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In this article we define a new evolving surface finite elenmathod (ESFEM) for numerically approxi-
mating partial differential equations on hypersurfaég) in R™1 which evolve with time. The key idea
is based on approximatirg(t) by an evolving interpolated polyhedral (polygonahi 1) surface (t)
consisting of a union of simplices (triangles for= 2) whose vertices lie ofi (t). A finite element space
of functions is then defined by taking the set of all contirsifunctions orf, (t) which are linear affine
on each simplex. The finite element nodal basis functionsyemjransport property which simplifies the
computation. We formulate a conservation law for a scalantity onr” (t) and, in the case of a diffusive
flux, derive a transport and diffusion equation which takes account the tangential velocity and the lo-
cal stretching of the surface. Using surface gradients fioel@veak forms of elliptic operators naturally
generates weak formulations of elliptic and parabolic &€qoa on[l (t). Our finite element method is
applied to the weak form of the conservation equation. Tinepedation of the mass and element stiffness
matrices are simple and straightforward. Error bounds ariwetl in the case of semi-discretization in
space. Numerical experiments are described which indibaterder of convergence and also the power
of the method. We describe how this framework may be emplayegplications.

Keywords finite elements, evolving surfaces, conservation, diffasexistence, error estimates, compu-
tations.

1. Introduction

Partial differential equations on evolving surfaces odgunany applications. For example, traditionally
they arise naturally in fluid dynamics and materials sciesnog more recently in the mathematics of
images. In this paper we propose a mathematical approadte tiotmulation and approximation of
transport and diffusion of a material quantity on an evajéurface inR"* (n=1,2). We have in mind

a surface which not only evolves in the normal direction stoadefine the surface evolution but also
has a tangential velocity associated with the motion of nedtpoints in the surface which advects
material quantities such as heat or mass. For our purposesvieeassume that the surface evolution is
prescribed.
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1.1 The advection diffusion equation

Conservation of a scalar with a diffusive flux on an evolvirypérsurfacd™ (t) leads to the diffusion
equation
u+ubr-v—0r-(Z,0,u)=0 (1.1)

on [l (t). Hereu denotes the covariant or advective surface material deséva is the velocity of the
surface and- is the tangential surface gradient.df (t) is empty then the equation does not need a
boundary condition. Otherwise we can impose Dirichlet ouidann boundary conditions @ (t).

1.2 The finite element method

In this paper we propose a finite element approximation basebe variational form

d " n o
a 2.0,u-0 :/ 1.2
dt ./I'(t) u¢+/['(t) obru-Cre Jro u 12)

where ¢ is an arbitrary test function defined on the surféag) for all t. This provides the basis
of our evolving surface finite element method (ESFEM) whigtapplicable to arbitrary evolving-
dimensional hypersurfacesti" 1 (curves inR?) with or without boundary. Indeed this is the extension
of the method of Dziuk (6) for the Laplace-Beltrami equatiora stationary surface. The principal idea
is to use a polyhedral approximation/ofbased on a triangulated surface. It follows that a quiterahtu
local piecewise linear parameterisation of the surfaceripleyed rather than a global one. The finite
element space is then the space of continuous piecewisa linections on the triangulated surface
whose nodal basis functions enjoy the remarkable property

The implementation is thus rather similar to that for sadvthe diffusion equation on flat stationary
domains. For example, the backward Euler time discretimdéads to the ESFEM scheme

% (A Q™ g (M) a™) 7 (™)™ = 0

where.Z (t) and.#(t) are the time dependent surface mass and stiffness matrides'ais the vector
of nodal values at tim€™. Here,T denotes the time step size.

1.3 Level set or implicit surface approach

An alternative approach to our method based on the use dfiélt@ embed the surface in a family of
level set surfaces (1; 15; 9). This Eulerian approach caridwealized on a Cartesian grid k"t and
has the usual advantages and disadvantages of level setdaeth

1.4 Applications

Such a problem arises, for example, when modeling the toahgp an insoluble surfactant on the
interface between two fluids, (14; 10). Here one views theail of the surface as being the fluid
velocity and hence the surfactant is transported by adweeta the tangential fluid velocity (and hence
the tangential surface velocity) as well by diffusion wittthe surface. The evolution of the surface
itself in the normal direction is then given by the normal gament of the fluid velocity.
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Diffusion induced grain boundary motion, (4; 7; 13; 5), hlas feature of coupling forced mean
curvature flow for the motion of a grain boundary with a difusequation for a concentration of mass
in the grain boundary. In this case there is no material tatigjevelocity of the grain boundary so it is
sufficient to consider the surface velocity as being in thenad direction.

Another example is pattern formation on the surfaces of grgwrganisms modelled by reaction
diffusion equations, (12). Possible applications in impgEcessing are suggested by the article (11).

1.5 Outline of paper

The layout of the paper is as follows. We begin in section 2 &fynihg notation and essential concepts
from elementary differential geometry necessary to dbedtie problem and numerical method. The
equations presented above are justified in section 3. Thé& foem of the equations is derived in
section 4 and the well posedness of the initial boundaryevphoblem is established. In section 5 the
finite element method is defined and some preliminary apprations results are shown. Error bounds
for the semi-discretization in space are proved in sectionBplementation issues are discussed in
section 7 and the results of numerical experiments are piede Finally in section 8 we make some
concluding remarks.

2. Basic notation and surface derivatives
2.1 Notation

For eactt € [0,T,], T, >0, letI" (t) be a compact smooth connected and oriented hypersurf&ein
(n=1,2) and’, = I" (0). In order to formulate the model it is convenient to use twsotliptions off” (t),
one using a diffeomorphic parametrization and the othevel ket function.

Note that to define an evolving surfa€ét) it is sufficient to prescribe the normal velocity. However
we wish to consider time dependent material surfdces/™ (t) for which a material particl® located
atXp(t) onr (t) has a velocity{s(t) not necessarily only in the normal direction. Thus we asstirae
there is a velocity field so that pointd on " (t) evolve with velocityXs(t) = v(Xp(t),t).

Hence for our first description, we assume that there existam

(D('vt) : I-O - r(t) ) ®e Cl([ovTO]vcl(rO)) ﬂCO([O,TO],C‘?'(I_O)),

so that®(-,t) is a diffeomorphism fronf, to I" (t) for everyt € [0, T,] and that it solves the equation

Thus forX,(0) = P € Iy we haveX(t) = @(Pt) e I (t).
It follows that/™ (t) has a second representation defined by a smooth level sébiude= d(x,t), xe
R™1t € [0, T,] so that
r{t)={xe(t)|d(x,t) =0}

where.# (t) is an open subset & in which [0d # 0 and chosen so that
dvd'[adXiadXin S Cl(‘/VTO)(Ivj = 17"'7n)

for Ji/TO = Ueioy) A (L) x {t}.



