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In this article we define a new evolving surface finite elementmethod (ESFEM) for numerically approxi-
mating partial differential equations on hypersurfacesΓ (t) in R

n+1 which evolve with time. The key idea
is based on approximatingΓ (t) by an evolving interpolated polyhedral (polygonal ifn = 1) surfaceΓh(t)
consisting of a union of simplices (triangles forn = 2) whose vertices lie onΓ (t). A finite element space
of functions is then defined by taking the set of all continuous functions onΓh(t) which are linear affine
on each simplex. The finite element nodal basis functions enjoy a transport property which simplifies the
computation. We formulate a conservation law for a scalar quantity onΓ (t) and, in the case of a diffusive
flux, derive a transport and diffusion equation which takes into account the tangential velocity and the lo-
cal stretching of the surface. Using surface gradients to define weak forms of elliptic operators naturally
generates weak formulations of elliptic and parabolic equations onΓ (t). Our finite element method is
applied to the weak form of the conservation equation. The computation of the mass and element stiffness
matrices are simple and straightforward. Error bounds are derived in the case of semi-discretization in
space. Numerical experiments are described which indicatethe order of convergence and also the power
of the method. We describe how this framework may be employedin applications.

Keywords: finite elements, evolving surfaces, conservation, diffusion, existence, error estimates, compu-
tations.

1. Introduction

Partial differential equations on evolving surfaces occurin many applications. For example, traditionally
they arise naturally in fluid dynamics and materials scienceand more recently in the mathematics of
images. In this paper we propose a mathematical approach to the formulation and approximation of
transport and diffusion of a material quantity on an evolving surface inRn+1 (n=1,2). We have in mind
a surface which not only evolves in the normal direction so asto define the surface evolution but also
has a tangential velocity associated with the motion of material points in the surface which advects
material quantities such as heat or mass. For our purposes here we assume that the surface evolution is
prescribed.
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1.1 The advection diffusion equation

Conservation of a scalar with a diffusive flux on an evolving hypersurfaceΓ (t) leads to the diffusion
equation

u̇+u∇Γ ·v−∇Γ · (D0∇Γ u) = 0 (1.1)

on Γ (t). Hereu̇ denotes the covariant or advective surface material derivative, v is the velocity of the
surface and∇Γ is the tangential surface gradient. If∂Γ (t) is empty then the equation does not need a
boundary condition. Otherwise we can impose Dirichlet or Neumann boundary conditions on∂Γ (t).

1.2 The finite element method

In this paper we propose a finite element approximation basedon the variational form

d
dt

∫

Γ (t)
uϕ +

∫

Γ (t)
D0∇Γ u ·∇Γ ϕ =

∫

Γ (t)
uϕ̇ (1.2)

whereϕ is an arbitrary test function defined on the surfaceΓ (t) for all t. This provides the basis
of our evolving surface finite element method (ESFEM) which is applicable to arbitrary evolvingn–
dimensional hypersurfaces inRn+1 (curves inR2) with or without boundary. Indeed this is the extension
of the method of Dziuk (6) for the Laplace-Beltrami equationon a stationary surface. The principal idea
is to use a polyhedral approximation ofΓ based on a triangulated surface. It follows that a quite natural
local piecewise linear parameterisation of the surface is employed rather than a global one. The finite
element space is then the space of continuous piecewise linear functions on the triangulated surface
whose nodal basis functions enjoy the remarkable property

φ̇ j = 0.

The implementation is thus rather similar to that for solving the diffusion equation on flat stationary
domains. For example, the backward Euler time discretization leads to the ESFEM scheme

1
τ

(

M (tm+1)αm+1−M (tm)αm)

+S (tm+1)αm+1 = 0

whereM (t) andS (t) are the time dependent surface mass and stiffness matrices and αm is the vector
of nodal values at timetm. Here,τ denotes the time step size.

1.3 Level set or implicit surface approach

An alternative approach to our method based on the use of (1.2) is to embed the surface in a family of
level set surfaces (1; 15; 9). This Eulerian approach can be discretized on a Cartesian grid inRn+1 and
has the usual advantages and disadvantages of level set methods.

1.4 Applications

Such a problem arises, for example, when modeling the transport of an insoluble surfactant on the
interface between two fluids, (14; 10). Here one views the velocity of the surface as being the fluid
velocity and hence the surfactant is transported by advection via the tangential fluid velocity (and hence
the tangential surface velocity) as well by diffusion within the surface. The evolution of the surface
itself in the normal direction is then given by the normal component of the fluid velocity.
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Diffusion induced grain boundary motion, (4; 7; 13; 5), has the feature of coupling forced mean
curvature flow for the motion of a grain boundary with a diffusion equation for a concentration of mass
in the grain boundary. In this case there is no material tangential velocity of the grain boundary so it is
sufficient to consider the surface velocity as being in the normal direction.

Another example is pattern formation on the surfaces of growing organisms modelled by reaction
diffusion equations, (12). Possible applications in imageprocessing are suggested by the article (11).

1.5 Outline of paper

The layout of the paper is as follows. We begin in section 2 by defining notation and essential concepts
from elementary differential geometry necessary to describe the problem and numerical method. The
equations presented above are justified in section 3. The weak form of the equations is derived in
section 4 and the well posedness of the initial boundary value problem is established. In section 5 the
finite element method is defined and some preliminary approximations results are shown. Error bounds
for the semi-discretization in space are proved in section 6. Implementation issues are discussed in
section 7 and the results of numerical experiments are presented. Finally in section 8 we make some
concluding remarks.

2. Basic notation and surface derivatives

2.1 Notation

For eacht ∈ [0,T0], T0 > 0, let Γ (t) be a compact smooth connected and oriented hypersurface inR
n+1

(n=1,2) andΓ0 = Γ (0). In order to formulate the model it is convenient to use two descriptions ofΓ (t),
one using a diffeomorphic parametrization and the other a level set function.

Note that to define an evolving surfaceΓ (t) it is sufficient to prescribe the normal velocity. However
we wish to consider time dependent material surfacesΓ = Γ (t) for which a material particleP located
at XP(t) onΓ (t) has a velocityẊP(t) not necessarily only in the normal direction. Thus we assumethat
there is a velocity fieldv so that pointsP onΓ (t) evolve with velocityẊP(t) = v(XP(t),t).

Hence for our first description, we assume that there exists amap

Φ(·, t) : Γ0 → Γ (t) , Φ ∈C1([0,T0],C
1(Γ0))∩C0([0,T0],C

3(Γ0)),

so thatΦ(·, t) is a diffeomorphism fromΓ0 to Γ (t) for everyt ∈ [0,T0] and that it solves the equation

Φt(·, t) = v(Φ(·,t),t),Φ(·,0) = Id.

Thus forXP(0) = P∈ Γ0 we haveXP(t) = Φ(P,t) ∈ Γ (t).
It follows thatΓ (t) has a second representation defined by a smooth level set functiond = d(x,t), x∈

R
n+1,t ∈ [0,T0] so that

Γ (t) = {x∈ N (t)|d(x,t) = 0}

whereN (t) is an open subset ofRn+1 in which∇d 6= 0 and chosen so that

d,dt ,dxi
,dxixj

∈C1(NT0
)(i, j = 1, . . . ,n)

for NT0
= ∪t∈[0,T0]

N (t)×{t}.
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The orientation ofΓ is set by taking the normalν to Γ to be in the direction of increasingd. Hence
we define a normal vector field by

ν(x,t) =
∇d(x,t)
|∇d(x,t)|

so that the normal velocityV of Γ is given by

V(x,t) = − dt(x,t)
|∇d(x,t)| .

We assume that the velocity fieldv is C1 in NT0
. It has the decompositionv = Vν + T into normal

velocityV = − dt
|∇d| |Γ (t) and tangential velocityT.

Observe that a possible choice ford is a signed distance function and in that case|∇d| = 1 onNT0
.

For later use we mention thatN (t) can be chosen such that for everyx ∈ N (t) andt ∈ [0,T0] there
exists a uniquea(x, t) ∈ Γ (t) such that

x = a(x,t)+d(x,t)ν(a(x,t),t), (2.1)

where hered denotes the signed distance function toΓ (t).

For any functionη defined on an open subsetN (t) of R
n+1 containingΓ (t) we define its tangential

gradient onΓ by
∇Γ η = ∇η −∇η ·ν ν

where, forx andy in R
n+1, x ·y denotes the usual scalar product and∇η denotes the usual gradient on

R
n+1. The tangential gradient∇Γ η only depends on the values ofη restricted toΓ (t) and∇Γ η ·ν = 0.

The components of the tangential gradient will be denoted by

∇Γ η =
(

D1η , . . . ,Dn+1η
)

.

