants c1 and c2, the density q, and the

tractions sn and st. We are free to choose c1¼ 1, since it may

be easily verified that any solution to the governing equations

satisfies those same equations after rescaling each model

parameter k by k 7!lk for any nonzero constant l. Moreover,

we found that varying the ratio c1/c2 had no noticeable effect

on the shape of our solutions in any of the contexts studied

herein. Hence, we set c1¼ c2¼ 1 throughout. The redundancy

of the c2 parameter suggests that, at least for the range and

type of strains that we consider, a Neo-Hookean constitutive

law (c2¼ 0) may be sufficient to model the elastomer well.

Figure 5 shows the comparison between simulation and

experiment for six different applied voltages. Each plot

shows the midline of a numerical solution restricted to the

y¼ 0 plane, together with the points of experimentally mea-

sured deflection. The experimental data covers the full diam-

eter of the elastomer. Therefore, the simulation midline in

this case is mirrored across the axis of symmetry in the plots.

When taking measurements in the experiment, the deflection

of the surface means that the laser does not travel exactly

through the elastomer diameter. Consequently, the experi-

mental data does not extend fully to the edges of the simula-

tion domain. In order for the experiment and model

geometries to match (in particular the electrode radii), it is

necessary to apply a correction. Therefore, we adjust the hor-

izontal scale of the experimental points by a small amount

(4.2%), chosen such that the edges of the laser trajectory

match those of the simulation domain.

The procedure for fitting the model parameters is as fol-

lows. First, the profile of the elastomer with no applied volt-

age is measured. In this case, there is only one free model

parameter—the material density—which is adjusted in the

simulations until the amplitude at the center matches that in

the experiment. Next, voltage is applied in the experiment to

produce significant additional strain in the elastomer and the

profile is measured again, in this case, at 3 kV. The nontrivial

shape adopted by the data points allows us to fit both sn and st

concurrently and thereby determine j [Eq. (5)]. This is

because the amplitude of the active region deflection and the

overall shape at the electrode boundary are effectively inde-

pendent of one another in the model. The amplitude of deflec-

tion corresponds roughly to the total applied traction while the

shape at the electrode boundary is determined by the ratio st/

sn. We will return to this point shortly. After making an initial

guess of their approximate magnitudes and ratio, sn and st are

incrementally increased or decreased (in concert) until the

solution amplitude matches that of the experiment. Next, to

match the profile shape, st is incremented or decremented.

Small discretionary adjustments to the tractions are then made

to improve agreement further. From this point on, both q and

st/sn are considered to be fixed.

We know from Eq. (3) that the normal pressure p is pro-

portional to (V/D)2. The two fitted results at 0 kV and 3 kV

uniquely determine the coefficient of proportionality.

However, since p depends on the deformed thickness D, the

amount of normal pressure for a given voltage is coupled to

the solution. Furthermore, we model p with the applied trac-

tion sn in the Lagrangian frame and the pressure that a given

sn corresponds to in the deformed body and also depends

on D. Specifically, one can show that sn/ p/D/V2/D3.

FIG. 5. Comparison of experimentally measured deflections with simulation

profiles for a succession of increasing voltages: 0 kV, 1 kV, 2 kV, 3 kV, 4

kV, and 5 kV. The aspect ratio is 1:1. The red crosses indicate the experi-

mental data points. The experimental geometry used was a thin disc, diame-

ter 100 mm, thickness D0¼ 0.15 mm, with centered circular electrodes,

l0¼ 40 mm. The yellow lines are midlines through a model simulation with

corresponding geometric parameters and j¼ 0.6 in each case. The gravita-

tional body force is qg¼ 3.6� 10�4 throughout. Applied tractions across the

different voltages are (to 4 significant figures): sn¼ st¼ 0 for 0 kV;

sn¼ 0.01857, st¼ 8.538� 10�4 for 1 kV; sn¼ 0.07633, st¼ 3.435� 10�3

for 2 kV; sn¼ 0.18, st¼ 8.1� 10�3 for 3 kV; sn¼ 0.347, st¼ 0.01561 for

4 kV; and sn¼ 0.6176, st¼ 0.02779 for 5 kV.
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Therefore, for the remaining voltages in Fig. 5, we determine

sn using an iterative procedure. Each step enforces the pro-

portionality condition using the deformed thickness (taken at

the center point) of the previous iteration. A similar approach

was used in Ref. 18. Successive iterations converge rapidly

to a normal pressure that scales correctly with the electric

field in the experiment. The applied tractions used in Fig. 5

all obey the correct scaling relation dictated by Eq. (3) to

within 1% relative error. Throughout this procedure, st is

selected such that st/sn (and thus j) stays the same.