4 of 30 G.DZIUK and C. M. ELLIOTT

The orientation of is set by taking the normal to I" to be in the direction of increasirdy Hence
we define a normal vector field by
Vixt) = Od(x,t)
T |od(x )]

so that the normal velocity of I" is given by

o G(xt)
VXY =~ THaor

We assume that the velocity fieldis C* in JifTo. It has the decomposition=Vv + T into normal
velocityV = —%h_(t) and tangential velocity .
Observe that a possible choice fbis a signed distance function and in that cAsé| = 1 on ‘/VTo‘

For later use we mention that’(t) can be chosen such that for everg .#'(t) andt € [0, T] there
exists a uniqua(x,t) € I' (t) such that

x=a(xt) + d(xt)v(@axt),t), (2.1)
where heral denotes the signed distance functiorf t@).

For any functiom defined on an open subsef (t) of R™1 containing™ (t) we define its tangential
gradienton” by
O-n=0n-0n-vv

where, forx andy in R, x.y denotes the usual scalar product aigl denotes the usual gradient on
R, The tangential gradiefi,-n only depends on the values gfrestricted ta™ (t) andd-n - v = 0.
The components of the tangential gradient will be denoted by

Orn = (D4N,---:By.aM).
The Laplace-Beltrami operator ér(t) is defined as the tangential divergence of the tangentidiem&
n+1

Arn=0r-U-n= ) DDin.
r r-Yr i;||

Let I (t) have a boundargl™ (t) whose intrinsic unit outer normal, tangentialltgt), is denoted byu.
Then the formula for integration by parts 6tit) is

/Drnz—/nHV+/ nu, (2.2)
r r or

whereH denotes the mean curvaturefofwith respect tov, which is given by
H=-0-v. (2.3)

The orientation is such that for a sphére= {x € R™?||x—x,| = R} and the choicel(x) = R— |[x—X,|
the normal is pointing into the bali(x,) = {x € R"||x—x,| < R} and the mean curvature 6f is
given byH = §. Note thatH is the sum of the principle curvatures rather than the agtizomean and
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hence differs from the common definition by a faatoiThe mean curvature vectbirv is invariant with
respect to the choice of the signaf
Green’s formula on the surfadeis

Jor&omn= | &0rn-u-[&amn. (2.4)

If I is closed the@ I is empty and the boundary terms do not appear. For thesedaotd tangential
derivatives we refer to (8), pp 389-391. Note that, in gelnbigher order tangential derivatives do not
commute.

We shall use Sobolev spaces on surfdcefor a given Lipschitz surfade we define

HY(r)={n eL*(N) | Orn e L2(M)™}
and Hol(l') in the obvious way, il # 0. For smooth enough we analoguously define the Sobolev
spaceH () fork e N.

2.2 The material derivative and Leibniz formulae

By a dot we denote the material derivative of a scalar functie= f(x,t) defined on/VTo:

- of
f=+o-Of. (2.5)

In particular we note that

d
—f(P(-,1),t
S (@0

and that the derivative depends only on the valuesaf the evolving surfack (t).

f(o(,1),t) =

REMARK 2.1 The material derivativg of a functiong defined on thén+ 1) dimensional hypersurface

%To = UIE[O,TO]r(t) x {t} ¢ R™? s related to the tangential gradient on this surface bydh@dla

g_(1+v2)(mg g> +v-0,0,
To n+42

where(D% g) is then+ 2-nd component of this tangential gradient. Note that
0 n+2

2 2 112
HgHLZ(%TO) + ||Drg|||_2(gT ) + HgHLZ(gT )

0 0

21
H(% )"
()

is equivalent td|g|
It is convenient to note that with (2.3) we obtain
Or-v=0--(Vv)+ 0O -T=V0Or-v+0-T=-VH+0O--T (2.6)

and
O -v=trace((# —v®v)dv) (2.7)
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where.# — v @ v denotes the matrix with entrié — v;v;. For a scalaf we have

v-Of =Vv-Of +T- Df_Vg—f+T O f. (2.8)

The following formula for the differentiation of a parametiependent surface integral will play a
decisive role.

LEMMA 2.1 (LEIBNIZ FORMULA) Letl" be a surface and f be a function defined/iﬁ‘»0 such that all
the following quantities exist. Then

d .
a/rf_/r(erfDr-v) (2.9)
and with the decompositiomn=\Vv + T of the velocity ofl" into normal and tangential velocity
dt/ /(—+V——fVH+D,--(fT)). (2.10)
Finally, with the deformation tens@(v);; = % (inj +iji) (i,j=1,...,n),
1d /' f|2—/D f.0 f+}/|m f20, - —/D( )0 f -0, f 2.11)
2at Jr!or'h T rtTy Jer r”r“r rt .

A proof of this Lemma is given in section 9.

3. Conservation and diffusion onl (t)
3.1 Conservation law

Let u be the density of a scalar quantity brft) (for example mass per unit area= 2 or mass per unit
lengthn = 1). The basic conservation law we wish to consider can beldtated for an arbitrary portion
(1) of [ (t), which is the image of an arbitrary portio# (0) of I (0) under the prescribed velocity

flow. The law is that, for every#(t),
d o o
sl u=-[ au (3.1)
dt /. z@) a.u(t)

where,d.# () is the boundary of# (t) (a curve ifn = 2 and the end points of a curverif= 1) andu
is the conormal o (t). Thusy is the unit normal t@.# (t) pointing out of.# (t) and tangential to
I" (t). The surface flux is denoted loy Observe that components@hormal to.# do not contribute to
the flux, so we may assume thgis a tangent vector.

With the use of integration by parts, (2.2), we obtain

/ qu:/ |:|I_.q+/ q.vH:/ O
0. (1) WA M (1) M (1)

On the other hand by the Leibniz formula (2.9) we have

d .
— u= u+ull--v),
dt////(t) /J/(t)( rev)
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so that
u+ud--v+0--qg) =0,
[ o (@ Ut -0+ 0p0)
which implies the pointwise conservation law
u+ubr-v+0--qg=0. (3.2)

Now using a representation afoff the surface, so that has usual spatial derivativesRi't1, we
can write (3.2) as

U+v-Out+ubr-v+0--qg=0. (3.3)

Observing (2.10), an alternative form is
Jdu
U+V o —UWH+Op - (uT) + Op -q =0, (3.4)

Thus we arrive at some special cases:

1. Divergence free velocity

U+ov-Ou—uv-Ovv+0--g=0. (3.5)
2. Zero tangential velocity
uI+V%—uVH+D,--q:O. (3.6)
3. Zero normal velocity
U+ (w)+0-g=0. (3.7)

4. Zero normal velocity and divergence free tangential véjoci

U+v-O-u+0--q=0. (3.8)

5. Stationary surface
u+0--9g=0. (3.9

REMARK 3.1 Our approach does not require values of the scedavay from the surface and so does
not need to considegg. In some approaches this can be handled by assuming aniextens away
from the surface which is constant in the normal directidfi).(so% = 0. Furthermore there is no

explicit need to compute the curvature or normal of the serfa (3.2).