The Laplace-Beltrami operator onΓ (t) is defined as the tangential divergence of the tangential gradient:

∆Γ η = ∇Γ ·∇Γ η =
n+1

∑
i=1

DiDiη .

Let Γ (t) have a boundary∂Γ (t) whose intrinsic unit outer normal, tangential toΓ (t), is denoted byµ .
Then the formula for integration by parts onΓ (t) is

∫

Γ
∇Γ η = −

∫

Γ
ηHν +

∫

∂Γ
ηµ , (2.2)

whereH denotes the mean curvature ofΓ with respect toν, which is given by

H = −∇Γ ·ν. (2.3)

The orientation is such that for a sphereΓ = {x∈ R
n+1| |x−x0|= R} and the choiced(x) = R−|x−x0|

the normal is pointing into the ballBR(x0) = {x∈ R
n+1| |x− x0| < R} and the mean curvature ofΓ is

given byH = n
R. Note thatH is the sum of the principle curvatures rather than the arithmetic mean and
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hence differs from the common definition by a factorn. The mean curvature vectorHν is invariant with
respect to the choice of the sign ofd.

Green’s formula on the surfaceΓ is
∫

Γ
∇Γ ξ ·∇Γ η =

∫

∂Γ
ξ ∇Γ η ·µ −

∫

Γ
ξ ∆Γ η . (2.4)

If Γ is closed then∂Γ is empty and the boundary terms do not appear. For these factsabout tangential
derivatives we refer to (8), pp 389–391. Note that, in general, higher order tangential derivatives do not
commute.

We shall use Sobolev spaces on surfacesΓ . For a given Lipschitz surfaceΓ we define

H1(Γ ) = {η ∈ L2(Γ ) | ∇Γ η ∈ L2(Γ )n+1}

andH1
0(Γ ) in the obvious way, if∂Γ 6= /0. For smooth enoughΓ we analoguously define the Sobolev

spacesHk(Γ ) for k∈ N.

2.2 The material derivative and Leibniz formulae

By a dot we denote the material derivative of a scalar function f = f (x,t) defined onNT0
:

ḟ =
∂ f
∂ t

+ v ·∇ f . (2.5)

In particular we note that

ḟ (Φ(·,t),t) =
d
dt

f (Φ(·,t),t)

and that the derivative depends only on the values off on the evolving surfaceΓ (t).

REMARK 2.1 The material derivative ˙g of a functiong defined on the(n+1) dimensional hypersurface
GT0

= ∪t∈[0,T0]
Γ (t)×{t} ⊂ R

n+2 is related to the tangential gradient on this surface by the formula

ġ = (1+V2)

(

∇
GT0

g

)

n+2
+ v ·∇Γ g,

where

(

∇
GT0

g

)

n+2
is then+2-nd component of this tangential gradient. Note that

‖g‖2
L2(GT0

) +‖∇Γ g‖2
L2(GT0

) +‖ġ‖2
L2(GT0

)

is equivalent to‖g‖2
H1(GT0

)
.

It is convenient to note that with (2.3) we obtain

∇Γ ·v = ∇Γ · (Vν)+ ∇Γ ·T = V∇Γ ·ν + ∇Γ ·T = −VH+ ∇Γ ·T (2.6)

and
∇Γ ·v = trace((I −ν ⊗ν)∇v) (2.7)
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whereI −ν ⊗ν denotes the matrix with entriesδi j −νiν j . For a scalarf we have

v ·∇ f = Vν ·∇ f +T ·∇ f = V
∂ f
∂ν

+T ·∇Γ f . (2.8)

The following formula for the differentiation of a parameter dependent surface integral will play a
decisive role.

LEMMA 2.1 (LEIBNIZ FORMULA) Let Γ be a surface and f be a function defined inNT0
such that all

the following quantities exist. Then

d
dt

∫

Γ
f =

∫

Γ

(

ḟ + f ∇Γ ·v
)

(2.9)

and with the decompositionv = Vν +T of the velocity ofΓ into normal and tangential velocity

d
dt

∫

Γ
f =

∫

Γ

(

∂ f
∂ t

+V
∂ f
∂ν

− fVH + ∇Γ · ( f T)

)

. (2.10)

Finally, with the deformation tensorD(v)i j = 1
2

(

Div j +D jvi

)

(i, j = 1, . . . ,n),

1
2

d
dt

∫

Γ
|∇Γ f |2 =

∫

Γ
∇Γ f ·∇Γ ḟ +

1
2

∫

Γ
|∇Γ f |2∇Γ ·v−

∫

Γ
D(v)∇Γ f ·∇Γ f . (2.11)

A proof of this Lemma is given in section 9.

3. Conservation and diffusion onΓ (t)

3.1 Conservation law

Let u be the density of a scalar quantity onΓ (t) (for example mass per unit arean = 2 or mass per unit
lengthn= 1). The basic conservation law we wish to consider can be formulated for an arbitrary portion
M (t) of Γ (t), which is the image of an arbitrary portionM (0) of Γ (0) under the prescribed velocity
flow. The law is that, for everyM (t),

d
dt

∫

M (t)
u = −

∫

∂M (t)
q ·µ (3.1)

where,∂M (t) is the boundary ofM (t) (a curve ifn = 2 and the end points of a curve ifn = 1) andµ
is the conormal on∂M (t). Thusµ is the unit normal to∂M (t) pointing out ofM (t) and tangential to
Γ (t). The surface flux is denoted byq. Observe that components ofq normal toM do not contribute to
the flux, so we may assume thatq is a tangent vector.

With the use of integration by parts, (2.2), we obtain
∫

∂M (t)
q ·µ =

∫

M (t)
∇Γ ·q+

∫

M (t)
q ·νH =

∫

M (t)
∇Γ ·q.

On the other hand by the Leibniz formula (2.9) we have

d
dt

∫

M (t)
u =

∫

M (t)

(

u̇+u∇Γ ·v
)

,
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so that
∫

M (t)

(

u̇+u∇Γ ·v + ∇Γ ·q
)

= 0,

which implies the pointwise conservation law

u̇+u∇Γ ·v + ∇Γ ·q = 0. (3.2)

Now using a representation ofu off the surface, so thatu has usual spatial derivatives inRn+1, we
can write (3.2) as

ut + v ·∇u+u∇Γ ·v+ ∇Γ ·q = 0. (3.3)

Observing (2.10), an alternative form is

ut +V
∂u
∂ν

−uVH+ ∇Γ · (uT)+ ∇Γ ·q = 0. (3.4)

Thus we arrive at some special cases:

1. Divergence free velocity,

ut + v ·∇u−uν ·∇vν + ∇Γ ·q = 0. (3.5)

2. Zero tangential velocity,

ut +V
∂u
∂ν

−uVH+ ∇Γ ·q = 0. (3.6)

3. Zero normal velocity,

ut + ∇Γ · (uv)+ ∇Γ ·q = 0. (3.7)

4. Zero normal velocity and divergence free tangential velocity,

ut + v ·∇Γ u+ ∇Γ ·q = 0. (3.8)

5. Stationary surface,

ut + ∇Γ ·q = 0. (3.9)

REMARK 3.1 Our approach does not require values of the scalaru away from the surface and so does
not need to consider∂u

∂ν . In some approaches this can be handled by assuming an extension of u away

from the surface which is constant in the normal direction, (15), so ∂u
∂ν = 0. Furthermore there is no

explicit need to compute the curvature or normal of the surface in (3.2).

REMARK 3.2 Our computational approach is based on (3.2) and dependsonly on explicit knowledge of
the surface location and does not require explicit evaluations of the normalν or the mean curvatureH.
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3.2 Diffusion equation and variational form

Takingq to be the diffusive flux
q = −D0∇Γ u (3.10)

where the symmetric diffusion tensor isD0 > d0I > 0 on the tangent space andD0ν = 0. This leads
to the diffusion equation

u̇+u∇Γ ·v−∇Γ · (D0∇Γ u) = 0 (3.11)

onΓ (t).
If ∂Γ = /0, i.e. the surface has no boundary, then there is no need forboundary conditions. For

example, this would be the case ifΓ (t) is the bounding surface of a domain.
If ∂Γ (t) is non-empty then we impose the homogeneous Dirichlet boundary condition

u = 0 on ∂Γ (t). (3.12)

Again if ∂Γ (t) is non-empty then we could impose the Neumann flux condtion

D0∇Γ u ·µ = 0. (3.13)

The variational form (1.2) then is an easy consequence. We multiply equation (1.1) by an adequate
test functionϕ and integrate overΓ (t). We then obtain using integration by parts (2.2) and the Leibniz
formula (2.9):

0 =
∫

Γ (t)

(

u̇ϕ +uϕ∇Γ ·v
)

+
∫

Γ (t)
D0∇Γ u ·∇Γ ϕ

=

∫

Γ (t)

(

(uϕ )̇ −uϕ̇ +uϕ∇Γ ·v
)

+

∫

Γ (t)
D0∇Γ u ·∇Γ ϕ

=
d
dt

∫

Γ (t)
uϕ +

∫

Γ (t)
D0∇Γ u ·∇Γ ϕ −

∫

Γ (t)
uϕ̇.

