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Turbulent–laminar intermittency, typically in the form of bands and spots, is a
ubiquitous feature of the route to turbulence in wall-bounded shear flows. Here we
study the idealised shear between stress-free boundaries driven by a sinusoidal body
force and demonstrate quantitative agreement between turbulence in this flow and
that found in the interior of plane Couette flow – the region excluding the boundary
layers. Exploiting the absence of boundary layers, we construct a model flow that uses
only four Fourier modes in the shear direction and yet robustly captures the range
of spatiotemporal phenomena observed in transition, from spot growth to turbulent
bands and uniform turbulence. The model substantially reduces the cost of simulating
intermittent turbulent structures while maintaining the essential physics and a direct
connection to the Navier–Stokes equations. We demonstrate the generic nature of this
process by introducing stress-free equivalent flows for plane Poiseuille and pipe flows
that again capture the turbulent–laminar structures seen in transition.

Key words: low-dimensional models, pattern formation, transition to turbulence

1. Introduction

The onset of turbulence in wall-bounded shear flows is associated with strong
intermittency, in which turbulent flow and laminar flow compete on long spatial and
temporal scales. More than a mere curiosity, this intermittency plays a key role in the
route to turbulence in many shear flows. Intermittent turbulence is well illustrated by
decreasing the Reynolds number in plane Couette flow – the flow between parallel
rigid walls moving at different speeds. For sufficientlylarge Reynolds numbers, the

† Email address for correspondence: matthew.chantry@espci.fr

c© Cambridge University Press 2016 791 R8-1

mailto:matthew.chantry@espci.fr
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.92&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.92&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.92&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.92&domain=pdf


M. Chantry, L. S. Tuckerman and D. Barkley

flow is fully turbulent and the fluid volume is uniformly filled with the characteristic
streamwise streaks and rolls of wall-bounded turbulence (figure 1a). With decreasing
Reynolds number, intermittency first arises as a large-scale modulation of the turbulent
streak-roll structures, eventually resulting in persistent oblique bands of alternating
turbulent and laminar flow (figure 1c). As the Reynolds number is lowered further,
the percentage of turbulent flow decreases until eventually the system returns to fully
laminar flow via a percolation transition (Pomeau 1986; Bottin & Chaté 1998; Shi,
Avila & Hof 2013; Manneville 2015). In the case of pipe flow, significant progress
has been made in understanding the various stages of the transition process (Moxey
& Barkley 2010; Avila et al. 2011; Barkley 2011; Barkley et al. 2015). However,
in systems with two extended directions such as plane Couette flow (Prigent et al.
2002, 2003; Barkley & Tuckerman 2005; Duguet, Schlatter & Henningson 2010),
Taylor–Couette flow (Coles 1965; Prigent et al. 2002; Meseguer et al. 2009) and
plane Poiseuille flow (Tsukahara et al. 2014; Tuckerman et al. 2014), many basic
questions remain concerning the formation and maintenance of turbulent bands and
the exact nature of the percolation transition, despite efforts to model and understand
these features (Manneville 2004, 2009, 2015; Barkley & Tuckerman 2007; Lagha
& Manneville 2007a,b; Duguet & Schlatter 2013; Shi et al. 2013; Seshasayanan &
Manneville 2015).

Plane Couette flow (PCF) is generally viewed as the ideal system in which to
investigate shear turbulence due to its geometric simplicity and the constant shear
rate of its laminar flow. In the turbulent regime, however, the mean shear is far
from constant. Instead it has a low-shear core and higher-shear boundary layers
associated with rigid walls. To this end, we study a flow that surpasses PCF as
an ideal computational scenario for transition because the turbulent mean shear is
nearly constant at transitional Reynolds numbers. We show that the planar shear
flow between stress-free boundaries driven by sinusoidal body forcing reproduces the
qualitative phenomena and quantitative profiles of the core region of PCF; it has the
dual advantage of requiring far lower spatial resolution for fully resolved simulations
and lending itself to faithful model reduction.