REMARK 3.2 Our computational approach is based on (3.2) and dejpahgen explicit knowledge of
the surface location and does not require explicit evadnatof the normab or the mean curvaturd.
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3.2 Diffusion equation and variational form
Takingq to be the diffusive flux
g=—-%,4ru (3.10)

where the symmetric diffusion tensor4g, > d,.# > 0 on the tangent space agg}v = 0. This leads
to the diffusion equation

U+ uly v —Op - (Zy0ru) =0 (3.11)

onl (t).

If oI =0, i.e. the surface has no boundary, then there is no nedabifardary conditions. For
example, this would be the casdift) is the bounding surface of a domain.

If dI (t) is non-empty then we impose the homogeneous Dirichlet banyrabndition

u=0 on ar(t). (3.12)
Again if I (t) is non-empty then we could impose the Neumann flux condtion

Po0ru-p=0. (3.13)
The variational form (1.2) then is an easy consequence. Wepigiequation (1.1) by an adequate

test functionp and integrate over (t). We then obtain using integration by parts (2.2) and the iigib
formula (2.9):

0 = /r(t (U¢+u¢D,--v)+/ o0 u-0r¢

[ (o) —up w9ty )+ [ 70ru-0r0

_ dt/ u¢+/ QDuDrcp/

4. Weak form and wellposedness

We introduce the notion of a weak solution of the surface PDE)( for which we derived a variational
form in (1.2). Just as in the cartesian case one could inedia2) with respect to time and then
define a weak solution without using a time derivativaiofBut since the purpose of this work is the
approximation of stronger solutions we use a somewhatg#onotion of solution. We treat the case
of a compact surface without boundary.

Definition 4.1 (Weak solution) Let %To = Ute[O’TO]I'(t) x {t} and 7, L“(%To). A functionu €
Hl(%TO) is a weak solution of (1.1), if for almost every (0, T;)

u+/ uD~+/ F0-u-O.¢ =0 41
/I'(t)¢ F(t)¢rv re 0T ré (4.1)

for everyg (-,t) € HY(I (t)).
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In order to simplify the presentation we set
Dy= I

in this section. With suitable assumptions @ the results can easily be extended to the general case.
We first prove the basic energy equations for the problemy Wik lead to existence and will be the
basis for error estimates later.

LEMMA 4.1 Letu be a weak solution of (1.1). Then

2 2
2dt U +/ Brul®+3 / Hr-v=0 (#42)

Proof. We choose) =uin

d n

ﬁ/ u¢+/ O-u-0-¢ = /
d 2 2_ j > 1 2
dt/l_u+/I_|Dru|_/I_uu_2/ 2dt u 2I_uDrv,

and this was the claim. O

and get

LEMMA 4.2 Letu be a weak solution of (1.1), for which the following quargtiexist. Then
' 2 _ 2 -
/ +§&/ I0puf2 = 2/ I0pu0, - u—/ D(v)0pu-Oru /uuD,--v. (4.3)
Proof. We choosep = uin (4.1) and get with the use of (2.11)
0 = /u2+/ uUDr-v—i—/ Oru-Oru

= /u +§a/ Oruf— /|D ul?0, v—l—/ D(v FU'DFU_F'/I_UUDF'U'
g

Theorem 4.2 (Existence) Letu, < Hl(l'o). Then there exists a unique weak solution of (1.1) and the
following energy estimates hold:

sl + / 10F U2 < cluolZor (4.4)

J + S Il < by (4.5)
0 (0T, 0

Proof. That there can be no more than one weak solution is a consegoéthe estimate (4.2) which
applies to the difference of two weak solutions by lineaaity a standard Gronwall argument.

j € N, denote the eigenfunctions of the Laplace-Beltrami ope@il,, (see (2)). Letb = ®(y,t),y €
5,0 <t < T, denote the diffeomorphism (see section 2) betwggamd/™ (t). Set

¢j(®("t)7t) = ¢JO
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This then gives a countable dense suldggt-,t)[ j € N} of HY(r (t)). Forj=1,...,N one has the
transport property
¢;=0 on I. (4.6)

Our ansatz for a Galerkin solution of (4.1) froky = spar{ ¢, (-,t),..., ¢y (1)} is
N

Uy (Xt) = Zluj (t)e;(x.t)
=

whereu; (0) = (u, ¢JQ)|_2(/'0)' Because of the property (4.6) we have that

N
Uy = leujd’J

is in the same finite dimensional spa¥g asuy. By (linear) ODE theory we have existence and
uniqueness afi, satisfying

d
— u +/ O-uy-d :/ u 4.7
dt/r(t) NP g Orin Or® = Jo i @7
forall ¢(-,t) € spar{¢,(-,t),...,¢\(,t)}. Lemma 4.1 then implies the energy equation
1d 2 / 2, 1 2
—— uy + O-u +—/uD-:O. 4.8
28t "N T TS g N “8
and a Gronwall argument gives the estimate
. T,
sup uN(-,t)ZdA+/ °/ |0 uy (-, 1)[2dAdt< C 4.9)
te(0,Ty) /I (1) JO Jr(Y)

where the constant depends on the geometiy(bf, t € [0,T,] and on the inital data, but not onN.
Similarly with Lemma 4.2 we get

1d

2 2 2 :
Uy + O-u <c/ O-u +c/ uy!lu
/I'(t) NT 55 I'(t)l rUn| I'(t)| rUn| I'(t)| n Uy

so that with (4.9) and a Gronwall argument we arrive at thienade

S .
/°/ Oy(.0)2dAdt+ sup [ |Orug(-t)PdA<C. (4.10)
Jo Jru te(0,Ty) /T (1)

When we combine the estimates (4.9) and (4.10), then werobitai boundedness of the sequence
(Un)ney IN Hl(%o): Thus there exists = u(x,t), ue Hl(%o) such that for a subsequence (which

we again cally),
uy—=u (N—o) in Hl(%TO).

This, (4.7), the density of the sequerrlzjeand Fubini’'s theorem imply that is a weak solution as in
Definition 4.1. O

For our error estimates we shall need regularity propedtfi¢se solutionu for smoothly evolving
smoothr™.
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Theorem 4.3 LetI™ be sufficiently smooth. Them(-,t) € H?(I" (t)) and

J A A (@.11)
Proof. Because of the smoothnessiofve have from (2) and the elliptic PDE
/F'Dru-mﬂp :—/r' (U+ul,-v) ¢
for all ¢ thatu € H2(I") and||u||H2(l_) < c(||U|\L2(,_) + ||u|||_2(,_)). The energy estimates (4.4) and (4.5)

then prove the result. O

REMARK 4.1 The results of existence and uniqueness are easilyd®eddn the case whed™ (t) is
non-empty and either Dirichlet or Neumann conditions aespribed. Then, for the regularity result of
Theorem 4.3 we need regularity of the boundaFy.