The profile shapes obtained this way agree extremely

well across all the plots, even though the parameters were

only fitted using the 0 kV and 3 kV cases. For voltages greater

than or equal to 4 kV, there are very small discrepancies

which may, for instance, be due to the constitutive law used,

or the simplified treatment of the forces acting on the elasto-

mer in our model. Nevertheless, even at these higher strains,

the agreement between the model and experiment is good.

For the tractions used in this particular case with a circular

active region centered inside a disc, st/sn¼ 0.045. Taking into

account the geometric parameters, this corresponds to j¼ 0.6.

Since st is so small compared with sn, one may wonder

whether the tangential forces in the model may be neglected

altogether. However, despite its magnitude, slight changes in st

can have a marked effect on solutions. Indeed, we find that

j¼ 0.6 fits the experimental data better than either j¼ 0.58 or

j¼ 0.62, though the differences between model profiles are

subtle at this level. Figure 6 demonstrates the much more sig-

nificant effect of changing j by 60.2. Here, the 3 kV experi-

mental data from Fig. 5 are replotted alongside three model

profiles with j¼ 0.4, 0.6, and 0.8. As j increases, the propor-

tion of tangential force increases. This has two main effects.

Increased tension at the edges causes the active region to flat-

ten out and stretch. This in turn modifies the shape at the elec-

trode boundary. Both the j¼ 0.4 and j¼ 0.8 profiles feature

an abrupt change of gradient near the active region edge. Only

j¼ 0.6 features the smooth transition from the inactive to

active region that matches the experiment. Thus, for all further

results, we use j¼ 0.6 unless otherwise stated.

B. Annular active region

Another system of experimental interest is shown in

Fig. 7. In this case, the active region is annular. For a suffi-

ciently high applied voltage, this DE readily buckles to

produce azimuthal ripples in the active region. Wavelengths

measured from the experiment are robust over a range of

voltage (3–5 kV) and depend principally on the width of the

annulus. In particular, increasing the applied voltage from

the onset of this instability only acts to increase the overall

deflection of the DE and amplitude of its ripples. These rip-

ples in the active region are distinct from the much smaller

wavelength wrinkles that result from a pull-in instability.12

In the annular case, the active region has two edges.

Consequently, there is an additional tangential fringing effect

pointing radially inward. A diagram of the simulation

domain and imposed tractions is shown in Fig. 8(a). The two

fringing regions are both modeled with width s0 centered at

FIG. 6. Effect of tangential shear on the shape of model profiles. The verti-

cal axis has been scaled by a factor of 2 to show the variation between the

profiles more clearly. The red crosses are data points from the 3 kV experi-

ment in Fig. 5. The green, yellow, and blue lines are model results with

j¼ 0.4, 0.6, and 0.8, respectively. In each case, the total traction was chosen

so that the model profile matched the experimental deflection in the center,

at x¼ 50. The tractions were as follows: j¼ 0.4 used sn¼ 0.156, st¼ 4.68

� 10�3, j¼ 0.6 used sn¼ 0.18, st¼ 8.1� 10�3, and j¼ 0.8 used sn¼ 0.22,

st¼ 0.0132. All other model parameters match those from Fig. 5.
FIG. 7. Overhead view of an elastomer experiment with an annular active

region, whose geometry corresponds to the simulation in Figs. 8(b) and 8(c).

The inner radius of the annulus is r0¼ 17 mm, the outer radius is

R0¼ 25 mm, and D0¼ 0.15 mm. The applied voltage is 3 kV. Azimuthal rip-

ples are visible on the electrode; their undulation is highlighted by directing

a laser across the surface.

FIG. 8. (a) Diagram showing the top/bottom surface of the model setup for a cir-

cular disc with the annular active region. Compressive normal pressure sn is

applied into the page across the shaded gray area. Tangential surface tractions st

are applied at both boundaries of the active region in the two orange areas shown.