Other authors have studied wall-bounded turbulence in fully turbulent plane
Poiseuille flow (PPF) without walls by modelling the boundary layers combined
with the frameworks of proper orthogonal decomposition or large-eddy simulation
(e.g. Podvin & Fraigneau 2011; Mizuno & Jiménez 2013). Here, we will adapt our
stress-free approach to study plane Poiseuille and pipe flows at transitional Reynolds
numbers.

2. Waleffe flow

Plane Couette flow is generated by rigid parallel walls located at y = ±h moving
with opposite velocities ±U in the streamwise direction. In contrast, the system we
consider is driven by a sinusoidal body force to produce a laminar shear profile
confined by stress-free boundary conditions:

ulam(y)= V sin
(π

2
y
H

)
, v(y=±H)= ∂u

∂y

∣∣∣∣
±H

= ∂w
∂y

∣∣∣∣
±H

= 0, (2.1a,b)

depicted in figure 2(a). Typically, periodic boundary conditions are imposed in the
lateral streamwise, x, and spanwise, z, directions. The flow was first used by Tollmien
to illustrate the insufficiency of an inflection point for linear instability (Drazin &
Reid 2004). Its simplicity derives from the stress-free boundary conditions, much as
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FIGURE 1. Uniform and banded turbulence visualised by instantaneous streamwise
velocity at the midplane, with contours from negative (blue) to positive (red) velocity.
(a) At high Re, shear turbulence uniformly fills the plane Couette geometry with
characteristic low- and high-speed streaks. (b) Comparable uniform turbulence in model
Waleffe flow (introduced below). At lower Re, banded turbulence is observed in (c) plane
Couette flow, (d) Waleffe flow and (e) model Waleffe flow.
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FIGURE 2. Waleffe flow (WF) seen as an approximation to the interior of plane Couette
flow. Shown are streamwise velocity profiles for PCF (solid/red) and WF (dashed/blue)
in the uniformly turbulent regime (PCF: Re = 500 and WF: Rew = 500). Plotted are (a)
laminar flow, (b) deviation of mean turbulent profile from laminar flow and (c) mean
turbulent profile. The y-scale of WF is non-dimensionalised using h = 1.6H to align
its stress-free boundaries (dashed horizontals) with extrema of the PCF deviation profile
in (b). WF velocities are likewise scaled by U = 1.6V so that both flows have the same
average laminar shear in (a). Data are from simulations of 2000 advective time units for
[Lx, Ly, Lz] = [12, 2, 10]h.

stress-free boundaries have led to simplicity and insight in thermal convection (Drazin
& Reid 2004). Waleffe (1997) used the flow to illustrate the self-sustaining process
and to derive a model of eight ordinary differential equations (ODEs) capturing the
essence of the process. Extensions of this ODE model have been derived (Manneville
2004) and used to measure turbulent lifetimes (Moehlis, Faisst & Eckhardt 2004;
Dawes & Giles 2011) as well as to find unstable solutions (Moehlis, Faisst &
Eckhardt 2005; Beaume et al. 2015; Chantry & Kerswell 2015). However, there has
been little study of fully resolved Waleffe flow itself in the context of turbulence.
Schumacher & Eckhardt (2001) studied the lateral growth of turbulent spots and
Doering, Eckhardt & Schumacher (2003) considered the bounds on energy dissipation
in this system. Here, we undertake a systematic study of Waleffe flow throughout the
transitional regime.

We simulate Waleffe flow with the freely available CHANNELFLOW (Gibson, Halcrow
& Cvitanović 2008; Gibson 2014) adapted to enforce stress-free boundary conditions.
We employ 33 Chebyshev modes in the vertical direction, y, and approximately 128
Fourier modes per ten spatial horizontal units.