5. Finite element approximation
5.1 Finite elements on surfaces

The smooth evolving surfade(t) (dI (t) = 0) is approximated by an evolving surface
ML) c A (), (ar,(t) =0),

which for eacht is of classC®! and in time is smooth. In particular for= 2, I (t) is a triangulated
(and hence polyhedral) surface consisting of trianglies.7, (t) with maximum diameter, uniformly in
time, being denoted bly and inner radius bounded below by > ch with somec > 0. The vertices
{X;(t) 'J-\‘:l of the triangles are taken to sit 6r(t) so thatr, (t) is an interpolation. Note that by (2.1) for
every trianglee(t) C I, (t) there is a unique curved trianglgt) = a(e(t),t) C I (t). In order to avoid a
global double covering (see Figure 1) we assume that,

for each poinec I there is at most one poirte I, with a= a(x,-). (5.1)

This implies that there is a bijective correspondence betvike triangles of,, and the induced curvi-
linear triangles ot .
For any continuous function defined on the discrete surfaGgt) we may define an extension or
lift onto I (t) by
n'(a)=n(x@) aert) (5.2)
where by (2.1) and our assumptior&) is defined as the unique solution of
x=a+d(x,t)v(at). (5.3)

Furthermore we understand y(x) the constant extension from(t) in the normal directiow(a,t).
For eacht we have a finite element space

St)={opec Co(l'h(t))| @le is linear affine for eack e 7 (t)} .
Itis convenient to introduce

S(t) = {n' € AT ©)In'(a) = n(x(@).n € S,(t) andx(a) given by(5.3) |
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Fic. 1. Left: Approximation of a curvé (t) by a polygon/ (), a pointx € I, (t) and its orthogonal projectioa(x,t) onto/ (t).
Right: A polygonal approximation to a circle, violating tbendition (5.1).

Similarly eache(t) defines a curvilinear triangl€(t) on I (t) by
T(t) ={a(xt)[xeet)}.

In the error analysis of the finite element scheme we shall tieefollowing technical Lemma, which
gives more detailed information about the order of appratiom of the geometry. It will become clear
in the proof of Theorem 6.1 how we shall exploit the followiegtimates.

LEMMA 5.1 Assumd andl, are as above. Then

sup ||d(-,t) < chf. (5.4)

[l =
te(0,Ty) L)

The quotientd,, between the smooth and discrete surface meadévasddA,, defined byd, dA, = dA,
satisfies
sup sup|l-4,| <ch’. (5.5)
te(0.Ty) 1 (1)
Let P andP, be the projections onto the tangent plarés= &; — v;v;, B,j; = &; — vV, j, and let
R,= %P(I —dA)R,(I —dIF), A = dyx, = (V))x,- Then

sup sup|(l —R,)P| < ch? (5.6)
te(0,Ty) ;1)

Proof. For ease of exposition and without loss of generality, wattiwo dimensional surfaces and omit
the time dependence of all quantities. ket I, be a triangle of the discrete surface. The corresponding
curved triangleT = a(e) thus is parametrized over Again without loss of generality, we may assume
thate c R? x {0}. By I, we denote the Lagrange interpolationen

Since the vertices daflie on/” we have that the interpolatgd vanishes identically oe and

Il = 1l < AP < Pl

and similarly
||VJ Hl_w(e) = dej |||_°°(e) < ch (J = 11 2) (57)
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Forx = (x;,X,,0) € ewe have by (2.1) that the magx) satisfies
&y = O — vV, — 7.
Furthermore sincdA, = dx,dx, anddA= |ay, A ax |dxwe have
6h = |a.xl /\a.le.
To derive the estimate of the surface elements (5.5) we v&skeat from (5.4)
8, =0 —vjv, —dJtG =Py + o(h?).
This implies forn =2
a Nay, = (e—viv—dwg)A (g — Vv —duy,) = (g —vv)A(e,—v,v) +O(hP)
= 65— V,8 AV —V;VAE,+O(h?) = vyv + O(h?)
together with
lay, Aag,|* > 1-0(h?) > ¢y >0
for h < h,. Hence we have from (5.7)
1—lag Aag?  |[vB+vE+O(?)]
1+ |ax, Aax| 1+ |ax, Aax|

11— =[1—]ay Nay,ll = < ch?,

and we have proved (5.5).

The proof of (5.6) follows from the previous estimates whenkeep in mind that in our situation
v,, = &;. Note that byv,, we mean the piece-wise constant vector defined by the notmts triangles
on[l(t). We find that

(R,—1)P=PRP—P+0(h? = O(h?)
since for a unit vectoz we have
|(PRP—P)zl =|z- (v, — (V- V)V) (v, — (V- V)V)| < ct?,

because from (5.7),

Vi, — (V- V)V| = [&g— vav| = \/1—v§: \/vlz+v22:0(h).

This proves (5.6). O
In order to compare the norms between functions and theinéfneed the following Lemma.

LEMMA 5.2 Letn : I, — R with lift n': I — R. Then for the corresponding plares; I, and smooth,
T C I, triangles the following estimates hold if the norms exidtere is a constamt> 0 independent
of h such that

1
E”nHLZ(e) < ||’7IH|_2(T) <C||’7H|_2(e) (58)
1
<10l 2y < 1012y < S0 Al (5.9)

I0Z 1l 2y < SITFN | gy + NI 2, (5.10)
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Proof. The proof is contained in (6). Here we only give the main iddaghe following letd be the
distance function with respect to the smooth surfac®y definition (see (5.2))

N =n'(x—dx)v(x), xer,
The chain rule together with the definition of the tangergi@dients on smooth and discrete surface
gives
O n(x) =P, (1 =d(x)2(0) Opn' (a(x),  xe Fy,

whereR, and.>Z are as in Lemma 5.1. The results then easily follow from tiiene¢es of that Lemma
and in particular the estimate<02 < &, < c < o. O

For later use we list interpolation inequalities which naw available. The Lemma was proved in
(6) for the gradient. It is easily extended to theestimate.

LEMMA 5.3 (INTERPOLATION) For givenn € H2(I") there exists a uniquign € S, such that

”n - lhr’”LZ(r) +hHDl’(n - lhr’)”LZ(r) < Ch2 (HDIZ'FIHLZ(I-) +hH|:|/'nH|_2(/-)) (5-11)

The interpolant is constructed in an obvious way. SipeeH?(I"), by Sobolev’s embeddingitis in
CO(r) since the surfacg is two dimensional. Thus the pointwise linear interpolaiﬁm € §, iswell
defined. The vertices df, lie on the smooth surfade and so the nodal values gfare well defined for
this interpolation. We then Iiffhn ontol” by the procesg n = (rhn)' according to (5.2).

