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Abstract. We study vesicles formed by lipid bilayers that are governed by an elastic bending energy and on which
the lipids laterally separate forming two different phases. The energy laden phase interfaces may be modeled as curves on
the hyper-surface representing the membrane (sharp interface model). The phase field methodology is another powerful
tool to model such phase separation phenomena where thin layers describe the interfaces (diffuse interface model). For
both approaches we characterize equilibrium shapes in terms of the Euler-Lagrange equations of the total membrane energy
subject to constraints on the area of the two phases and the volume. We further show by matching appropriate formal
asymptotic expansions that the sharp interface model is obtained from the diffuse interface model as the thickness of the
phase interface tends to zero. The essential challenge lies in the fact that also the geometry of the membrane is unknown
and depends on a small parameter representing the interface thickness.
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1. Introduction. Biomembranes are bilayers of lipid molecules and a basic component of the bound-
aries of cells and cell organelles [27]. Observations of vesicles formed by biomembranes exhibit an inter-
esting variety of shapes and shape transitions [29]. Established models treat biomembranes as deformable
inextensible fluid surfaces of infinitesimal thickness, unable to sustain shear stress, and governed by bend-
ing energy functionals with the membrane strain energy depending on the curvature of the surface. A
classical model for the elastic bending energy is the Canham-Helfrich-Evans energy functional [8, 16, 20]

FCEH(Γ) =
∫

Γ

kκ
2

(κ− κs)2 +
∫

Γ

kgg (1.1)

where the membrane is modeled as a closed hyper-surface Γ in R3 enclosing a bounded domain Ω. The
mean curvature of the membrane is denoted by κ and the Gaussian curvature by g. Note that κ is the sum
of the principle curvatures rather than the arithmetic mean and hence differs from the common definition
by a factor 2. The positive real numbers kκ (bending rigidity) and kg (Gaussian bending rigidity) are
material dependent elasticity parameters whilst κs is called spontaneous curvature.

Shape transition phenomena such as bud formation, pearling and vesicle fission have recently been
observed in two-component giant unilamellar vesicles involving a separation into two phases [6, 5]. Line
tension is observed at the phase interface, and in [23, 24] an energy functional of the form

FSI(Γ) = FB + FL =
2∑
i=1

(∫
Γi

k
(i)
κ

2
(κ− κ(i)

s )2 +
∫

Γi

k(i)
g g
)

+
∫
γ

σ̄ (1.2)

has been proposed for the two-phase membrane which is composed of two smooth surfaces Γi with a
common boundary γ. Then σ̄ denotes the (constant) energy density of the excess free energy of the phase
transition located on γ. It is assumed that the lipid bilayer structure of the membrane remains intact
across the phase interface so that the whole surface Γ = Γ1 ∪ γ ∪Γ2 is of the class C1 across γ and fulfills
some more regularity properties that will be specified in Section 3. We emphasize that these assumptions
are consistent with the assumptions that usually are made for axisymmetric shapes, see [11] for instance.

In this paper, we investigate the idea of replacing the line energy FL by a Ginzburg-Landau energy
of the form

FGL =
∫

Γ

σ
(ε

2
|∇Γc|2 +

1
ε
ψ(c)

)
, (1.3)

where c is an order parameter to distinguish the two phases, ∇Γ stands for the surface gradient, ψ(c) =
1
2 (1 − c2)2 is a double-well potential and ε a small length scale. The coefficient σ is related to the line
energy coefficient σ̄ by

σ̄ =
4
3
σ (1.4)
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which will be motivated by an asymptotic analysis. The double-well potential w has two minima in the
points c = ±1 so that c ≈ 1 and c ≈ −1 in the two phases, whilst the phase interface γ is replaced by a
thin layer of a thickness scaling with ε across which c changes its value smoothly but quickly. The total
membrane energy in this diffuse interface model reads

FDI(Γ, c) = FMC(Γ, c) + FGC(Γ, c) + FGL(Γ, c)