We begin by comparing turbulent velocity profiles for Waleffe and plane Couette
flow, and use these to establish a scaling relationship between the flows. Figure 2
shows the streamwise velocity of uniformly turbulent flow, averaged over time and the
horizontal directions, decomposed into the sum of the laminar profile and the deviation
from laminar. Lengths in WF have been scaled to align its stress-free boundaries with
the extrema of the PCF deviation profile (figure 2b) and velocities have been scaled
to maintain the average laminar shear (figure 2a). WF effectively captures the interior
section of PCF – the section between the extrema of the deviation profile, figure 2(b),
or equivalently the section excluding the boundary layers associated with no-slip walls,
figure 2(c). This was first observed by Waleffe (2003) for an exact solution (exact
coherent structure) shared by PCF and by another stress-free version of PCF.

The preceding paragraph implies that when treating WF as the interior of
PCF, WF should be non-dimensionalised by length and velocity scales given by
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FIGURE 3. Comparison of bands in (a) plane Couette flow, (b) Waleffe flow and (c)
model Waleffe flow, showing the deviation from the laminar flow in a cross-sectional
plane, averaged both in t and along e‖. The turbulent region is centred at the middle of
the domain. Through-plane flow is depicted by contours from negative (blue) to positive
(red) and in-plane flow is depicted by arrows. Contour levels are scaled to 10 % below
extrema, PCF∈ [−0.34, 0.34], WF∈ [−0.42, 0.42] and MWF∈ [−0.41, 0.41]. For visibility
the y-direction in all flows has been stretched by a factor of 3. Tick marks at y=±0.625h
in panel (a) indicate the bounds of the interior region to which Waleffe flow corresponds.
(d) Planar view of a minimal titled domain in relation to a larger domain.

H = h/1.6 = 0.625h and V = 0.625U. These values are not intended to be exact,
since the extrema of the PCF profiles depend on Re, although weakly over the range
of interest here (from y/h ' ±0.60 at Re = 300 to y/h ' ±0.65 at Re = 700). This
rescaling of y is almost identical to that arrived at by Waleffe (2003) through a
different line of reasoning. A value close to this one could also be obtained from
the extrema of low-order polynomial approximations, like those used for modelling
by Lagha & Manneville (2007a,b), although these y values would necessarily deviate
from the actual values with increasing Reynolds number. The effective Reynolds
number for WF, comparable to that for PCF, is then

Re≡ Uh
ν
= 1.6V × 1.6H

ν
= 2.56Rew, (2.2)

where Rew ≡ VH/ν is the Reynolds number usually used for WF.
Simulating Waleffe flow in large domains, we observe robust turbulent bands

emerging from uniform turbulence as the Reynolds number is decreased. Figure 1(d)
shows such bands under conditions equivalent to those for PCF in figure 1(c). There
is remarkably strong resemblance in the broad features of the two flows. The primary
difference is that in WF the positive (red) and negative (blue) streaks are less distinct
and are almost entirely separated by the turbulent-band centre, while in PCF the
streaks are more sharply defined and may pass through the turbulent centre.

For a quantitative study of the banded structure, we simulate the flows in domains
tilted by angle θ in the streamwise–spanwise plane as illustrated in figure 3(d). Tilted
domains are the minimal flow unit to capture bands (Barkley & Tuckerman 2005)
and they provide an efficient and focused method for quantitative analysis. Domains
are short (10h–16h) in the direction along the bands, e‖, and long (40h–120h) in
the direction across the bands, e⊥, i.e. along the wavevector of the pattern. We fix
the angle at θ = 24◦, that of the bands seen in figure 1. This angle is typical of
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FIGURE 4. Comparison of turbulent fluctuations, ũ, in plane Couette flow and Waleffe
flow for turbulent bands plotted in figure 3. (a,b) Turbulent kinetic energy, k= 〈ũ · ũ〉/2
for PCF (contours [0, 0.08]) and WF (contours [0, 0.05]) respectively, averaged as in
figure 3(a–c). (c,d) Dominant turbulent force contribution in the band-aligned direction,
∂y〈ũṽ〉 for PCF (contours [−0.017, 0.017]) and WF (contours [−0.017, 0.017]). Dashed
lines in (a,c) show the bounds of the interior region to which Waleffe flow corresponds.

those observed in experiments and numerical simulations of PCF in large domains
(Prigent et al. 2002; Duguet et al. 2010) and is that used in previous work (Barkley
& Tuckerman 2005, 2007; Tuckerman & Barkley 2011) on tilted domains.