5.2 Transport property of basis functions

Each trianglee(t) with verticesX¢ k = 1,2,3, on the discrete surface can be parameterized using
barycentric coordinates over the triangle- {0 < A, < 1, Z?::I.Ak =1} by

3
XE(Ay, Ag, Ag,t) = kzlAkX‘e(e"‘) (t). (5.12)

For eaclt € [0, Ty] we define (moving) nodal basis functiofe; (-,t)}'j“:l defined on# (t) satisfy-

ing
@ (1) €COM), @(X(t),t)=3;, @(-t)leislinear affine (5.13)
and one(t),
q)j |e = Aka

wherek = k(e, j).

Clearly g (-,t) € S,(t) for eachj and spafig;(-,t)} = §,(t). The linear independence of these nodal
functions implies that for eadhthey form a basis 08, (t) so that for eachp(-,t) € S (t),

N
o) =5 yO)g ).

=1
Observing the definition of material derivative we find that

: d d
Bile = GO A1 A3, = T A =0
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which yields the remarkable property
@ =0 on Iy(t).
Thus we have the following Proposition describing the tpamsproperty of the finite element functions:

PROPOSITIONS.1 (TRANSPORTPROPERTY) On[(t), foreachj=1,... N,

¢ =0
and for eaclp = 5L, i (1)@, € §,(t)
Y
p=73 vt)g.
J; A

REMARK 5.1 Observe that the derivatigeis defined with respect to the evolving surface on which
takes its values. Noting that

W(t) =v(X;(t),t) =1V;(t)
andv, (-,t) is the velocity off (t) where

N

=1
we may write the transport property of these finite elemesidd@nctions in the interior c#(t) as

qoj’t +'Uh . D(pj = O

Here we use the lift extension of a finite element functiontendiscrete surface which is constant in a
direction normal to the underlying smooth surface.

5.3 Semi-discrete approximation

Our ESFEM is based on the evolving finite element spacesdnt®d in this section and the variational
form (1.2) of the diffusion equation.

Definition 5.1 (Semi-discretization in Space)FindU (-,t) € §,(t) such that
d .
ary +/ 20U -0 :/ Ug YpeSt). 5.15
dt/l'h(t) ¢ re 0 Th n? r(t) ¢ VRS (515)

Here7;" is such that its lift is7, so that(7;")' = 7.

Using the Leibniz formula for the evolving triangulatedfaer (t), it is easily seen that an equiv-
alent formulation is:

' u<p+/ U gl .U+/ 27'0.U-0.0=0 VoeS) (5.16)
-/Fhm LI/ AR S

Setting



16 of 30 G.DZIUK and C. M. ELLIOTT

and using Proposition 5.1 we find that

. N . N . N
a. (pq)+/ a.@ed- -v —|—/ 7 ot d-@-0-¢=0 Vee t
-/FhmJZ MO Jog RO T e o 2, @084 B 0

and takingp = @,i = 1,...,N we obtain
Mo+ .4 0)a+.7t)a=0 (5.17)

where./Z (t) is the evolving mass matrix

A= '/’—h(t) %

A (t) is a mass matrix weighted by the surface divergence of trezitg
A () = /I'h(t) G AL 1) v
and.”(t) is the evolving stiffness matrix
_ —
St = /rhm 75'0r. 0,05 @

A consequence of the fact that the covariant derivativeb®&t/olving basis functions vanish is:

PROPOSITIONS.2 At
= = M (5.18)

Proof. A simple application of the Leibniz formula yields
E/ q).qq(:/ (¢.%+¢.¢K+¢.%D .v)
dt/r. J Jr® ! ! TATh® Th

and sincarpj = 0 we have the result. O
Thus we arrive at a simpler version of the finite element appration which does not explicitly
involve the velocity of the surface. The system

d

a(///(t)a)JrY(t)a =0. (5.19)
is equivalent to equation (5.15). Since the mass ma#ift) is uniformly positive definite of0, T, and
the stiffness matrix” (t) is positive semi-definite, we get existence and uniquenigbesemi-discrete
finite element solution.

REMARK 5.2 A significant feature of our approach is the fact that tlarives # (t) and.”(t) depend
only on the knowledge of the position of the nodes on the discsurface. The computational method
does not require a numerical evaluation of the normal orature.

REMARK 5.3 The numerical approximation can be directly appliedidases having a boundary.



Finite elements on evolving surfaces 17 of 30

6. Error bounds

In this section we will prove a convergence result. To stathwe prove the basic stability results.
They are similar to the energy estimates in Theorem 4.2.

LEMMA 6.1 (StraBILITY ) LetU be a solution of the semi-discrete scheme as in Definitionmétil
initial valueU (-,0) = U, andU! its lift according to (5.2). Then the following stabilitytasates hold:

.To
sup U2+ | 7 107U < clUblZag (6.1)
(0.To) 0
Ty .
U2, -, + sup||O-U'1%, - < cl|USIIZ L - 6.2
L0 S0l < bl (6.2)

Proof. The estimates fdd follow from the Leibniz formulasin Lemmas 4.1 and 4.2 in theng way as
this was done for the continuous equation. We thetJlifo the continuous surface and use the estimates
of Lemma 5.2 together with (6.6). For the last argument werref the proof of the following Theorem.

O

Theorem 6.1 (Convergence) Letu be a sufficiently smooth solution of (4.1) andlébe the discrete
solution from Definition 5.1. With the lif! of U we then have the following error estimate:

TO
sup |\u(~,t)—U'(-,t)llfz(r(t))+/ IIDr(U(',t)—UI(',t))HEz(r(t))dt
te(0,Ty) 0

TO .
< ot g2 +ch* sup |\u(.,s)||g2(r(s))+ch6/o l0C 9P g ds  (63)

s€(0,Ty)

Proof. The error bounds rely on a suitable form of the error equatiarorder to compare discrete
and continuous solution both should be defined on the sarfeceuwhich we take to be the continuous
surfacel (t). The continuous equation reads

%/r'm u¢+/r'(t) Py0ru-0r ¢ = '/r'(t) up Vo € HY( (1)), (6.4)
and the discrete equation is given by

%/r'hm UQH—./I;h(t) 75'0;U-Or ¢ = Am Up VoeS,). (6.5)
Here again@g' is defined such that the lift 0@5' is Z,. We lift the discrete equation to the continuous
surface as it was described in the previous section. We défiaad¢' by

U(xt) =U'@axt),t), @xt)=¢@xt),t), xemt).