Important length scales are labeled: the inner radius r0 and outer radius R0 of the

active region annulus and its width l0 and width s0 over which the tangential trac-

tion is applied. (b) Example result from the setup is depicted in part (a). The blue

coloration indicates deformation in the negative z-direction. Deeper blue means

that a point is displaced further below its original position in the flat reference

configuration. The active region is indicated as an area of comparatively darker

shading. The geometry is set to match an experiment with r0¼ 17 mm,

R0¼ 25 mm, D0¼ 0.15 mm, and diameter 100 mm. Other model parameters are:

j¼ 0.6 and qg¼ 3.6� 10�4. (c) Oblique view of the result in part (b) showing

the overall deflection of the DE and the azimuthal ripples in the active region.
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the inner and outer radii of the electrode annulus, labeled r0

and R0, respectively. The characteristic length scale of the

active region l0 in this case refers to the width of the

annulus.

We use the same boundary conditions as for the circular

disc [see Fig. 4(b)], simulating only a quarter segment of the

whole system in order to save computational cost. However,

in this case, our buckled DEs do not possess continuous rota-

tional symmetry. Therefore, it is important to note that these

conditions place constraints on the range of admissible

wavelengths. In cases where the wavelengths are particularly

large, we increase our domain size to half a disc, ensuring

that the simulation can always fit many ripples within the

given domain.

Figures 8(b) and 8(c) show the overhead and oblique

views of a simulated result for an annulus of width 53 1/3D0.

The dimensions of this simulation correspond to the experi-

ment photograph in Fig. 7. From visual inspection, one sees

a qualitative agreement between the experiment and simula-

tion, both in the overall deformation profile and the character

of the ripples.

As mentioned above, there may be many distinct solu-

tions to the elastostatics equation [Eq. (1)] that are not

related by the symmetry. Indeed, for this system, it is possi-

ble to find solutions with different azimuthal wavelengths.

The wavelength selected by the physical system would typi-

cally be the one which minimizes the energy, given in Eq.

(7). This is not generally the solution first discovered by our

nonlinear solver. To overcome this problem, we use the

deflation method, described in Sec. IV A, to find as many dif-

ferent solutions as we can. The result pictured in Figs. 8(b)

and 8(c) is the minimum energy solution of four different

equilibrium configurations computed by this technique.

Likewise, the annular active region results below are all

energy minima from sets of deflated solutions. However,

deflation does not guarantee that every solution will be

found. To increase our confidence that these results are close

the global minima, we can compare their azimuthal wave-

lengths with measurements from the experiment.

Figure 9 shows simulations with various annular active

region widths. One sees that as l0 increases, the wavenumber

observed across the quarter segment decreases. This is

observed in the experiment: in Fig. 10, we show overhead pic-

tures of the experiment with different annular widths. These

correspond to the simulated geometries with l0¼ 20D0, 53 1/

3D0, and 80D0 and may be compared directly with the pic-

tures in Fig. 9. Qualitatively, there is a good agreement

between the two sets of images.

In Fig. 11, we plot both experimental and simulated rip-

ple wavelengths against l0 and see more clearly the quantita-

tive agreement between the two. The wavelengths are

calculated in both cases by dividing the circumference of the

circle of radius r0 þ 1
2

l0 by the observed wavenumber. The

results with l0¼ 12, 14, and 16 were obtained with a half-

disc simulation domain. There is a degree of uncertainty

associated with measuring these data points experimentally.

Nevertheless, the model does a good job of matching the

smaller reported wavelengths in the physical system.

Finally, we verify that 0.6 is indeed a good choice for j,

as it was in the case of circular electrodes. Figure 12 plots

simulations of the l0¼ 40D0 case for j¼ 0.4, 0.6, and 0.8.

To produce these solutions, we fix sn¼ 0.32 and vary st to

FIG. 9. Deformed configurations for a circular disc with annular active

regions of different widths l0. Each is the solution found with the lowest

energy after deflation. As l0 increases, so does the wavelength of ripples in

the active region. The extent of the active region in each case is indicated

with darker shading. Model parameters are the same as in Fig. 8, except r0

which was adjusted for each l0 as indicated.

FIG. 10. A selection of annular experiments with R0¼ 25 mm and different l0. The applied voltage is 3 kV. From left to right: l0¼ 3, 8, and 12 mm. The geom-

etries correspond to the first, third, and fifth simulations in Fig. 9, respectively.