In figure 3(a,b) we compare bands in Waleffe flow to those of plane Couette flow,
under equivalent conditions using the rescaling (2.2) of WF. Mean flows are visualised
in the (e⊥, ey) plane, with averages taken over the e‖ direction and over 2000 advective
time units. The red and blue regions indicate the flow parallel to the turbulent bands,
primarily along the edges of the bands, while the arrows show circulation surrounding
them. The banded structure in Waleffe flow is almost identical to that found in the
interior of plane Couette flow. Waleffe (2003) made similar observations regarding
exact coherent structures in no-slip and stress-free versions of plane Couette flow. The
main qualitative difference between the flows is the greater separation of the regions
of positive and negative band-aligned flow in WF (figure 3b). This is a manifestation
of the streak separation in figure 1(d).

We also consider the fluctuations, ũ, about the mean flow. In figure 4 we see that in
both PCF and WF the turbulent kinetic energy is largest in the interior. Beneath this
we plot ∂y〈ũṽ〉, which dominates the turbulent force (see Barkley & Tuckerman (2007)
for a full discussion of the force balance that prevails in turbulent–laminar banded
flow). Although the turbulent force is very large in the near-wall regions of PCF, it
mainly acts to counterbalance the large dissipation due to the steep gradients near the
walls. In the interior of PCF, both dissipative and turbulent forces are much weaker,
as is the case for the entirety of Waleffe flow.

We have surveyed the intermittency in Waleffe flow as a function of Reynolds
number. In the tilted domain, bands emerge from turbulence at Re ≈ 640 and
turbulent patches are still observed with long lifetimes (O(103) time units) at Re≈250,
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consistent with Rew=Re/2.56≈ 110 found previously (Schumacher & Eckhardt 2001,
figure 2). In PCF the equivalent range is 325 . Re . 420 (Bottin & Chaté 1998;
Bottin et al. 1998; Tuckerman & Barkley 2011; Shi et al. 2013).

3. Modelling Waleffe flow

Motivated by the simplicity of Waleffe flow and its ability to capture turbulent-band
formation without the boundary layers present near rigid walls, we have developed a
minimal model using only leading Fourier wavenumbers in the shear direction y. Our
model of Waleffe flow (MWF) can be written as

u(x, y, z)= u0(x, z)+ u1(x, z) sin(βy)+ u2(x, z) cos(2βy)+ u3(x, z) sin(3βy), (3.1a)
v(x, y, z)= v1(x, z) cos(βy)+ v2(x, z) sin(2βy)+ v3(x, z) cos(3βy), (3.1b)

w(x, y, z)=w0(x, z)+w1(x, z) sin(βy)+w2(x, z) cos(2βy)+w3(x, z) sin(3βy), (3.1c)

where β = π/2H. To further simplify, we use a poloidal–toroidal plus mean-mode
representation

u=∇×ψ(x, y, z)ey +∇×∇× φ(x, y, z)ey + f (y)ex + g(y)ez, (3.2)

where ψ , f and g match the y-decomposition of u and φ matches that of v.
Substituting (3.2) into the Navier–Stokes equations and applying Fourier orthogonality
in y, we derive our governing equations, which are seven partial differential equations
in (x, z, t) and six ODEs for the mean flows f and g. The original eight-ODE
model, derived by Waleffe (1997) to illustrate the self-sustaining process, is contained
within the system and can be recovered by reducing the number of modes in y and
imposing a single Fourier wavenumber in x and z. Our model is closely related to a
series of models of WF and PCF by Manneville and co-workers (Manneville 2004;
Lagha & Manneville 2007a,b; Seshasayanan & Manneville 2015). The first three of
these attempted to capture localised dynamics with only two modes in y. Turbulent
bands were not spontaneously formed or maintained; instead, spots grew to uniform
turbulence. Most recently, and in parallel with our work, Seshasayanan & Manneville
(2015) showed that a model of PCF with four polynomial modes in the wall-normal
direction produced oblique bands, albeit over a narrow range of Re.