4. Weak form and wellposedness

We introduce the notion of a weak solution of the surface PDE (1.1), for which we derived a variational
form in (1.2). Just as in the cartesian case one could integrate (1.2) with respect to time and then
define a weak solution without using a time derivative ofu. But since the purpose of this work is the
approximation of stronger solutions we use a somewhat stronger notion of solution. We treat the case
of a compact surface without boundary.

Definition 4.1 (Weak solution) Let GT0
= ∪t∈[0,T0]Γ (t)× {t} and D0 ∈ L∞(GT0

). A function u ∈
H1(GT0

) is a weak solution of (1.1), if for almost everyt ∈ (0,T0)

∫

Γ (t)
u̇ϕ +

∫

Γ (t)
uϕ ∇Γ ·v+

∫

Γ (t)
D0∇Γ u ·∇Γ ϕ = 0 (4.1)

for everyϕ(·, t) ∈ H1(Γ (t)).
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In order to simplify the presentation we set

D0 = I

in this section. With suitable assumptions onD0 the results can easily be extended to the general case.
We first prove the basic energy equations for the problem. They will lead to existence and will be the
basis for error estimates later.

LEMMA 4.1 Letu be a weak solution of (1.1). Then

1
2

d
dt

∫

Γ (t)
u2 +

∫

Γ (t)
|∇Γ u|2+

1
2

∫

Γ (t)
u2∇Γ ·v = 0. (4.2)

Proof. We chooseϕ = u in

d
dt

∫

Γ (t)
uϕ +

∫

Γ (t)
∇Γ u ·∇Γ ϕ =

∫

Γ (t)
uϕ̇

and get
d
dt

∫

Γ
u2 +

∫

Γ
|∇Γ u|2 =

∫

Γ
uu̇ =

1
2

∫

Γ
(u2)̇ =

1
2

d
dt

∫

Γ
u2− 1

2

∫

Γ
u2 ∇Γ ·v,

and this was the claim. �

LEMMA 4.2 Letu be a weak solution of (1.1), for which the following quantities exist. Then
∫

Γ
u̇2 +

1
2

d
dt

∫

Γ
|∇Γ u|2 =

1
2

∫

Γ
|∇Γ u|2 ∇Γ ·v−

∫

Γ
D(v)∇Γ u ·∇Γ u−

∫

Γ
uu̇∇Γ ·v. (4.3)

Proof. We chooseϕ = u̇ in (4.1) and get with the use of (2.11)

0 =

∫

Γ
u̇2 +

∫

Γ
uu̇∇Γ ·v+

∫

Γ
∇Γ u ·∇Γ u̇

=
∫

Γ
u̇2 +

1
2

d
dt

∫

Γ
|∇Γ u|2− 1

2

∫

Γ
|∇Γ u|2∇Γ ·v +

∫

Γ
D(v)∇Γ u ·∇Γ u+

∫

Γ
uu̇∇Γ ·v.

�

Theorem 4.2 (Existence) Let u0 ∈ H1(Γ0). Then there exists a unique weak solution of (1.1) and the
following energy estimates hold:

sup
(0,T0)

‖u‖2
L2(Γ ) +

∫ T0

0
‖∇Γ u‖2

L2(Γ ) 6 c‖u0‖2
L2(Γ0), (4.4)

∫ T0

0
‖u̇‖2

L2(Γ ) + sup
(0,T0)

‖∇Γ u‖2
L2(Γ ) 6 c‖u0‖2

H1(Γ0). (4.5)

Proof. That there can be no more than one weak solution is a consequence of the estimate (4.2) which
applies to the difference of two weak solutions by linearityand a standard Gronwall argument. Letϕ0

j ,
j ∈ N, denote the eigenfunctions of the Laplace-Beltrami operator onΓ0, (see (2)). LetΦ = Φ(y,t),y∈
Γ0,0 6 t 6 T0 denote the diffeomorphism (see section 2) betweenΓ0 andΓ (t). Set

ϕ j(Φ(·,t),t) = ϕ0
j .
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This then gives a countable dense subset{ϕ j(·,t)| j ∈ N} of H1(Γ (t)). For j = 1, . . . ,N one has the
transport property

ϕ̇ j = 0 on Γ . (4.6)

Our ansatz for a Galerkin solution of (4.1) fromXN = span{ϕ1(·,t), . . . ,ϕN(·,t)} is

uN(x,t) =
N

∑
j=1

u j(t)ϕ j(x,t)

whereu j(0) = (u0,ϕ
0
j )L2(Γ0)

. Because of the property (4.6) we have that

u̇N =
N

∑
j=1

u̇ jϕ j

is in the same finite dimensional spaceXN as uN. By (linear) ODE theory we have existence and
uniqueness ofuN satisfying

d
dt

∫

Γ (t)
uNϕ +

∫

Γ (t)
∇Γ uN ·∇Γ ϕ =

∫

Γ (t)
uNϕ̇ (4.7)

for all ϕ(·, t) ∈ span{ϕ1(·, t), . . . ,ϕN(·, t)}. Lemma 4.1 then implies the energy equation

1
2

d
dt

∫

Γ (t)
u2

N +

∫

Γ (t)
|∇Γ uN|2 +

1
2

∫

Γ (t)
u2

N∇Γ ·v = 0. (4.8)

and a Gronwall argument gives the estimate

sup
t∈(0,T0)

∫

Γ (t)
uN(·, t)2dA+

∫ T0

0

∫

Γ (t)
|∇Γ uN(·,t)|2dAdt6 C (4.9)

where the constant depends on the geometry ofΓ (t), t ∈ [0,T0] and on the inital datau0 but not onN.
Similarly with Lemma 4.2 we get

∫

Γ (t)
u̇2

N +
1
2

d
dt

∫

Γ (t)
|∇Γ uN|2 6 c

∫

Γ (t)
|∇Γ uN|2 +c

∫

Γ (t)
|uN||u̇N|

so that with (4.9) and a Gronwall argument we arrive at the estimate
∫ T0

0

∫

Γ (t)
u̇N(·, t)2dAdt+ sup

t∈(0,T0)

∫

Γ (t)
|∇Γ uN(·,t)|2dA6 C. (4.10)

When we combine the estimates (4.9) and (4.10), then we obtain the boundedness of the sequence
(uN)N∈N

in H1(GT0
): Thus there exists au = u(x,t), u∈ H1(GT0

) such that for a subsequence (which
we again calluN),

uN ⇀ u (N → ∞) in H1(GT0
).

This, (4.7), the density of the sequenceϕ j and Fubini’s theorem imply thatu is a weak solution as in
Definition 4.1. �

For our error estimates we shall need regularity propertiesof the solutionu for smoothly evolving
smoothΓ .
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Theorem 4.3 Let Γ be sufficiently smooth. Thenu(·,t) ∈ H2(Γ (t)) and
∫ T0

0
‖u‖2

H2(Γ ) 6 c‖u0‖2
H1(Γ0). (4.11)

Proof. Because of the smoothness ofΓ we have from (2) and the elliptic PDE
∫

Γ
∇Γ u ·∇Γ ϕ = −

∫

Γ

(

u̇+u∇Γ ·v
)

ϕ

for all ϕ thatu∈ H2(Γ ) and‖u‖
H2(Γ )

6 c(‖u̇‖
L2(Γ )

+ ‖u‖
L2(Γ )

). The energy estimates (4.4) and (4.5)

then prove the result. �

REMARK 4.1 The results of existence and uniqueness are easily extended to the case where∂Γ (t) is
non-empty and either Dirichlet or Neumann conditions are prescribed. Then, for the regularity result of
Theorem 4.3 we need regularity of the boundary∂Γ .

5. Finite element approximation

5.1 Finite elements on surfaces

The smooth evolving surfaceΓ (t) (∂Γ (t) = /0) is approximated by an evolving surface

Γh(t) ⊂ N (t) , (∂Γh(t) = /0),

which for eacht is of classC0,1 and in time is smooth. In particular forn = 2, Γh(t) is a triangulated
(and hence polyhedral) surface consisting of trianglese in Th(t) with maximum diameter, uniformly in
time, being denoted byh and inner radius bounded below byσh > ch with somec > 0. The vertices
{Xj(t)}N

j=1 of the triangles are taken to sit onΓ (t) so thatΓh(t) is an interpolation. Note that by (2.1) for
every trianglee(t) ⊂ Γh(t) there is a unique curved triangleT(t) = a(e(t),t) ⊂ Γ (t). In order to avoid a
global double covering (see Figure 1) we assume that,

for each pointa∈ Γ there is at most one pointx∈ Γh with a = a(x, ·). (5.1)

This implies that there is a bijective correspondence between the triangles onΓh and the induced curvi-
linear triangles onΓ .