=
∫

Γ

1
2
kκ(c)

∣∣κ− κs(c)∣∣2 +
∫

Γ

kg(c)g +
∫

Γ

(σε
2
|∇Γc|2 +

σ

ε
ψ(c)

)
. (1.5)

With respect to the bending rigidities and the spontaneous curvature we set

kκ(c) =


k

(1)
κ if 1 ≤ c,
k(1)
κ +k(2)

κ

2 + k(1)
κ −k

(2)
κ

4 c(3− c2) if − 1 < c < 1,
k

(2)
κ if c ≤ −1,

and similarly for κs(c) and kg(c) but other interpolations of the same smoothness are sufficient to establish
the results presented in the study.

The idea of replacing the line energy by (1.3) has already been proposed earlier, see for example
[3, 28, 25, 31, 30] yet a formal asymptotic analysis seems to be lacking which motivates this study.
Furthermore, the phase field method provides a convenient way to compute equilibrium membrane shapes
using surface finite elements [14]. We remark that it has also been used already to describe the membrane
[7, 35, 26].

We first introduce some concepts of a surface calculus, including surface gradients, an integration
by parts formula and a transport identity (Leibniz formula) for evolving surfaces. This calculus is easily
accessible to the discretization using surface finite elements as they have been used for solving partial
differential equations on evolving surfaces [13] and geometric evolution equations as Willmore flow [12].
Based on this calculus we carefully derive the Euler-Lagrange equations of the sharp interface membrane
energy (1.2), the sharp interface model. Appropriate two-phase membranes and admissible deformations
that respect the required regularity properties are defined for this purpose.

Important works in this context are [22, 15] where deformed sheets with discontinuities along certain
curves are considered and the standard notation of differential geometry is used. That notation is also
used in [1] on two-phase biomembranes. There, conditions not only for critical points but for minimizers
are derived, yet explicit statements of the interface conditions are lacking for an energy density as in (1.1)
since, later on, the dependence on the Gaussian curvature is dropped. Furthermore, there are approaches
for open membranes containing numerous computations using the usual notation in differential geometry
[9, 36, 4] or differential forms [32, 33] that may be used to treat the present case of two open membranes
glued together. The essential novelty of our approach lies in using the mentioned surface calculus instead.
The two-component case is also considered in [32, 34] but due to different smoothness assumptions on the
membrane across the phase interface the resulting equilibrium equations slightly differ from our equations.
We will come back to this issue in Appendix B.

Using the surface calculus again we will proceed with the membrane energy (1.5) and derive the
diffuse interface model. Varying the line energy FL requires tangential membrane deformations but now
we restrict it to the normal direction because energy changes due to deformations of the phase interface in
lateral direction correspond to variations of the order parameter. In both models we take hard constraints
on the surface areas of the two phases and the volume of the enclosed domain into account. We refer to
[29] for the physical regime where this is of relevance.

Finally, an asymptotic analysis is performed by matching suitable asymptotic ε-expansions in the
bulk domain with others in the interfacial layers. This way we recover the equations of the sharp interface
model in the limit as the interface thickness tends to zero (ε → 0). The essential difficulty is that the
membrane surface itself depends on ε so that standard techniques have to be extended. In Appendix A
we relate the equations of the sharp interface model to those in [10, 11] for axisymmetric surfaces.

2. Notation, material derivative and Leibniz formula.

2.1. Calculus on surfaces. In this section we consider smooth oriented two-dimensional hyper-
surfaces Γ̃ ⊂ R3 which, if not closed, have smooth boundaries ∂Γ̃. To fix the orientation let ν = (νi)3

i=1

denote the a unit normal field on Γ̃. Further, let µ = (µi)3
i=1 denote the outer co-normal of Γ̃ on ∂Γ̃, i.e.,

µ is tangential to Γ̃ and normal to ∂Γ̃.
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For any function η defined on a neighborhood N ⊂ R3 of Γ̃ we define its tangential gradient on Γ̃ by
∇Γ̃η := ∇η − ∇η · ν ν where · denotes the usual scalar product and ∇η denotes the usual gradient on
R3. The tangential gradient ∇Γ̃η only depends on the values of η restricted to Γ̃, and ∇Γ̃η · ν = 0. The
components of the tangential gradient will be denoted by ∇Γ̃η = (Diη)3

i=1.