We simulate the model using a Fourier pseudospectral method in (x, z) and time
step using backward Euler for the linear terms and Adams–Bashforth for the nonlinear
terms. The effective low resolution in y results in a decreased resolution requirement
in (x, z), with only four modes needed per spatial unit, compared with ∼10 for PCF
and WF.

At high Re, uniform turbulence is observed in the model (figure 1b), displaying the
usual streamwise-aligned streaks generated by rolls. Streaks in MWF, as well as in WF
(not shown), typically have shorter streamwise extent than those in PCF. Reducing Re,
bands are found (figure 1e) that are difficult to distinguish from those in fully resolved
Waleffe flow (figure 1d); this is also true for bands computed in the tilted domain
(figure 3b,c). The most notable qualitative difference between MWF and WF is the
increased separation of the band-aligned flow regions and of the related circulating
in-plane flow. We find bands in the model for Reynolds numbers Re ∈ [125, 230],
a large relative range of Re and an approximate rescaling of Re ∈ [250, 640] for
fully resolved Waleffe flow. The most likely reason for the shift in Re is the lack of
high-curvature modes in the wall-normal direction, i.e. small spatial scales that would
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FIGURE 5. Growth of a turbulent spot in model Waleffe flow at Re= 160. The flow is
initialised with a poloidal vortex and subsequent evolution is visualised by streamwise
velocity at the midplane. At early times (t = 250) (a), a large-scale quadrupolar flow
dominates as shown by streamlines of the y-averaged flow (contour lines, only plotted
away from the spot for visibility). By t= 1250 bands begin to develop and form a zigzag
across the domain (b). The bands continue to grow, and by t= 3000 a complex array of
bands fills the domain (c).

be associated with higher dissipation. However, in a model for pipe flow (Willis &
Kerswell 2009) with few azimuthal modes, the Re for transition increased relative to
that of fully resolved flow.

We investigate the formation of bands via spot growth in the model. As in
Schumacher & Eckhardt (2001), laminar flow is seeded with a Gaussian poloidal
vortex

u=∇×∇× A exp(−a2
xx2 − a2

yy2 − a2
z z2)ey, (3.3)

here with coefficients ax= az= 0.25/h, ay= 2/h. Dependence on y is approximated by
projecting onto the four y modes of (3.1). The developing spot in figure 5 matches
the many facets of spot growth seen in a variety of other shear flows. At early times
(t= 250), growth is predominantly in the spanwise direction, as has been commonly
observed (Schumacher & Eckhardt 2001; Duguet & Schlatter 2013; Couliou &
Monchaux 2015). An accompanying large-scale quadrupolar flow quickly develops,
which we indicate in figure 5(a) by means of streamlines of the y-averaged flow away
from the spot. Quadrupolar flows have been reported around growing spots in PCF
(Duguet & Schlatter 2013; Couliou & Monchaux 2015), in Poiseuille flow (Lemoult
et al. 2014) and in a low-order model for PCF (Lagha & Manneville 2007a). At
later times, structures develop that are recognisable as oblique bands (compare our
t = 1250 with figure 1 of Duguet & Schlatter (2013)). By t = 3000, these structures
have pervaded the whole domain.

4. Plane Poiseuille flow

To further demonstrate the applications of this stress-free modelling we consider
PPF, generated here by enforcing constant mass flux in the horizontal directions. The
laminar profile in a reference frame moving with the mean velocity is shown as the
red curve of figure 6(a). A natural extension of the PCF case would be to approximate
the parabolic PPF with a cosine body forcing and stress-free boundaries. However,
such a flow develops a linear instability at Re= 80, far below the expected transition
to turbulence. The bifurcating eigenvector is the stress-free equivalent of the classic
Tollmien–Schlichting wave of PPF, which becomes unstable at Re= 5772. To remove
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FIGURE 6. Doubled Waleffe flow seen as an approximation to the interior of plane
Poiseuille flow. Shown are streamwise velocity profiles for PPF (solid/red) and WF
(dashed/blue and grey) in the uniformly turbulent regime (PPF: Re = 1800 and WF:
Rew = 500). Plotted are (a) laminar flow, (b) deviation of mean turbulent profile from
laminar flow and (c) mean turbulent profile. The y-scale of WF is non-dimensionalised
using H = 2h/0.825 to align its stress-free boundaries (dashed horizontals) with extrema
of the PCF deviation profile in (b). WF velocities are likewise scaled by V = 2U/0.8252