FIG. 11. Width l0 of the annular active region versus the observed ripple

wavelength k for the experiment and model simulations. The experimental

parameters were D0¼ 0.15 mm with R0 fixed at 25 mm and various r0

between 7 and 22 mm. The applied voltage was 3 kV.
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achieve the desired j. Decreasing the amount of tangential

shear to j¼ 0.4 causes the edges of the active region to

crease slightly and the spacing between ripples becomes

uneven. Increasing to j¼ 0.8, flattens the active region and

the ripples disappear. In both cases, the effect on the radial

deflection profile is similar to Fig. 6.

C. Rectangular active region

A third simple, but important configuration is a long

rectangular elastomer with a rectangular active region, as

illustrated in Fig. 13(a). Provided that the length of the rect-

angle is sufficiently greater than its width, this system also

readily buckles to produce ripples along its length. This was

previously noted by Pelrine et al.11 Similar ripples in a pre-

stretched DE were also observed by D�ıaz-Calleja et al.43 Our

own experimental investigations, while not extensive, indi-

cate that the ripple wavelengths are approximately equal to

those observed in an annular active region of the same

width.

A schematic of our model setup is shown in Fig. 13(b),

alongside a representative result in Fig. 13(c). We consider a

rectangular geometry with its width aligned with the x-axis

and its length aligned with y. We assume that deformations

are symmetric about the midline in x and so only simulate

half the full width. Furthermore we, set the active region to

the full length of the domain. This effectively mimics a por-

tion of longer elastomer far from any physical boundaries in

y. All together, this means that the active region extends to

the edges of the computational domain on three sides.

The boundary conditions are as follows: the two short

edges of the domain are free to move in the x and z directions

only. Fixing them in y enforces a periodic symmetry.44 No

tangential force is applied in this direction. One of the two

long edges is held fixed, corresponding to a frame holding

the elastomer. The other long edge is free to move in the y
and z-directions, corresponding to the reflection symmetry

about the midline. The dimensions of the simulation domain

are of height H0¼ 250D0 and width L0/2¼ 92 1/2D0. The

width l0/2 of the simulated active region covers half of the

domain.

Similar to the case of an annular active region, the finite

extent of the domain means that some long wavelengths are

inaccessible. Guided by the results in the annular case and

intuition from experiments with rectangular electrodes, we

believe that the domain dimensions chosen are sufficient to

capture any important solutions.

We were able to obtain many solutions via deflation for

this geometry. These are shown in Fig. 14, with their corre-

sponding energies printed underneath. In this case, a variety

FIG. 12. Effect of tangential shear on annular active region simulations. All

model parameters match those in Fig. 8, except for r0 which was set to give

l0¼ 40D0 and st which was varied for different j as labeled.

FIG. 13. (a) Top-down picture of a rectangular strip DE, with the active

region shaded in gray. The dots indicate that the elastomer extends far in its

lengthwise extent. The dashed gray rectangle shows the region simulated in

our computations, which take advantage of the symmetries described below.

(b) Diagram of the boundary conditions for simulation. Periodic symmetry

is enforced at the top and bottom edges. The other two edges implement

reflective symmetry in the axis along the right-hand side. See the text for

details. Surface tractions sn and st are applied in the gray and orange regions,

respectively, as indicated. The definition of the characteristic width l0 for

this active region is as labeled. It covers half the simulated domain. (c) An

example deformed configuration. The active region is indicated with an area

of darker shading. As in the annular case, ripples are present. These follow

the direction of the strip’s longer dimension. The model parameters are:

j¼ 0.6, sn¼ 0.37, st¼ 0.0222, qg¼ 0, and the dimensions are height

H0¼ 250D0 and width L0/2¼ 92 1/2D0.

FIG. 14. Deflated solutions for a long rectangular strip. j¼ 0.6. The blue and red coloration indicate deformation in the z-plane. Darker red (blue) means that a

point is displaced further above (below) its original position in the flat reference state. Beneath each solution, the energy computed using Eq. (7) is printed.