The transformation of the material derivative @fwith respect to the discrete surfafgis done as
follows. Forx € I,(t) we have

qb(x,t) =@(xt) +v,(xt)-Op(x.t)
= @ (@ax,t),t) + (P(I — d2)u, — v — dvy) (x,t) —v(a(x.t),t)) - 0¢' (a(x t),t).
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By definitionO¢' (a(x,t),t) - v(x,t) = O¢' (a(x,t),t) - v(a(x.t),t) = 0 and sdl¢' = O, ¢'. With the use
of the estimate (5.4) this leads to

9(x.t) = @ (@0 1),1) + (vy(x.t) — (a0, t).1) - Op @ (@l t),) + O (W0, @ (k). b))

Here we also have used thgt is bounded independently bf Sincewv, is the interpolant ob (see
(5.14)), we have thab,(x,t) —v(a(x,t),t)| < ch?, and we arrive at

9(xt) = @ (@ t),0) + O (M0 @ @x ), DI ), x€ F(b). (6.6)
For better understanding of the following, we introduceribétion
Uy (x,t) = U'(xt), xel(t)
and the abbreviation

R, (xt) = (@6'(X,t))’lP(x,t)(l —d(X,t)jﬂ”(X,t))Ph(X,t).@a| (X )B, (X ) (I —d(x,t)2(x,1))

1
S, (x.t)

(x € I,(1)), and its lifted version foR, (a(x,t),t) = R,(x,t), x € [},(t). Lemma 5.1 holds with a minor
modification in the proof for the case th@, is not the identity on the tangent space by observing the
identity

(25" *PR2,'RP-P=(2,") *(PRP-P)2,'PRP+PRP—P.
Then (6.5) and

Z6'0:U-Or 0

24P (P—d#)0u, (a,-) - B, (P—d.#) O¢,(a,-)
= Z,'BP(—d#)0ru(a,-) BP( —d#)0r ¢,(a,-)
= Z'ROrun(a-)-Ordy(a-)

onTl(t), together with the estimate (6.6) lead to the inequality

d 1 1 1
— u —+/ PR O-u, -0 2/ u ——chz/ u |0, | = 6.7
dt/l'(t) h¢h5}|1 . oRUr Uy - O oy, o h¢h5l|1 r(t)| hl | r¢h|5}|1 (6.7)

for all ¢, € %(t). We take the difference of equation (6.4)¢gtand equation (6.7). The error relation
between continuous and lifted discrete solution then ismgly

d r 1 . |
a./l'(t)(u_ gﬂ]uh)d’h—’—./r(t) @O (D,-u- Rhl]I'uh) 'Drd’h
: 1 . L
< /r<t>(u_§,'1u“)¢“+0h2/ra>|uh||Df¢h|5_;] Ve, € S\(b), (6.8)

or, written in a more convenient form:

d n n
a/rm(u—uh)tph—l—/r(t) D30 (u—u,)-Or ¢y,
1

d 1
</I_(t)@o (th")Druh'Drd’h‘Fa/l_(t)(a—1)Uh¢h_/l_(t)(a—1)Uh¢h

' ' 1
+/r(t)(u_uh)¢h+Ch2./r(t)|uh||Dr¢h|a Yoy, € Sh(b). (6.9)
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This implies
S wmwedy [0y [ -y (610
dt Jr ro r
< %/F.(U(U_ Up) (U — ¢h)+./;(t> Zo0r (u—u,)-O-(u—¢y)
S RCRACEEN

+/ To(Ra=1) Or - O (9 dt/ )y (6 —u)
S | .
_/I'(t)(a _1)uh(¢h_uh)+0h2/l_(t> |uh||Dr(¢h—Uh)|—| Vd)h S §n(t)

We now observe that from (2.9)

d r 2 : L
a.rm(u—uh) —/rm(u u,) (U—10y)

1d

= id_/ (u— uh 2/(t (u— uh) Or-v
1d 2

> i — —

> o / (u—u,)? c/l_(t)(u uy)?,

and similarly
d . .
Gt o U0 [ )by <o [ () gy

Thus for anyg,, € %(t) we have from (6.10) using the geometry estimates from Lemmadgether
with the fact tha(R, — 1O = (R, — )P0,

1d 2 ' 2
Ed_/r(t)(u_uh) "’do/r(t)“]r(u_uh”
<c/[ (u-u 2+c/ U—u|+u—u)ju—
JL e [ (o) )
+cC O-(u—u)||0-(u—
1D (4=l O (0= 8y
+Ch2/r(t) (|uh|+|Druh|) |Dr(U—Uh)|+Ch2/I_(I) (|Uh|+|DrUh|) |0F (u—¢,)]
d 1 d 1
+a' r(t)(a‘]_1)uh(u_uh)_a/r(t>(a_1)uh(u_¢h)

+ch2/ ullu—u +ch2/ u|lu— ¢l
I'(t)|h|| bl I'(t)|h|| bl
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Standard applications of the Cauchy-Schwarz and Youngialéigs then lead to the estimate

1d f 2 do/ 2
- u—u )+ — U-(u—u
Zdtl'(t)( h) 2 .I—(t)l I'( h)|

. , d 1 . ,
gc./l’(t)|[|r(u_¢h)| _a/l_(w(a—1)Uh(u—¢h)—|—c'/r(t>(u_uh)

d [ 1 o . ,
+a/{_(t>(a_l)uh(u_uh)+Ch2|uh||_2(r(t))|u_uh|||_2(r(t))+C/[_(t)(u_¢h)

T : 4 2
—|—HU— uhHLZ(r(t)) HU - ¢h||L2(I'(t)) + Ch2||uhH|_2(r(t)) HU - ¢hHL2(I’(t)) +ch ”uh”Hl(I'(t))'

Integrating with respect to time, we arrive at the followiegfimate, withu,, = u,(-,0) € Sn ), using
the estimate (5.5) at several places:

= ey + b [ 10 (4wl
<o~ tholliry +© [ 10 (0= 8z dt+c [ lu=dyZz e
+Ch2||uh|||_2 ||U ¢h|||_2 +Ch2Huho|||_2 ||u0_ h('a )HLZ(I’O)
E T e N N YR
ot ol 2 I~ hllagy + 17 [ 1z 1 Gl

40 18 Gl 10— Byl e+ fF [ 412t o [ 2,

We use the stability estimates from Lemma 6.1 Q= U' and use the interpolation estimates from
Lemma 5.3 fou, o = I,Ug, ¢y, = I,u. This gives us the estimate

t
lu=hliZer)+ [ 110 (=)
t
[ =t it crPl g B + il

+ch2/ 0012, dt+ch2/ i (150) 1% (6.11)

For the last two terms on the right hand side of this inequal# observe that from Theorem 4.2 and
Lemma6.1

2 2
[ 1 622 085 Gl + Clthalry < ltolr

and with (6.6) we get

/ la— (1 dt<ch4/ 1002 )+ (1022 At
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A Gronwall argument then leads to the final estimate

lu(-,t) —up(, HL2 +/ 187 (u ("S))HEZ(F(S))dS

'TO .
< cPllug|Ze ) +ohft sup fu(- >||az(r<s>>+ch6 /o 16,9l ) S

s€(0,Ty)

fort € (0,T;y) and the Theorem is proved. O

7. Implementation and numerical results
7.1 Implicit Euler scheme

The time discretization in our computations is done by anicitpnethod. We discretize the variational
form (1.2) in time. The spatially discrete problemis

d s - -
4/ u / 7'0_U.0 :/ Up VYoeS(t) 71
dt./rhm (0+' i o, re Jr ® Voe§|t) (7.2)

We introduce a time step size> 0 and use upper indices for the time levels. ThU% represents
U(-,mr) and"™ =T (mr). With these notations we propose the following Algorithm.