so that both flows have same average laminar shear in (a). Data are from simulations of
2000 advective time units for [Lx, Ly, Lz] = [12, 2, 10]h.

this unstable mode, we enforce symmetry across the channel midplane, effectively
juxtaposing WF (blue) with its mirror-symmetric counterpart (grey). Because of this,
no new simulations are necessary, since all results concerning WF can be used, merely
by using the rescaling appropriate to PPF. WF should now be non-dimensionalised
by length and velocity scales given by H = 0.825h/2 and V = 0.8252U/2. The
conventional PPF Reynolds number and the corresponding one for WF in this context
are

Re≡ Uh
ν
= 2V × 2H

0.8253ν
≈ 7.12

VH
ν
= 7.12Rew, (4.1)

where U is based on the mean Poiseuille flow. As was the case for PCF, these values
are not intended to be exact, since the extrema of the PPF profiles depend on Re
(from y/h'±0.78 at Re= 1300 to y/h'±0.86 at Re= 2400). A ‘true’ rescaling of
the flow would depend on Reynolds number but a fixed value suffices for our purpose.
As in the PCF case, the length scale found by Waleffe (2003) using the exact coherent
structures is close to that found here using the turbulent mean profile; a value within
this range could also be obtained from the extrema of the low-order polynomials used
by Lagha (2007) to model PPF. Our remapped existence range for bands in Waleffe
flow is Re∈ [700, 1800] and compares well with Re∈ [800, 1900] in PPF (Tuckerman
et al. 2014).

Figure 7 shows the mean structure of turbulent bands in PPF and in its stress-free
counterpart. Excluding the boundary layers of PPF, there is very good agreement
between the structures in these flows. By construction, the lower half of figure 7(b)
is identical to figure 3(b). The lower half of figure 7(a) also strongly resembles
figure 3(a). The resemblance between turbulent bands in these two flows solidifies
the prevalent view of PPF as two PCFs (Waleffe 2003; Tuckerman et al. 2014).

The low-order model of Waleffe flow derived for PCF in § 3 carries over in a
straightforward manner to PPF and is therefore not shown. A five-mode model of
wall-bounded PPF was derived by Lagha (2007) and used to study spot growth.
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(a)

(b)

FIGURE 7. Comparison of bands between plane Poiseuille flow (a) and doubled Waleffe
flow (b). Contours are for streamwise velocity [−0.4,0.4], and arrows for in-plane velocity.
Domain size and Reynolds number for PPF were chosen to match with the (rescaled)
WF bands plotted in figure 3(b). This comparison excels near the midplane in PPF and
confirms that PPF can be viewed as two plane Couette flows; compare figures 7(a)
and 3(a).

5. Stress-free pipe flow

Finally, we turn to pipe flow (PF), the third canonical wall-bounded shear flow, in
which intermittency takes the form of puffs. We introduce a Bessel function body
force that drives a laminar flow confined by cylindrical stress-free boundaries:

uz,lam(r)= V
1− J0(k′0)

J0

(
k′0

r
R

)
, ur(r= R)= ∂uz

∂r

∣∣∣∣
R

= ∂

∂r

(uθ
r

)∣∣∣∣
R

= 0, (5.1a,b)

where k′0 ≈ 3.83 is the first non-zero root of J′0.
Simulations are conducted using openpipeflow.org (Willis & Kerswell 2009) adapted

to enforce stress-free conditions on the pipe walls. As before, we first consider
uniform turbulence (figure 8) and non-dimensionalise our stress-free flow to match
the turning points in the deviation. This results in R= 0.86 D/2, V = 0.862 × 2U and
a Reynolds number