If w = (wi)3
i=1, z = (zi)3

i=1 : Γ̃ → R3 are smooth vector fields then ∇Γ̃w is the matrix with
components (∇Γ̃w)ij = Djwi, and we write (∇Γ̃w)⊥ = (Diwj)i,j for its transpose and use the scalar
product ∇Γ̃w : ∇Γ̃z =

∑
i,j DjwiDjzi. We will furthermore use the notation w⊗ z for the matrix with

entries wizj . The surface divergence is defined by ∇Γ̃ ·w = tr(∇Γ̃w). The Laplace-Beltrami operator on
Γ̃ is defined as the tangential divergence of the tangential gradient, ∆Γ̃η = ∇Γ̃ · ∇Γ̃η.

At any point x ∈ Γ̃ we define the projection P (x) := I − ν(x) ⊗ ν(x) ∈ R3×3 (where I is the
identity matrix) to the tangent space TxΓ̃. With the help of P we can write ∇Γ̃η = P∇η, ∇Γ̃w = ∇wP ,
∇Γ̃ ·w = P : ∇Γ̃w.

The mean curvature of Γ̃ with respect to ν is defined by

κ = −∇Γ̃ · ν. (2.1)

The symmetric matrix ∇Γ̃ν of the tangential derivatives of the normal field is known as the Weingarten
map or shape operator. It satisfies |∇Γ̃ν|2 = κ2

1 + κ2
2 = κ2 − 2g where κi, i = 1, 2, are the principle

curvatures. Further we have κ = κ1 + κ2 and g = κ1κ2. We infer from this the formula

g =
1
2
(
κ2 − |∇Γ̃ν|

2
)
. (2.2)

Furthermore, we recall the following identity:

∆Γ̃ν = −|∇Γ̃ν|
2ν −∇Γ̃κ. (2.3)

The formula for partial integration on surfaces reads∫
Γ̃

ξDiη = −
∫

Γ̃

ηDiξ −
∫

Γ̃

ξηκνi +
∫
∂Γ̃

ξηµi. (2.4)

2.2. Boundary identities. Let us write γ̃ = ∂Γ̃ for the boundary curve of a surface Γ̃ as in the
previous subsection and let τ denote the unit tangential field along γ̃ such that (τ ,µ,ν) constitutes a
positively oriented orthonormal basis in every point on γ̃. The notation ∇γ̃f stands for the derivative of
a field f : γ̃ → R along γ̃: Using a parameterization r(s) for the curve γ̃ we have that

∇γ̃f =
1

|∂sr(s)|
∂s(f ◦ r)(s) τ .

The curvature vector of γ̃ is denoted by h and fulfills

h = ∇γ̃ττ =
1

|∂sr(s)|
∂s

( ∂sr(s)
|∂sr(s)|

)
. (2.5)

It is normal to the curve whence we may write h = hgµ+ hνν. The quantity hg = h · µ is the geodesic
curvature of γ̃ and hν = h · ν is known as its normal curvature (with respect to Γ̃).