For any continuous functionη defined on the discrete surfaceΓh(t) we may define an extension or
lift onto Γ (t) by

η l (a) = η(x(a)) a∈ Γ (t) (5.2)

where by (2.1) and our assumptions,x(a) is defined as the unique solution of

x = a+d(x,t)ν(a,t). (5.3)

Furthermore we understand byη l (x) the constant extension fromΓ (t) in the normal directionν(a,t).
For eacht we have a finite element space

Sh(t) =
{

φ ∈C0(Γh(t))|φ |e is linear affine for eache∈ Th(t)
}

.

It is convenient to introduce

Sl
h(t) =

{

η l ∈C0(Γ (t))|η l (a) = η(x(a)),η ∈ Sh(t) andx(a) given by(5.3)
}

.
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a(x,t)

x
h

Γ 

Γ 

(t)

(t)

FIG. 1. Left: Approximation of a curveΓ (t) by a polygonΓh(t), a pointx∈Γh(t) and its orthogonal projectiona(x,t) ontoΓ (t).
Right: A polygonal approximation to a circle, violating thecondition (5.1).

Similarly eache(t) defines a curvilinear triangleT(t) onΓ (t) by

T(t) = {a(x,t)|x∈ e(t)} .

In the error analysis of the finite element scheme we shall need the following technical Lemma, which
gives more detailed information about the order of approximation of the geometry. It will become clear
in the proof of Theorem 6.1 how we shall exploit the followingestimates.

LEMMA 5.1 AssumeΓ andΓh are as above. Then

sup
t∈(0,T0)

‖d(·,t)‖L∞(Γh(t)) 6 ch2
. (5.4)

The quotient,δh, between the smooth and discrete surface measuresdAanddAh, defined byδhdAh = dA,
satisfies

sup
t∈(0,T0)

sup
Γh(t)

|1− δh| 6 ch2
. (5.5)

Let P andPh be the projections onto the tangent planes,Pi j = δi j − νiν j , Ph,i j = δi j − νh,iνh, j , and let

Rh = 1
δh

P(I −dH )Ph(I −dH ), Hi j = dxixj
= (νi)xj

. Then

sup
t∈(0,T0)

sup
Γh(t)

|(I −Rh)P| 6 ch2 (5.6)

Proof. For ease of exposition and without loss of generality, we treat two dimensional surfaces and omit
the time dependence of all quantities. Lete⊂Γh be a triangle of the discrete surface. The corresponding
curved triangleT = a(e) thus is parametrized overe. Again without loss of generality, we may assume
thate⊂ R

2×{0}. By Ih we denote the Lagrange interpolation one.
Since the vertices ofe lie onΓ we have that the interpolateIhd vanishes identically one and

‖d‖L∞(e) = ‖d− Ihd‖L∞(Th)
6 ch2|d|

H2,∞(Th)
6 ch2‖d‖

C1,1(NT0
)

and similarly
‖ν j‖L∞(e) = ‖dxj

‖L∞(e) 6 ch ( j = 1,2). (5.7)
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Forx = (x1,x2,0) ∈ ewe have by (2.1) that the mapa(x) satisfies

ai,xj
= δ ji −ν jνi −dH ji .

Furthermore sincedAh = dx1dx2 anddA= |ax1
∧ax2

|dx we have

δh = |ax1
∧ax2

|.

To derive the estimate of the surface elements (5.5) we observe that from (5.4)

ai,xj
= δ ji −ν jνi −dH ji = Pji +O(h2).

This implies forn = 2

ax1
∧ax2

=
(

e1−ν1ν −dνx1

)

∧
(

e2−ν2ν −dνx2

)

=
(

e1−ν1ν
)

∧
(

e2−ν2ν
)

+O(h2)

= e3−ν2e1∧ν −ν1ν ∧e2 +O(h2) = ν3ν +O(h2)

together with
|ax1

∧ax2
|2 > 1−O(h2) > c0 > 0

for h 6 h0. Hence we have from (5.7)

|1− δh| = |1−|ax1
∧ax2

|| =
|1−|ax1

∧ax2
|2|

1+ |ax1
∧ax2

| =
|ν2

1 + ν2
2 +O(h2)|

1+ |ax1
∧ax2

| 6 ch2
,

and we have proved (5.5).
The proof of (5.6) follows from the previous estimates when we keep in mind that in our situation

νh = e3. Note that byνh we mean the piece-wise constant vector defined by the normalsto the triangles
onΓh(t). We find that

(Rh− I)P= PPhP−P+O(h2) = O(h2)

since for a unit vectorzwe have

|(PPhP−P)z| = |z·
(

νh− (νh ·ν)ν
)

(νh− (νh ·ν)ν)| 6 ch2
,

because from (5.7),

|νh− (νh ·ν)ν| = |e3−ν3ν| =
√

1−ν2
3 =

√

ν2
1 + ν2

2 = O(h).

This proves (5.6). �

In order to compare the norms between functions and their lift we need the following Lemma.

LEMMA 5.2 Letη : Γh →R with lift η l : Γ →R. Then for the corresponding plane,e⊂Γh, and smooth,
T ⊂ Γ , triangles the following estimates hold if the norms exist.There is a constantc > 0 independent
of h such that

1
c
‖η‖

L2(e)
6 ‖η l‖

L2(T)
6 c‖η‖

L2(e)
(5.8)

1
c
‖∇Γh

η‖
L2(e)

6 ‖∇Γ η l‖
L2(T)

6 c‖∇Γh
η‖

L2(e)
(5.9)

‖∇2
Γh

η‖
L2(e)

6 c‖∇2
Γ η l‖

L2(T)
+ch‖∇Γ η l‖

L2(T)
(5.10)
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Proof. The proof is contained in (6). Here we only give the main ideas. In the following letd be the
distance function with respect to the smooth surfaceΓ . By definition (see (5.2))

η(x) = η l (x−d(x)ν(x)), x∈ Γh.

The chain rule together with the definition of the tangentialgradients on smooth and discrete surface
gives

∇Γh
η(x) = Ph(x)(I −d(x)H (x))∇Γ η l (a(x)), x∈ Γh,

wherePh andH are as in Lemma 5.1. The results then easily follow from the estimates of that Lemma
and in particular the estimate 0< 1

c 6 δh 6 c < ∞. �

For later use we list interpolation inequalities which now are available. The Lemma was proved in
(6) for the gradient. It is easily extended to theL2-estimate.

LEMMA 5.3 (INTERPOLATION) For givenη ∈ H2(Γ ) there exists a uniqueIhη ∈ Sl
h such that

‖η − Ihη‖
L2(Γ )

+h‖∇Γ (η − Ihη)‖
L2(Γ )

6 ch2
(

‖∇2
Γ η‖

L2(Γ )
+h‖∇Γ η‖

L2(Γ )

)

(5.11)

The interpolant is constructed in an obvious way. Sinceη ∈ H2(Γ ), by Sobolev’s embedding it is in
C0(Γ ) since the surfaceΓ is two dimensional. Thus the pointwise linear interpolation Ĩhη ∈ Sh is well
defined. The vertices ofΓh lie on the smooth surfaceΓ and so the nodal values ofη are well defined for
this interpolation. We then lift̃Ihη ontoΓ by the processIhη = (Ĩhη)l according to (5.2).

5.2 Transport property of basis functions

Each trianglee(t) with verticesXe
k ,k = 1,2,3, on the discrete surface can be parameterized using

barycentric coordinates over the triangle ˆe= {0 6 λk 6 1, ∑3
j=1 λk = 1} by

xe(λ1,λ2,λ3,t) =
3

∑
k=1

λkX
e
j(e,k)(t). (5.12)

For eacht ∈ [0,T0] we define (moving) nodal basis functions{φ j(·,t)}N
j=1 defined onN (t) satisfy-

ing

φ j (·, t) ∈C0(Γh(t)), φ j(Xi(t),t) = δi j , φ j (·,t)|e is linear affine (5.13)

and one(t),
φ j |e = λk,

wherek = k(e, j).
Clearlyφ j(·, t) ∈ Sh(t) for eachj and span{φ j(·,t)} ≡ Sh(t). The linear independence of these nodal

functions implies that for eacht they form a basis ofSh(t) so that for eachφ(·,t) ∈ Sh(t),

φ(·,t) =
N

∑
j=1

γ j(t)φ j(·,t).