Re= UD
ν
= VR

0.863ν
≈ 1.57Rew, (5.2)

where D/2 is the pipe radius and 2U is the maximum laminar speed. Like the cosine
forced version of PPF, stress-free pipe flow undergoes a linear instability at low
Reynolds number (Re ≈ 340), below the existence range of turbulence. Therefore to
study laminar–turbulent intermittency (here turbulent puffs) we impose the symmetry

Rn : u(r, θ, z)→ u
(

r, θ + 2π

n
, z
)
, n > 2, (5.3)

which stabilises the laminar flow. We will only present results from R3 here but
alternative choices (e.g. two and four) produce comparable results.

791 R8-10

http://www.openpipeflow.org


Turbulent–laminar patterns in shear flows without walls

–0.43D

0.43D
0.5D

–0.5D
–U –0.48U U

–R

R

V(a) (b) (c)

r

–U U –U U

PF
SPF

DeviationLaminar flow Turbulent mean

FIGURE 8. Stress-free pipe flow (SPF) seen as an approximation to the interior of pipe
flow (PF). Shown are streamwise velocity profiles for PF (solid/red) and SPF (dashed/blue)
in the uniformly turbulent regime (PF: Re= 3000 and SPF: Rew = 1900). Plotted are (a)
laminar flow, (b) deviation of mean turbulent profile from laminar flow and (c) mean
turbulent profile. The r-scale of SPF is non-dimensionalised using R= 0.86D/2 to align its
stress-free boundaries (dashed horizontals) with extrema of the PF deviation profile in (b).
SPF velocities are likewise scaled by V = 2× 0.862U so that both flows in (a) have the
same average laminar shear. Data are from simulations of 2000 advective time units for
pipes of length 5D.
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FIGURE 9. A turbulent puff in stress-free pipe flow. (a) Streamwise velocity along the
pipe (only partial pipe shown) and (b–e) (r, θ) slices along the pipe (indicated by red
lines in (a)) with arrows of in-plane velocity. Motivated by figure 8, the red circles show
the location of the walls for the corresponding wall-bounded flow, highlighting the absence
of boundary layers in the stress-free case. Nine contours are used for streamwise velocity
varying in [−0.86, 0.48].

In this symmetry subspace, turbulent puffs are found for stress-free pipe flow over a
range of Reynolds numbers Re∈ [2400, 3500]; an exemplar is plotted in figure 9. For
conventional rigid-wall pipe flow in this subspace, turbulent puffs are first observed at
Re≈ 2400, an increase from Re≈ 1750 (Darbyshire & Mullin 1995) for no imposed
symmetry. The structure and length scales of these puffs are comparable with their
wall-bounded counterparts. Excitation occurs upstream (figure 9b,c), generating fast
and slow streaks that slowly decay downstream (figure 9e). The success of model
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Waleffe flow combined with the low-azimuthal-resolution model of Willis & Kerswell
(2009) suggests that a model with one spatial dimension (z) is possible. However, the
complexity of cylindrical coordinates, particularly the coupled boundary conditions,
prevents further work at this time.

6. Conclusion

Since at least the 1960s (e.g. Coles 1962) there has been interest in understanding
the ubiquitous turbulent–laminar intermittency observed at the onset of turbulence in
wall-bounded shear flows. We have demonstrated that shear alone is the necessary
ingredient for generating these structures; the boundary layers of wall-bounded flows
are not essential. The robustness of this concept is demonstrated, not only by turbulent
bands in stress-free versions of PCF and PPF, but also by puffs in stress-free pipe
flow. Our rescaling yields quantitative correspondence to the range of existence and
the length scales of these phenomena. In planar geometry, we exploit the absence
of rigid walls to propose a simple four-vertical-mode model that captures all the
essential physics in the shear-dependent direction. This provides a direct link between
ODE models of the self-sustaining process (Waleffe 1997) and the modelling of
turbulent–laminar coexistence. The absence of rigid walls opens the possibility of
exploring large-scale features of transitional turbulence without the complications and
numerical requirements of sharp gradients. This should greatly facilitate the numerical
study of percolation in systems with two extended directions, while maintaining a
direct connection with the Navier–Stokes equation.