ALGORITHM 7.1 (FULLY DISCRETE SCHEMBE LetU? € § (0) be given. Fom=0, .. SuL A solve the
linear system

1 1

' m+1 4 m+-1 ' —I,m+1 m+1 m+1 ' mgam
?/rmﬂu 9! +'/rm+190 Oy U™ 0, ¢! _?'/rmu 0! (7.2)
h h h h h

j=1,...,N.

7.2 Implementation

A typical finite element program sets up stiffness matrixssnaatrix and right hand side of the linear
system (7.2) within a loop over all triangles (elements).t ue describe how in our algorithm the
stiffness matrix setup is implemented. On each triaegtecon{ X, X,, X} with verticesX, € R3 the
element stiffness matrix

'Eﬂljz/e[le(ﬂe'DEque7 iaj:11213

with local basis functionq)je, j =1,2,3, is computed and then is summed to the correct globally num-
bered places of the matrix’. Herede = D,-h is the tangential gradient on the triangle I,,. Obviously

the tangential gradient on a plane is a cartesian gradigmg.tffanglee can be parametrized over the
unit triangle€’c R? as in (5.12). Then the usual transformation matrices fontag betweer ande

is used to compute the element stiffness matrix. The ardaedfiangle is trivially given by elementary
geometry.

A drawback of our method is the possibility of degeneratinggy The prescribed velocity may
lead to the effect, that the triangulatidg(t) is distorted and that the solver for the linear system does
not converge. In all our computational examples this pnolbdiéd not occur. But, of course, in general
situations this problem may appear. A remedy then is toamgulate the surface by some method,
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preferably this is done by conformally reparametrizing shieface and mapping a nice grid onto the
surface.

It is straightforward to handle both Dirichlet and Neumarouibdary conditions whedr (t) is
non-empty. Some examples are included in the numericalksesu

7.3 Numerical tests

Example 7.1 To start with we solve the heat equation on the unit spheree e surface does not
move. This example shows that our method also produces a él@ent method for parabolic PDEs
on surfaces which do not move. The functiax,t) = e %x,x, is an exact solution of

u—Aru=0

onTl (t) = I, = S with initial datauy(x) = X,x,. We have chosen the coupling= h? in order to show
the higher order convergence fiot andL® errors. The time interval i$, = 2.0. In Table 1 we show
the absolute errors and the corresponding experimentat®aod convergence for the norms

pHu_UluLZ(r)a

(0.Tp)

L*(L®) = sup|[u=U"[| 2r, L7(L?) = su
(0.Tp) L2(r) 0

L2(H1) — To 0 U2 ?

(H) = 0 107 (u— )|||_2(r)

For an errorE(h;) andE(h,) for the grid sizesh; andh, the experimental order of convergence is
(hy)

-1
defined as edb, ., h,) = log £ (Iog E_;) _

m N

h L™(L™) eoc | L®(L?) eoc | L?(HY) eoc
1. 0.088590 - 0.12023 - 0.24265 -
0.55745 | 0.089525 -0.02 0.14399 -0.31 0.22904 0.10
0.28664 | 0.036723 1.34| 0.060878 1.29| 0.10258 1.21
0.14433 | 0.010891 1.77| 0.018351 1.75| 0.040083 1.37
0.072293| 0.0028831 1.92| 0.0048303 1.93| 0.017503 1.20
0.036162| 0.00073909 1.97| 0.0012250 1.98| 0.0083646 1.07

Table 1. Heat equation on the sphere. Errors and experitrandrs of convergence for Example 7.1.

Example 7.2 The second computational example is a PDE on a moving swidhdime dependent
curvature. The surface is given by the level set function

2
X
d(x,t):ﬁ+x§+x§—1, (7.1)

so that the moving surfade(t) = {x € R3|d(x,t) = 0} is an ellipsoid with time dependent axis. We have
chosera(t) = 1+ 0.25sin(t). As exact continuous solution we choagg,t) = e %x;x, and compute
a right hand side for the PDE from the equation

f=u+v-Outud--v—A4ru
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The time step size was taken to be the square of the initialmaxgrid diameter. The time interval was
[0,4]. In Table 2 we show the error in three norms together with #peemental orders of convergence.
The grid sizeh in this example depends on time. We compute the eocs withghefiithe grid size at
the final imeT, = 4.

h(T,) L (L) eoc | L*(L?) eoc | L’(HY)  eoc
0.82737 | 0.095488 - 0.15424 - 0.29287 -
0.43422 | 0.057944 0.77| 0.097788 0.71 0.17507 0.80
0.21939 | 0.018764  1.65 0.033083 1.59 0.074327 1.26
0.10994 | 0.0050819 1.89 0.0089784 1.89 0.033367 1.16
0.055007| 0.0013038 1.97] 0.0022950 1.97 0.016053 1.06

Table 2. Errors and experimental orders of convergencexantple 7.2.

Example 7.3 We compute solutions on a rotating planar disk
I (t) = {(cos(10Q)x; — sin(10Q)x,,sin(10Q)x; 4+ cos(10Qt)x,,0)|x € Iy}

wherel, = {x € R3|x¢ +x4 < 1,x3 = 0}. HereZ, = 0.1.# andf (x,x,,0) = 1000 where(x; —0.5)2+
x5 < 0.01, f(x;,%,,0) = 0.0 where(x, — 0.5)>+x3 > 0.02 andf smooth elsewhere. We have used
homogeneous Dirichlet boundary conditions@fi, and as initial value we have takeg = 0. The
time step size was = 0.00016 and the triangulation had 16384 triangles. In FiguneeZhow some
time steps of the computations. In order to show that large 8teps (experimentally) are allowed we
computed the same example with a time step 0.01. The results for the first three time steps are
shown in Figure 3. They show the Lagrangian property of ogo@thm. Note the large velocity of the
rotation of the disk.

We computed the solution of (7.4) witl, = 0.1.# on a graph’ (t) above the unit disk, which
vertically moves according to the parametrization

1

x(0,t) = (61, 6,, 5 (1+te ") sin(2m6,) sin(3rr62)> 6= (6,,6,) € B,(0). (7.2)

The initial value wasl, = 0 and the right hand side was a smoothened characteristitdarf = 100x,
with D = {(X,%,,X3) € R3| (x; — 0.5)?+x3 < 0.1%}. The high curvatures and the velocity of the surface
lead to transport and diffusion shown in Figure 4.