Observing the definition of material derivative we find that

φ̇ j |e =
d
dt

φ j (x
e(λ1,λ2,λ3,t),t) =

d
dt

λk(e, j) = 0
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which yields the remarkable property
φ̇ j = 0 on Γh(t).

Thus we have the following Proposition describing the transport property of the finite element functions:

PROPOSITION5.1 (TRANSPORTPROPERTY) OnΓh(t), for eachj = 1, . . . ,N,

φ̇ j = 0

and for eachφ = ∑N
j=1γ j(t)φ j ∈ Sh(t)

φ̇ =
N

∑
j=1

γ̇ j(t)φ j .

REMARK 5.1 Observe that the derivativėφ is defined with respect to the evolving surface on whichφ
takes its values. Noting that

dXj

dt
(t) = v(Xj(t),t) =: Vj(t)

andvh(·,t) is the velocity ofΓh(t) where

vh(·,t) =
N

∑
j=1

Vj(t)φ j(·,t) (5.14)

we may write the transport property of these finite element basis functions in the interior ofe(t) as

φ j ,t + vh ·∇φ j = 0.

Here we use the lift extension of a finite element function on the discrete surface which is constant in a
direction normal to the underlying smooth surface.

5.3 Semi-discrete approximation

Our ESFEM is based on the evolving finite element spaces introduced in this section and the variational
form (1.2) of the diffusion equation.

Definition 5.1 (Semi-discretization in Space)FindU(·,t) ∈ Sh(t) such that

d
dt

∫

Γh(t)
Uφ +

∫

Γh(t)
D

−l
0 ∇Γh

U ·∇Γh
φ =

∫

Γh(t)
U φ̇ ∀φ ∈ Sh(t). (5.15)

HereD−l
0 is such that its lift isD0 so that

(

D−l
0

)l
= D0.

Using the Leibniz formula for the evolving triangulated surfaceΓh(t), it is easily seen that an equiv-
alent formulation is:

∫

Γh(t)
U̇φ +

∫

Γh(t)
Uφ∇Γh

·vh +

∫

Γh(t)
D

−l
0 ∇Γh

U ·∇Γ φ = 0 ∀φ ∈ Sh(t). (5.16)

Setting

U(·,t) =
N

∑
j=1

α j(t)φ j (·,t)
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and using Proposition 5.1 we find that

∫

Γh(t)

N

∑
j=1

α j ,tφ jφ +

∫

Γh(t)

N

∑
j=1

α jφ jφ∇Γh
·vh +

∫

Γh(t)
D

−l
0

N

∑
j=1

α j(t)∇Γh
φ j ·∇Γ φ = 0 ∀φ ∈ Sh(t)

and takingφ = φi , i = 1, . . . ,N we obtain

M (t)α̇ +M̃ (t)α +S (t)α = 0 (5.17)

whereM (t) is the evolving mass matrix

M (t) jk =

∫

Γh(t)
φ jφk,

M̃ (t) is a mass matrix weighted by the surface divergence of the velocity,

M̃ (t) jk =
∫

Γh(t)
φ jφk∇Γh(t) ·vh

andS (t) is the evolving stiffness matrix

S (t) jk =

∫

Γh(t)
D

−l
0 ∇Γh

φ j∇Γh
φk.

A consequence of the fact that the covariant derivatives of the evolving basis functions vanish is:

PROPOSITION5.2
dM

dt
= M̃ (5.18)

Proof. A simple application of the Leibniz formula yields

d
dt

∫

Γh(t)
φ j φk =

∫

Γh(t)

(

φ̇ j φk + φ j φ̇k + φ jφk∇Γh(t) ·vh

)

and sinceφ̇ j ≡ 0 we have the result. �

Thus we arrive at a simpler version of the finite element approximation which does not explicitly
involve the velocity of the surface. The system

d
dt

(M (t)α)+S (t)α = 0. (5.19)

is equivalent to equation (5.15). Since the mass matrixM (t) is uniformly positive definite on[0,T0] and
the stiffness matrixS (t) is positive semi-definite, we get existence and uniqueness of the semi-discrete
finite element solution.

REMARK 5.2 A significant feature of our approach is the fact that the matricesM (t) andS (t) depend
only on the knowledge of the position of the nodes on the discrete surface. The computational method
does not require a numerical evaluation of the normal or curvature.

REMARK 5.3 The numerical approximation can be directly applied to surfaces having a boundary.
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6. Error bounds

In this section we will prove a convergence result. To start with we prove the basic stability results.
They are similar to the energy estimates in Theorem 4.2.

LEMMA 6.1 (STABILITY ) Let U be a solution of the semi-discrete scheme as in Definition 5.1with
initial valueU(·,0) = U0 andU l its lift according to (5.2). Then the following stability estimates hold:

sup
(0,T0)

‖U l‖2
L2(Γ ) +

∫ T0

0
‖∇Γ U l‖2

L2(Γ ) 6 c‖U l
0‖2

L2(Γ0), (6.1)

∫ T0

0
‖U̇ l‖2

L2(Γ ) + sup
(0,T0)

‖∇Γ U l‖2
L2(Γ ) 6 c‖U l

0‖2
H1(Γ0)

. (6.2)

Proof. The estimates forU follow from the Leibniz formulas in Lemmas 4.1 and 4.2 in the same way as
this was done for the continuous equation. We then liftU to the continuous surface and use the estimates
of Lemma 5.2 together with (6.6). For the last argument we refer to the proof of the following Theorem.
�

Theorem 6.1 (Convergence) Let u be a sufficiently smooth solution of (4.1) and letU be the discrete
solution from Definition 5.1. With the liftU l of U we then have the following error estimate:

sup
t∈(0,T0)

‖u(·, t)−U l(·, t)‖2
L2(Γ (t)) +

∫ T0

0
‖∇Γ (u(·,t)−U l(·,t))‖2

L2(Γ (t))dt

6 ch2‖u0‖2
H2(Γ0)

+ch4 sup
s∈(0,T0)

‖u(·,s)‖2
H2(Γ (s)) +ch6

∫ T0

0
‖u̇(·,s)‖2

H2(Γ (s))ds (6.3)

Proof. The error bounds rely on a suitable form of the error equation. In order to compare discrete
and continuous solution both should be defined on the same surface which we take to be the continuous
surfaceΓ (t). The continuous equation reads

d
dt

∫

Γ (t)
uϕ +

∫

Γ (t)
D0∇Γ u ·∇Γ ϕ =

∫

Γ (t)
uϕ̇ ∀ϕ ∈ H1(Γ (t)), (6.4)

and the discrete equation is given by

d
dt

∫

Γh(t)
Uφ +

∫

Γh(t)
D

−l
0 ∇Γh

U ·∇Γh
φ =

∫

Γh(t)
U φ̇ ∀φ ∈ Sh(t). (6.5)

Here againD−l
0 is defined such that the lift ofD−l

0 is D0. We lift the discrete equation to the continuous
surface as it was described in the previous section. We defineU l andφ l by

U(x, t) = U l (a(x, t),t), φ(x,t) = φ l (a(x,t),t), x∈ Γh(t).

The transformation of the material derivative ofφ with respect to the discrete surfaceΓh is done as
follows. Forx∈ Γh(t) we have

φ̇(x, t) = φt(x, t)+ vh(x, t) ·∇φ(x,t)

= φ̇ l (a(x, t), t)+
(

(P(I −dH )vh−dtν −dνt)(x,t)− v(a(x,t),t)
)

·∇φ l (a(x,t),t).
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By definition∇φ l (a(x, t), t) ·ν(x, t) = ∇φ l (a(x,t),t) ·ν(a(x,t),t) = 0 and so∇φ l = ∇Γ φ l . With the use
of the estimate (5.4) this leads to

φ̇(x,t) = φ̇ l (a(x, t), t)+ (vh(x, t)− v(a(x,t),t)) ·∇Γ φ l (a(x,t),t)+O
(

h2|∇Γ φ l (a(x,t),t)|
)

.