Acknowledgements

M.C. was supported by a grant, TRANSFLOW, provided by the Agence Nationale
de la Recherche (ANR). This work was performed using high performance computing
resources provided by the Institut du Developpement et des Ressources en Informatique
Scientifique (IDRIS) of the Centre National de la Recherche Scientifique (CNRS),
coordinated by GENCI (Grand Équipement National de Calcul Intensif).

References

AVILA, K., MOXEY, D., DE LOZAR, A., AVILA, M., BARKLEY, D. & HOF, B. 2011 The onset of
turbulence in pipe flow. Science 333, 192–196.

BARKLEY, D. 2011 Simplifying the complexity of pipe flow. Phys. Rev. E 84, 016309.
BARKLEY, D., SONG, B., MUKUND, V., LEMOULT, G., AVILA, M. & HOF, B. 2015 The rise of

fully turbulent flow. Nature 526, 550–553.
BARKLEY, D. & TUCKERMAN, L. S. 2005 Computational study of turbulent laminar patterns in

Couette flow. Phys. Rev. Lett. 94, 014502.
BARKLEY, D. & TUCKERMAN, L. S. 2007 Mean flow of turbulent–laminar patterns in plane Couette

flow. J. Fluid Mech. 576, 109–137.
BEAUME, C., CHINI, G. P., JULIEN, K. & KNOBLOCH, E. 2015 Reduced description of exact

coherent states in parallel shear flows. Phys. Rev. E 91, 043010.
BOTTIN, S. & CHATÉ, H. 1998 Statistical analysis of the transition to turbulence in plane Couette

flow. Eur. Phys. J. B 6, 143–155.
BOTTIN, S., DAVIAUD, F., MANNEVILLE, P. & DAUCHOT, O. 1998 Discontinuous transition to

spatiotemporal intermittency in plane Couette flow. Europhys. Lett. 43, 171–176.
CHANTRY, M. & KERSWELL, R. R. 2015 Localization in a spanwise-extended model of plane Couette

flow. Phys. Rev. E 91, 043005.
COLES, D. 1962 Interfaces and intermittency in turbulent shear flow. Mécanique de la Turbulence

108, 229–248.

791 R8-12



Turbulent–laminar patterns in shear flows without walls

COLES, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385–425.
COULIOU, M. & MONCHAUX, R. 2015 Large-scale flows in transitional plane Couette flow: a key

ingredient of the spot growth mechanism. Phys. Fluids 27, 034101.
DARBYSHIRE, A. G. & MULLIN, T. 1995 Transition to turbulence in constant-mass-flux pipe flow.

J. Fluid Mech. 289, 83–114.
DAWES, J. H. P. & GILES, W. J. 2011 Turbulent transition in a truncated one-dimensional model

for shear flow. Proc. R. Soc. Lond. A 467, 3066–3087.
DOERING, C. R., ECKHARDT, B. & SCHUMACHER, J. 2003 Energy dissipation in body-forced plane

shear flow. J. Fluid Mech. 494, 275–284.
DRAZIN, P. G. & REID, W. H. 2004 Hydrodynamic Stability. Cambridge University Press.
DUGUET, Y. & SCHLATTER, P. 2013 Oblique laminar–turbulent interfaces in plane shear flows. Phys.

Rev. Lett. 110, 034502.
DUGUET, Y., SCHLATTER, P. & HENNINGSON, D. S. 2010 Formation of turbulent patterns near the

onset of transition in plane Couette flow. J. Fluid Mech. 650, 119–129.
GIBSON, J. F. 2014 Channelflow: a spectral Navier–Stokes simulator in C++. Tech. Rep., University

of New Hampshire. Channelflow.org.
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