Solutions that are equivalent under symmetry to the ones shown have been omitted.
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of interesting solutions can be found. To this end, we omitted

the gravitational body force from the model. This encourages

the DE to buckle up, as well as down and enables us to find

more solutions. In the center of the figure are solutions with

regular ripples, analogous to those seen in the annular active

region. To the left, there are four solutions composed of a

large wavelength mode and smaller ripples. To the right are

solutions with higher frequency ripples: one with regular rip-

ples, another with irregular ripples, and one with a smooth,

mostly flat active region. For each shape shown, reflections

in the planes y¼H0/2 and z¼D0/2 give solutions that are

equivalent under the symmetries of the problem. These have

been omitted from Fig. 14. The final two solutions to the

right were found using the parameter continuation technique

described in Sec. IV A. The highlighted entry is the mini-

mum energy solution. It is important to note that this was not

the first solution to be found by the nonlinear solver. In fact,

prior to using deflation, the only configuration accessible

was the leftmost solution in Fig. 14, which does not even

agree qualitatively with the minimum. Therefore, in this

case, it was essential to use deflation (or some alternative

method) to find multiple solutions and thereby identify the

correct equilibrium DE shape. We note that finding a higher-

energy solution at a lower wavenumber gives us reason to

believe that increasing the domain length will not produce a

lower energy minimum. Finally, preliminary experimental

investigations indicate that the minimum energy numerical

solution captures both the wavelength and amplitude of rip-

pling for a rectangular strip.

VI. DISCUSSION

We have presented a simplified numerical model for

capturing the shape of buckled DE. The electrostatic forces

acting on the dielectric are input as boundary conditions to

the nonlinear elastostatics equation. We have proposed that

the aggregate effect of the applied electric field on the elasto-

mer can be modeled as a normal pressure, due to the attrac-

tion between the electrodes, plus a small tangential traction

meant to capture the effect of the fringing field at the edges

of the active regions. The resulting boundary conditions are

easily implemented and while they represent a simplification

of the underlying physics, they are nonetheless able to pro-

duce close fits to experimental data.

The magnitude of the fringing force, relative to the

effective pressure, is captured by our model in a dimension-

less constant j. By tuning j to produce solutions best match-

ing the experimental deformation profiles, we have found

that j¼ 0.6. This value proved robust across different

applied voltages and different shapes of active regions. The

impact that the tangential traction has on solutions is signifi-

cant, despite its small magnitude. If the effect is left out of

the model (j¼ 0), we are unable to obtain deformation pro-

files that are even qualitatively correct.

We have computed deformed solutions for a variety of

active regions—circular, annular, and rectangular. For the

circular and annular cases, we have quantitatively compared

numerical solutions with experimental observations. In the

case of an annular active region, we observe that the

elastomer buckles to produce azimuthal ripples, which are

localized in the vicinity of the electrodes. Their wavelength

increases in proportion with the width of the annulus. This

trend is captured well by our model which produces solu-

tions in qualitative agreement with the experiment.

Our approach is quite generic and could be used for a

variety of elastomer geometries. Furthermore, the model is,

in principle, amenable to arbitrary active region shapes,

though some care would need to be taken at any nonsmooth

features such as corners. Prestretch may be applied by adjust-

ing the dimensions of the unstrained reference configuration

X0, relative to the imposed Dirichlet (fixed-displacement)

boundary conditions at the domain edges. While we would

not necessarily expect our model to be predictive in high-

strain regimes, it may be useful in some circumstances. For

instance, one effect of prestretch is to nonlinearly increase

the buckling threshold.15 Although the basic mechanism is

clear, the nonlinear dependence of the threshold is not cur-

rently understood. Since this phenomenon occurs at low pre-

stretch, a careful application of our model might capture it.

Finally, a key aspect of our study is the computation of

multiple solutions. We demonstrate that non-uniqueness of

equilibria must be considered whenever model configura-

tions are generated—a fact that has implications for any

study of patterns in nonlinear elasticity. In computing a sin-

gle solution to the elastostatics equation [Eq. (1) or Eq. (4)],

one cannot guarantee that it corresponds to the equilibrium

shape with the lowest possible potential energy. Indeed,

we observe that for a given set of model parameters, the

first solution located by our nonlinear solver (damped

Newton’s method) is typically not energetically favorable.

Consequently, it is desirable to find many different solutions

and work out which is favored by the system, either by com-

puting their potential energies via Eq. (7), comparing with

experimental data, or using some other physical argument.

Deflation is one such technique that can be used to find mul-

tiple solutions.42 For the annular active region, this was used

to find the lowest energy azimuthal wavelength, which was

subsequently compared with the experimental observations

in Fig. 11. Almost all of the model wavelengths reported in

our paper come from solutions that were only found after

applying the deflation method. In the analogous case of a

long rectangular strip, the first solution that we computed

does not even qualitatively resemble the minimum. By com-

puting multiple rectangular solutions, we identified many

interesting deformation patterns including ripples with dif-

ferent wavelengths, wrinkles, and creases.
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