Example 7.4 In Figures 5 and 6 we show the results of a computation on éngtapherd” (t) with
[o= S?. The parametrization df (t) is given by

X(6,t) = (cos(nt) 8, —sin(nt)6,,cos(nt)6; +sin(nt)6,,6;), 6¢cS (7.3)

with n = 25. For the initial datai,(x) = 0 and the right hand sidé(x,t) = 100XBR(xO)mr(t) (x) with
X, = (0,1,0), R=0.25 we solve

G+ uly v —0Op - (Zp0ru) = f (7.4)
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FIG. 2. Level set picture of the solutiar{-,t) of Example 7.3 at times= 0.008 0.040,0.08 and 016. Time step size = 0.00016.

FIG. 3. Level set picture of the solutian(-,t) of Example 7.3 for large time step size= 0.01 at the time steps,2,3 and 10.
Lagrangian property of the scheme.

onl (t) with 7, = .#. In Figure 5 we show the levels of the solution at tirhes0.005213f = 0.5213

andt = 1.5639 (slightly tilted). We used a grid with 8194 vertices.tdlthat the shading in each time
step is done for an equal distribution between maximum amiéhnuim of the discrete solution. In Figure
6 we show level lines of the stationary solution seen fromxthaxis. Left figure shows the level lines
on the front side of the sphere and the right figure shows tred limes on the back side of the sphere.

Example 7.5 Figure 8 shows computational results for a rotating cylinaied for small diffusivity.
Here,
Mo={xeR3x+x3=10< % <1},

and this cylinder is rotated according to (7.3) with= 5. As initial function we choose,(cos¢,sing) =
X{p|<0.01}" We imposed boundary conditions= u, on dI" (t). The boundary conditions are indepen-
dent of timet. As diffusivity we have chosen the relatively small numisgy= 0.1.#. We used the
triangulation in Figure 7 with 3200 vertices and 6144 tri@sgnd the time step size was= 0.1h.

Example 7.6 Figure 9 shows the solution of (1.1) on a rotating cylindrizaface with Dirichlet bound-
ary conditionsu(x,t) = uy(x) for x € I (t). Thus mass concentration is kept fixed during the evolution
on the boundary of the surface, is a smoothened version of the function ;@925((1, 0,1)). The
surface is a deformed cylinder - not a catenoid. So, its maarature does not vanish identically. The
surface is rotated according to (7.3) with= 10.
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FIG. 4. Transport and diffusion on a vertically moving grapte 6&2). Timeg = 0.7951.59,6.36 and 15.9.

FiG. 5. Diffusion and transport on a rotating sphere. Example 7.

Example 7.7 Our ESFEM allows the solution on surfaces with strongly iregyprincipal curvatures.
As a test for this we have chosen the surface Figure 10. lesgmits a buckley initial surface which is
evolved into part of a sphere of radius 4 as the time tenddfititin Figure 11 shows some time steps
of the solution for problem (7.4) with a right hand sifle= 1 and diffusion coefficien, = 0.1.7.
We have used Neumann boundary conditions. The initial fanet, was taken to depend on random
numbers.

8. Concluding remarks

The approach described here is directly applicable to dthendary conditions whear” (t) is non-
empty such as the non-homogeneous Dirichlet condition

u=g on ar (t).

or Neumann boundary condition
Oru-p=g on ar(t).

The method is directly applicable to a system in which themnass accumulation and deposition
onto the surface from outside such as

U4+ulp-v—0r - (Zp0ru) =Vua + f
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FiIG. 7. Triangulation of the sphere (Example 7.4) and of thendﬂr (Example 7.5).

whereu, is an ambient external concentration ahid a prescribed deposition rate.

The method could be developed to apply to a coupling with #ejdations away from the surface
such as the Navier-Stokes equations with surfactant toahep the interface between two immiscible
fluids.

The methodology is applicable to more general equationb agcsemi-linear reaction diffusion
systems and fourth order equations such as the Cahn-Hikiguation which can be split into two
second order problems, so allowing the use of piece-wisalfifinite elements.

The exposition has been concerned with an evolving dige@tsurface which preserves the quasi-
regularity of the mesh as time evolves. In practice this mayalshort time property and the issue of
remeshing arises. Observe that the approximating surfaeegolyhedral. It is a challenge to extend
this approach to higher order approximations of the suréacehigher order finite element methods.

Although the exposition has been concerned with triangdlatirfaces iiR® , immediately applica-
ble to curves, the methodology is also applicable to hypéases in higher space dimensions.

9. Appendix: Proof of the Leibniz formula

Proof. LetQ c R" be open anX =X(6,t), 8 € Q, X(-,t): Q — GNTI be alocal regular parametriza-

tion of the open portiolG N ™ of the surfacd™ which evolves so thaX; = v(X(8,t),t). The metric

(9ij)i j=1..n is given byg; = X, - X, with determinanty = det(g;;). Let (g") = (gij)*l. Define
=1, 7,

F(8,t) = f(X(0,t),t) and ¥ (6,t) = v(X(6,1),t).
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FiG. 8. Level lines of a solution of (1.1) on a rotating cylindeittwDirichlet boundary conditions and small diffusivity.irfe
steps 0, 10 and 50, and 100, 150 and 200 (half level spacing).

FIG. 9. Level lines of a solution of (1.1) on a cylindrical sudad eft: initial function, middle: stationary solution fstationary
surface, right: stationary solution for rotating surfaEegmple 7.6).

Then with the Euler relation for the derivative of the detaramt,
0 2o
E\/g:\/@.i 9'%g Ty
i,]=1
we have the following proof of (2.9):

d
dt JrrG

_d [ OF 0./3
b= &/QF\/@_/QW\/@JFF at

L (G010 %) Ve 10x.va 3 dixg

i,j=1
f+f0--v.
Jroof10r

where in the last step we have used that X; and that the tangential divergencewat given by

n '
(O v) (%) =5 d1% 75
i,]=1
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FiG. 10. Moving surface changing its curvatures strongly. Flefirto right: surface at timé=0,0.5,2.45.

The formula (2.10) follows from the first equation by obsag/ihe velocity decomposition (2.6)
and equation (2.8).
For the right hand side of (2.9) this leads to

[i+100 = [(f+vDt+10:0)
r r

ot
/r <ft—|—VW— fVH—I—Dr-(fT)).

Thus we have the equivalent form (2.10) for (2.9).
For the proof of (2.11) we first observe that we have

(O ) (X )12 = zlgii FoFo.. (9.5)
i,J=

so that
}E/ 017 = / V9 i gierFe.tJF}/ V0 i 9’ FgFo
2dt Jrre Q" it VO 2)a Y T ey i Y
1 AT
+§/Q \/gmg:lg 9%, 76 FgFo,
An easy calculation shows that
. n. n no
gl = —k;g"‘g”gm = —k;g”‘g” (%, %), = —k;g"‘g“ (Y6, %6 +%q %)

and we arrive at

1d 2 . n 1 ,
2dt rme'Drfl :/rDrf.Drf_/Fijz_lgivigifgif+§/r|mrf| Or v,

and have proved (2.11). O
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FiG. 11. Results for Example 7.7 at timés= 0.0,0.5 and 245. The level lines are equally spaced between maximum and
minimum of the solution.
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