Here we also have used thatvh is bounded independently ofh. Sincevh is the interpolant ofv (see
(5.14)), we have that|vh(x, t)− v(a(x, t), t)| 6 ch2, and we arrive at

φ̇(x, t) = φ̇ l (a(x, t), t)+O
(

h2|∇Γ φ l (a(x,t),t)|
)

, x∈ Γh(t). (6.6)

For better understanding of the following, we introduce thenotation

uh(x, t) = U l (x,t), x∈ Γ (t)

and the abbreviation

Rh(x,t) =
1

δh(x, t)
(D−l

0 (x, t))−1P(x, t)(I −d(x,t)H (x,t))Ph(x,t)D
−l
0 (x,t)Ph(x,t)(I −d(x,t)H (x,t))

(x∈ Γh(t)), and its lifted version forRl
h(a(x,t),t) = Rh(x,t), x ∈ Γh(t). Lemma 5.1 holds with a minor

modification in the proof for the case thatD0 is not the identity on the tangent space by observing the
identity

(D−l
0 )−1PPhD

−l
0 PhP−P= (D−l

0 )−1(

PPhP−P
)

D
−l
0 PPhP+PPhP−P.

Then (6.5) and

D
−l
0 ∇Γh

U ·∇Γh
φ = D

−l
0 Ph(P−dH )∇uh(a, ·) ·Ph(P−dH )∇ϕh(a, ·)

= D
−l
0 PhP(I −dH )∇Γ uh(a, ·) ·PhP(I −dH )∇Γ ϕh(a, ·)

= D
−l
0 Rh∇Γ uh(a, ·) ·∇Γ ϕh(a, ·)

onΓh(t), together with the estimate (6.6) lead to the inequality

d
dt

∫

Γ (t)
uhϕh

1
δ l

h

+
∫

Γ (t)
D0Rl

h∇Γ uh ·∇Γ ϕh >

∫

Γ (t)
uhϕ̇h

1
δ l

h

−ch2
∫

Γ (t)
|uh| |∇Γ ϕh|

1
δ l

h

(6.7)

for all ϕh ∈ Sl
h(t). We take the difference of equation (6.4) atϕh and equation (6.7). The error relation

between continuous and lifted discrete solution then is given by

d
dt

∫

Γ (t)
(u− 1

δ l
h

uh)ϕh +

∫

Γ (t)
D0

(

∇Γ u−Rl
h∇Γ uh

)

·∇Γ ϕh

6

∫

Γ (t)
(u− 1

δ l
h

uh)ϕ̇h +ch2
∫

Γ (t)
|uh| |∇Γ ϕh|

1
δ l

h

∀ϕh ∈ Sl
h(t), (6.8)

or, written in a more convenient form:

d
dt

∫

Γ (t)
(u−uh)ϕh +

∫

Γ (t)
D0∇Γ (u−uh) ·∇Γ ϕh

6

∫

Γ (t)
D0

(

Rl
h− I

)

∇Γ uh ·∇Γ ϕh +
d
dt

∫

Γ (t)
(

1
δ l

h

−1)uhϕh−
∫

Γ (t)
(

1
δ l

h

−1)uhϕ̇h

+

∫

Γ (t)
(u−uh)ϕ̇h +ch2

∫

Γ (t)
|uh| |∇Γ ϕh|

1
δ l

h

∀ϕh ∈ Sl
h(t). (6.9)
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This implies

d
dt

∫

Γ (t)
(u−uh)

2 +d0

∫

Γ (t)
|∇Γ (u−uh)|2−

∫

Γ (t)
(u−uh)(u̇− u̇h) (6.10)

6
d
dt

∫

Γ (t)
(u−uh)(u−ϕh)+

∫

Γ (t)
D0∇Γ (u−uh) ·∇Γ (u−ϕh)

−
∫

Γ (t)
(u−uh)(u̇− ϕ̇h)

+

∫

Γ (t)
D0

(

Rl
h− I

)

∇Γ uh ·∇Γ (ϕh−uh)+
d
dt

∫

Γ (t)
(

1
δ l

h

−1)uh(ϕh−uh)

−
∫

Γ (t)
(

1
δ l

h

−1)uh(ϕ̇h− u̇h)+ch2
∫

Γ (t)
|uh||∇Γ (ϕh−uh)|

1
δ l

h

∀ϕh ∈ Sl
h(t).

We now observe that from (2.9)

d
dt

∫

Γ (t)
(u−uh)

2−
∫

Γ (t)
(u−uh)(u̇− u̇h)

=
1
2

d
dt

∫

Γ (t)
(u−uh)

2 +
1
2

∫

Γ (t)
(u−uh)

2∇Γ ·v

>
1
2

d
dt

∫

Γ (t)
(u−uh)

2−c
∫

Γ (t)
(u−uh)

2
,

and similarly

d
dt

∫

Γ (t)
(u−uh)(u−ϕh)−

∫

Γ (t)
(u−uh)(u̇− ϕ̇h) 6 c

∫

Γ (t)

(

|u−uh|+ |u̇− u̇h|
)

|u−ϕh|.

Thus for anyϕh ∈ Sl
h(t) we have from (6.10) using the geometry estimates from Lemma 5.1 together

with the fact that(Rl
h− I)∇Γ = (Rl

h− I)P∇Γ ,

1
2

d
dt

∫

Γ (t)
(u−uh)

2 +d0

∫

Γ (t)
|∇Γ (u−uh)|2

6 c
∫

Γ (t)
(u−uh)

2 +c
∫

Γ (t)

(

|u−uh|+ |u̇− u̇h|
)

|u−ϕh|

+c
∫

Γ (t)
|∇Γ (u−uh)| |∇Γ (u−ϕh)|

+ch2
∫

Γ (t)

(

|uh|+ |∇Γ uh|
)

|∇Γ (u−uh)|+ch2
∫

Γ (t)

(

|uh|+ |∇Γ uh|
)

|∇Γ (u−ϕh)|

+
d
dt

∫

Γ (t)
(

1
δ l

h

−1)uh(u−uh)−
d
dt

∫

Γ (t)
(

1
δ l

h

−1)uh(u−ϕh)

+ch2
∫

Γ (t)
|uh| |u̇− u̇h|+ch2

∫

Γ (t)
|uh| |u̇− ϕ̇h|.
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Standard applications of the Cauchy-Schwarz and Young inequalities then lead to the estimate

1
2

d
dt

∫

Γ (t)
(u−uh)

2 +
d0

2

∫

Γ (t)
|∇Γ (u−uh)|2

6 c
∫

Γ (t)
|∇Γ (u−ϕh)|2−

d
dt

∫

Γ (t)
(

1
δ l

h

−1)uh(u−ϕh)+c
∫

Γ (t)
(u−uh)

2

+
d
dt

∫

Γ (t)
(

1
δ l

h

−1)uh(u−uh)+ch2‖uh‖L2(Γ (t))
‖u̇− u̇h‖L2(Γ (t))

+c
∫

Γ (t)
(u−ϕh)

2

+‖u̇− u̇h‖L2(Γ (t))
‖u−ϕh‖L2(Γ (t))

+ch2‖uh‖L2(Γ (t))
‖u̇− ϕ̇h‖L2(Γ (t))

+ch4‖uh‖2
H1(Γ (t)).

Integrating with respect to time, we arrive at the followingestimate, withuh0 = uh(·,0) ∈ Sl
h(0), using

the estimate (5.5) at several places:

‖u−uh‖2
L2(Γ ) +d0

∫ t

0
‖∇Γ (u−uh)‖2

L2(Γ )dt

6 ‖u0−uh0‖2
L2(Γ0) +c

∫ t

0
‖∇Γ (u−ϕh)‖2

L2(Γ )dt+c
∫ t

0
‖u−ϕh‖2

L2(Γ )dt

+ch2‖uh‖L2(Γ )
‖u−ϕh‖L2(Γ )

+ch2‖uh0‖L2(Γ0)
‖u0−ϕh(·,0)‖

L2(Γ0)

+c
∫ t

0
‖u−uh‖2

L2(Γ )dt+ch2‖uh‖L2(Γ )
‖u−uh‖L2(Γ )

+ch2‖uh0‖L2(Γ0)
‖u0−uh0‖L2(Γ0)

+ch2
∫ t

0
‖uh‖L2(Γ )

‖u̇− u̇h‖L2(Γ )
dt

+c
∫ t

0
‖u̇− u̇h‖L2(Γ )

‖u−ϕh‖L2(Γ )
dt+ch2

∫ t

0
‖u̇− ϕ̇h‖2

L2(Γ )dt+ch4
∫ t

0
‖uh‖2

H1(Γ )dt.

We use the stability estimates from Lemma 6.1 foruh = U l and use the interpolation estimates from
Lemma 5.3 foruh0 = Ihu0, ϕh = Ihu. This gives us the estimate

‖u−uh‖2
L2(Γ )

+
∫ t

0
‖∇Γ (u−uh)‖2

L2(Γ )
dt

6 c
∫ t

0
‖u−uh‖2

L2(Γ )dt+ch2‖u0‖2
H2(Γ0) +ch4‖u‖2

H2(Γ )

+ch2
∫ t

0
‖u̇− u̇h‖2

L2(Γ )dt+ch2
∫ t

0
‖u̇−

(

Ihu
)

‖̇2
L2(Γ )dt (6.11)

For the last two terms on the right hand side of this inequality we observe that from Theorem 4.2 and
Lemma 6.1

∫ t

0
‖u̇− u̇h‖2

L2(Γ (s))ds6 c‖u0‖2
H1(Γ0)

+c‖uh0‖2
H1(Γ0)

6 c‖u0‖2
H2(Γ0)

and with (6.6) we get

∫ t

0
‖u̇−

(

Ihu
)

‖̇2
L2(Γ )dt 6 ch4

∫ t

0
‖u̇‖2

H2(Γ ) +‖u‖2
H2(Γ )dt.
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A Gronwall argument then leads to the final estimate

‖u(·, t)−uh(·, t)‖2
L2(Γ (t)) +

∫ t

0
‖∇Γ (u(·,s)−uh(·,s))‖2

L2(Γ (s))ds

6 ch2‖u0‖2
H2(Γ0)

+ch4 sup
s∈(0,T0)

‖u(·,s)‖2
H2(Γ (s)) +ch6

∫ T0

0
‖u̇(·,s)‖2

H2(Γ (s))ds

for t ∈ (0,T0) and the Theorem is proved. �

7. Implementation and numerical results

7.1 Implicit Euler scheme

The time discretization in our computations is done by an implicit method. We discretize the variational
form (1.2) in time. The spatially discrete problem is

d
dt

∫

Γh(t)
Uφ +

∫

Γh(t)
D

−l
0 ∇Γh

U ·∇Γ φ =

∫

Γh(t)
U φ̇ ∀φ ∈ Sh(t). (7.1)

We introduce a time step sizeτ > 0 and use upper indices for the time levels. ThusUm represents
U(·,mτ) andΓ m = Γ (mτ). With these notations we propose the following Algorithm.

ALGORITHM 7.1 (FULLY DISCRETE SCHEME) Let U0 ∈ Sh(0) be given. Form= 0, . . . ,mT0
solve the

linear system

1
τ

∫

Γ m+1
h

Um+1ϕm+1
j +

∫

Γ m+1
h

D
−l ,m+1
0 ∇Γ m+1

h
Um+1 ·∇Γ m+1

h
ϕm+1

j =
1
τ

∫

Γ m
h

Umϕm
j (7.2)

j = 1, . . . ,N.

7.2 Implementation

A typical finite element program sets up stiffness matrix, mass matrix and right hand side of the linear
system (7.2) within a loop over all triangles (elements). Let us describe how in our algorithm the
stiffness matrix setup is implemented. On each trianglee= conv{X1,X2,X3} with verticesXk ∈ R

3 the
element stiffness matrix

S
e
i j =

∫

e
∇eφe

i ·∇eφe
j , i, j = 1,2,3

with local basis functionsφe
j , j = 1,2,3, is computed and then is summed to the correct globally num-

bered places of the matrixS . Here∇e = ∇Γh
is the tangential gradient on the trianglee⊂Γh. Obviously

the tangential gradient on a plane is a cartesian gradient. The trianglee can be parametrized over the
unit triangleê⊂ R

2 as in (5.12). Then the usual transformation matrices for themap between ˆe ande
is used to compute the element stiffness matrix. The area of the triangle is trivially given by elementary
geometry.

A drawback of our method is the possibility of degenerating grids. The prescribed velocity may
lead to the effect, that the triangulationΓh(t) is distorted and that the solver for the linear system does
not converge. In all our computational examples this problem did not occur. But, of course, in general
situations this problem may appear. A remedy then is to retriangulate the surface by some method,
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preferably this is done by conformally reparametrizing thesurface and mapping a nice grid onto the
surface.

It is straightforward to handle both Dirichlet and Neumann boundary conditions when∂Γ (t) is
non-empty. Some examples are included in the numerical results.

7.3 Numerical tests

Example 7.1 To start with we solve the heat equation on the unit sphere. Here the surface does not
move. This example shows that our method also produces a finite element method for parabolic PDEs
on surfaces which do not move. The functionu(x,t) = e−6tx1x2 is an exact solution of

ut −∆Γ u = 0

onΓ (t) = Γ0 = S2 with initial datau0(x) = x1x2. We have chosen the couplingτ = h2 in order to show
the higher order convergence forL2 andL∞ errors. The time interval isT0 = 2.0. In Table 1 we show
the absolute errors and the corresponding experimental orders of convergence for the norms

L∞(L∞) = sup
(0,T0)

‖u−U l‖
L2(Γ )

, L∞(L2) = sup
(0,T0)

‖u−U l‖
L2(Γ )

,

L2(H1) =

(

∫ T0

0
‖∇Γ (u−U l)‖2

L2(Γ )

)
1
2

.

For an errorE(h1) andE(h2) for the grid sizesh1 andh2 the experimental order of convergence is

defined as eoc(h1,h2) = log
E(h1)

E(h2)

(

log
h1
h2

)−1
.

h L∞(L∞) eoc L∞(L2) eoc L2(H1) eoc
1. 0.088590 - 0.12023 - 0.24265 -
0.55745 0.089525 -0.02 0.14399 -0.31 0.22904 0.10
0.28664 0.036723 1.34 0.060878 1.29 0.10258 1.21
0.14433 0.010891 1.77 0.018351 1.75 0.040083 1.37
0.072293 0.0028831 1.92 0.0048303 1.93 0.017503 1.20
0.036162 0.00073909 1.97 0.0012250 1.98 0.0083646 1.07

Table 1. Heat equation on the sphere. Errors and experimental orders of convergence for Example 7.1.

Example 7.2 The second computational example is a PDE on a moving surfacewith time dependent
curvature. The surface is given by the level set function

d(x, t) =
x2

1

a(t)
+x2

2+x2
3−1, (7.1)

so that the moving surfaceΓ (t) = {x∈R
3|d(x,t) = 0} is an ellipsoid with time dependent axis. We have

chosena(t) = 1+0.25sin(t). As exact continuous solution we chooseu(x,t) = e−6tx1x2 and compute
a right hand side for the PDE from the equation

f = ut + v ·∇u+u∇Γ ·v−∆Γ u.
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The time step size was taken to be the square of the initial maximal grid diameter. The time interval was
[0,4]. In Table 2 we show the error in three norms together with the experimental orders of convergence.
The grid sizeh in this example depends on time. We compute the eocs with the use of the grid size at
the final timeT0 = 4.

h(T0) L∞(L∞) eoc L∞(L2) eoc L2(H1) eoc
0.82737 0.095488 - 0.15424 - 0.29287 -
0.43422 0.057944 0.77 0.097788 0.71 0.17507 0.80
0.21939 0.018764 1.65 0.033083 1.59 0.074327 1.26
0.10994 0.0050819 1.89 0.0089784 1.89 0.033367 1.16
0.055007 0.0013038 1.97 0.0022950 1.97 0.016053 1.06

Table 2. Errors and experimental orders of convergence for Example 7.2.

Example 7.3 We compute solutions on a rotating planar disk

Γ (t) = {(cos(100t)x1−sin(100t)x2,sin(100t)x1 +cos(100t)x2,0)|x∈ Γ0}

whereΓ0 = {x∈ R
3|x2

1+x2
2 6 1,x3 = 0}. HereD0 = 0.1I and f (x1,x2,0) = 100.0 where(x1−0.5)2+

x2
2 6 0.01, f (x1,x2,0) = 0.0 where(x1 − 0.5)2 + x2

2 > 0.02 and f smooth elsewhere. We have used
homogeneous Dirichlet boundary conditions on∂Γ , and as initial value we have takenu0 = 0. The
time step size wasτ = 0.00016 and the triangulation had 16384 triangles. In Figure 2we show some
time steps of the computations. In order to show that large time steps (experimentally) are allowed we
computed the same example with a time stepτ = 0.01. The results for the first three time steps are
shown in Figure 3. They show the Lagrangian property of our algorithm. Note the large velocity of the
rotation of the disk.

We computed the solution of (7.4) withD0 = 0.1I on a graphΓ (t) above the unit disk, which
vertically moves according to the parametrization

x(θ , t) =

(

θ1,θ2,
1
2

(

1+ te−t)sin(2πθ1)sin(3πθ2)

)

θ = (θ1,θ2) ∈ B1(0). (7.2)

The initial value wasu0 = 0 and the right hand side was a smoothened characteristic function f = 100χD
with D = {(x1,x2,x3)∈ R

3|(x1−0.5)2+x2
2 6 0.12}. The high curvatures and the velocity of the surface

lead to transport and diffusion shown in Figure 4.

Example 7.4 In Figures 5 and 6 we show the results of a computation on a rotating sphereΓ (t) with
Γ0 = S2. The parametrization ofΓ (t) is given by

x(θ , t) =
(

cos(ηt)θ1−sin(ηt)θ2,cos(ηt)θ1 +sin(ηt)θ2,θ3

)

, θ ∈ S2 (7.3)

with η = 25. For the initial datau0(x) = 0 and the right hand sidef (x,t) = 100χBR(x0)∩Γ (t)(x) with

x0 = (0,1,0), R= 0.25 we solve

u̇+u∇Γ ·v−∇Γ · (D0∇Γ u) = f (7.4)
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FIG. 2. Level set picture of the solutionu(·,t) of Example 7.3 at timest = 0.008,0.040,0.08 and 0.16. Time step sizeτ = 0.00016.
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FIG. 3. Level set picture of the solutionu(·,t) of Example 7.3 for large time step sizeτ = 0.01 at the time steps 1,2,3 and 10.
Lagrangian property of the scheme.

onΓ (t) with D0 = I . In Figure 5 we show the levels of the solution at timest = 0.005213,t = 0.5213
andt = 1.5639 (slightly tilted). We used a grid with 8194 vertices. Note that the shading in each time
step is done for an equal distribution between maximum and minimum of the discrete solution. In Figure
6 we show level lines of the stationary solution seen from thex1 axis. Left figure shows the level lines
on the front side of the sphere and the right figure shows the level lines on the back side of the sphere.

Example 7.5 Figure 8 shows computational results for a rotating cylinder and for small diffusivity.
Here,

Γ0 = {x∈ R
3|x2

1 +x2
2 = 1,0 6 x3 6 1},

and this cylinder is rotated according to (7.3) withη = 5. As initial function we chooseu0(cosϕ ,sinϕ)=
χ{|ϕ|60.01}. We imposed boundary conditionsu = u0 on ∂Γ (t). The boundary conditions are indepen-
dent of timet. As diffusivity we have chosen the relatively small numberD0 = 0.1I . We used the
triangulation in Figure 7 with 3200 vertices and 6144 triangles and the time step size wasτ = 0.1h.

Example 7.6 Figure 9 shows the solution of (1.1) on a rotating cylindrical surface with Dirichlet bound-
ary conditionsu(x, t) = u0(x) for x∈ ∂Γ (t). Thus mass concentration is kept fixed during the evolution
on the boundary of the surface.u0 is a smoothened version of the function 100χB0.25

((1,0,1)). The
surface is a deformed cylinder - not a catenoid. So, its mean curvature does not vanish identically. The
surface is rotated according to (7.3) withη = 10.
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FIG. 4. Transport and diffusion on a vertically moving graph, see (7.2). Timest = 0.795,1.59,6.36 and 15.9.

FIG. 5. Diffusion and transport on a rotating sphere. Example 7.4.

Example 7.7 Our ESFEM allows the solution on surfaces with strongly varying principal curvatures.
As a test for this we have chosen the surface Figure 10. It represents a buckley initial surface which is
evolved into part of a sphere of radius 4 as the time tends to infinity. Figure 11 shows some time steps
of the solution for problem (7.4) with a right hand sidef = 1 and diffusion coefficientD0 = 0.1I .
We have used Neumann boundary conditions. The initial function u0 was taken to depend on random
numbers.

8. Concluding remarks

The approach described here is directly applicable to otherboundary conditions when∂Γ (t) is non-
empty such as the non-homogeneous Dirichlet condition

u = g on ∂Γ (t).

or Neumann boundary condition
∇Γ u ·µ = g on ∂Γ (t).

The method is directly applicable to a system in which there is mass accumulation and deposition
onto the surface from outside such as

u̇+u∇Γ ·v−∇Γ · (D0∇Γ u) = Vua+ f
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FIG. 6. Level lines of the stationary solution of Example 7.4. Front side of the sphere (left) and backside (right).

FIG. 7. Triangulation of the sphere (Example 7.4) and of the cylinder (Example 7.5).

whereua is an ambient external concentration andf is a prescribed deposition rate.
The method could be developed to apply to a coupling with fieldequations away from the surface

such as the Navier-Stokes equations with surfactant transport on the interface between two immiscible
fluids.

The methodology is applicable to more general equations such as semi-linear reaction diffusion
systems and fourth order equations such as the Cahn-Hilliard equation which can be split into two
second order problems, so allowing the use of piece-wise linear finite elements.

The exposition has been concerned with an evolving discretized surface which preserves the quasi-
regularity of the mesh as time evolves. In practice this may be a short time property and the issue of
remeshing arises. Observe that the approximating surfacesare polyhedral. It is a challenge to extend
this approach to higher order approximations of the surfaceand higher order finite element methods.

Although the exposition has been concerned with triangulated surfaces inR3 , immediately applica-
ble to curves, the methodology is also applicable to hypersurfaces in higher space dimensions.

9. Appendix: Proof of the Leibniz formula

Proof. Let Ω ⊂R
n be open andX = X(θ , t), θ ∈ Ω , X(·,t) : Ω →G∩Γ be a local regular parametriza-

tion of the open portionG∩Γ of the surfaceΓ which evolves so thatXt = v(X(θ ,t),t). The metric
(gi j )i, j=1,...,n is given bygi j = Xθi

·Xθ j
with determinantg = det(gi j ). Let (gi j ) = (gi j )

−1. Define

F(θ ,t) = f (X(θ , t), t) andV (θ , t) = v(X(θ ,t),t).
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FIG. 8. Level lines of a solution of (1.1) on a rotating cylinder with Dirichlet boundary conditions and small diffusivity. Time
steps 0, 10 and 50, and 100, 150 and 200 (half level spacing).

FIG. 9. Level lines of a solution of (1.1) on a cylindrical surface. Left: initial function, middle: stationary solution forstationary
surface, right: stationary solution for rotating surface (Example 7.6).

Then with the Euler relation for the derivative of the determinant,

∂
∂ t

√
g =

√
g

n

∑
i, j=1

gi j Xθi
·Vθ j

,

we have the following proof of (2.9):

d
dt

∫

Γ∩G
f =

d
dt

∫

Ω
F
√

g =

∫

Ω

∂F
∂ t

√
g+F

∂√g

∂ t

=
∫

Ω

(

∂ f
∂ t

+ ∇ f (X, ·) ·Xt

)

√
g+ f (X, ·)√g

n

∑
i, j=1

gi j Xθi
·Vθ j

=

∫

Γ∩G
ḟ + f ∇Γ ·v.

where in the last step we have used thatV = Xt and that the tangential divergence ofv is given by

(

∇Γ ·v
)

(X, ·) =
n

∑
i, j=1

gi j Xθi
·Vθ j

.
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FIG. 10. Moving surface changing its curvatures strongly. Fromleft to right: surface at timet = 0,0.5,2.45.

The formula (2.10) follows from the first equation by observing the velocity decomposition (2.6)
and equation (2.8).

For the right hand side of (2.9) this leads to
∫

Γ
ḟ + f ∇Γ ·v =

∫

Γ

(

ft + v ·∇ f + f ∇Γ ·v
)

=
∫

Γ

(

ft +V
∂ f
∂ν

− fVH+ ∇Γ · ( f T)

)

.

Thus we have the equivalent form (2.10) for (2.9).
For the proof of (2.11) we first observe that we have

|
(

∇Γ f
)

(X, ·)|2 =
n

∑
i, j=1

gi j Fθi
Fθ j

, (9.5)

so that

1
2

d
dt

∫

Γ∩G
|∇Γ f |2 =

∫

Ω

√
g

n

∑
i, j=1

gi j Fθi
Fθ j t

+
1
2

∫

Ω

√
g

n

∑
i, j=1

gi j
t Fθi

Fθ j

+
1
2

∫

Ω

√
g

n

∑
i, j ,k,l=1

gi j gklXθk
·Vθl

Fθi
Fθ j

.

An easy calculation shows that

gi j
t = −

n

∑
k,l=1

gikg jl gkl,t = −
n

∑
k,l=1

gikg jl
(

Xθk
·Xθl

)

t
= −

n

∑
k,l=1

gikg jl
(

Vθk
·Xθl

+Xθk
·Vθl

)

and we arrive at

1
2

d
dt

∫

Γ∩G
|∇Γ f |2 =

∫

Γ
∇Γ f ·∇Γ ḟ −

∫

Γ

n

∑
i, j=1

Div jDi f D j f +
1
2

∫

Γ
|∇Γ f |2∇Γ ·v,

and have proved (2.11). �
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FIG. 11. Results for Example 7.7 at timest = 0.0,0.5 and 2.45. The level lines are equally spaced between maximum and
minimum of the solution.
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