In analogy to (2.4) we have that∫
γ̃

ζ∇γ̃f = −
∫
γ̃

f∇γ̃ζ −
∫
γ̃

fh (2.6)

where no boundary term occurs since ∂γ̃ = ∅.
Close to γ̃ we may extend the fields τ and µ to Γ̃. For this purpose, we consider the distance of a

point x ∈ Γ̃ to γ̃ and define the function

d(x) := distΓ̃(x, γ̃) = inf
{∫ 1

0

‖g′(y)‖dy
∣∣∣ g ∈ C1([0, 1], Γ̃), g(0) = x, g(1) ∈ γ̃

}
. (2.7)

By the smoothness of Γ̃ there is a thin tube around γ̃ such that for each point x in that tube there is a
unique geodesic realizing the distance. We define µ(x) := −∇Γ̃d(x) and choose (the unique) τ (x) such
that (τ ,µ,ν) is a positively oriented orthonormal basis again.
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By the smoothness of Γ̃ the differentials ∇Γ̃τ , ∇Γ̃µ, and ∇Γ̃ν then have limits when approaching γ̃.
From 0 = ν · τ we conclude that

τ · ∇Γ̃ντ = τ · ∇γ̃ντ = −ν · ∇γ̃ττ = −ν · h = −hν

which is an extension of the normal curvature of γ̃ to the surrounding tube. We also define the quantities

hp := −µ∇Γ̃νµ, hd := −τ · ∇Γ̃νµ (= −µ · ∇Γ̃ντ ).

It can easily shown that

κ = hν + hp, |∇Γ̃ν|
2 = h2

ν + h2
p + 2h2

d, g = hνhp − h2
d. (2.8)

2.3. Leibniz formulae. Deforming a surface leads to the notion of an evolving surface {Γ̃(τ)}τ
depending smoothly on a time parameter τ ∈ (−τ0, τ0). We will usually omit the dependence of fields
and surfaces on τ since it is clear from the context whether we deal with the evolving surface or a surface
at a specific time. In particular, we just write ∇Γ̃ for ∇Γ̃(τ) whence this operator contains only spatial
derivatives but no time derivatives.

With each mass point x ∈ Γ̃ we can associate a vector field v which is its material velocity. Given
the normal, one can decompose the velocity in the form v = vνν + vT into a scalar normal component
vν := v · ν and a tangential vector field vT := v − vνν.

By ∂•τ we denote the material derivative of a scalar function η defined on the evolving surface {Γ̃(τ)}τ .
Occasionally we will also use the normal time derivative which is the material derivative where only the
normal contribution of the velocity is taken into account: ∂◦τη = ηt + vν

∂η
∂ν . As a consequence of the

splitting of v into a normal an a tangential part we have the relation ∂•τη = ∂◦τη + vT · ∇Γ̃η.
The following formulae for the differentiation of a parameter dependent surface integral will play a

decisive role.
Lemma 2.1 (Leibniz Formula). Let {Γ̃(τ)}τ be an evolving surface and η, ψ be smooth scalar fields

on Γ̃ such that all the following integrals exist. Then

d

dτ

∫
Γ̃

η =
∫

Γ̃

(∂•τη + η∇Γ̃ · v) (2.9)

=
∫

Γ̃

(∂◦τη − ηvνκ+∇Γ̃ · (ηvT )) =
∫

Γ̃

(∂◦t η − ηvνκ) +
∫
∂Γ̃

ηvT · µ (2.10)

where we used (2.4) for the last identity.
With the rate of deformation tensor D(v)ij = 1

2

(
Divj +Djvi

)
(i, j = 1, . . . , n),

d

dτ

∫
Γ̃

∇Γ̃η · ∇Γ̃ψ =
∫

Γ̃

∇Γ̃ψ · ∇Γ̃∂
•
τη +

∫
Γ̃

∇Γ̃∂
•
τψ · ∇Γ̃η

+
∫

Γ̃

∇Γ̃η · (∇Γ̃ · v − 2D(v))∇Γ̃ψ (2.11)

A proof of this Lemma is given in [13].
Further useful formulae are

∂◦τν = −∇Γ̃(v · ν) = −∇Γ̃vν , ∂•τν = −(∇Γ̃v)⊥ν (2.12)

∂◦τκ = ∆Γ̃(ν · v) + |∇Γ̃ν|
2ν · v (2.13)

as proved in [19]. We conclude this section with some formulae on the boundary curves γ̃(τ) = ∂Γ̃(τ)
where, as for Γ̃, the dependence on τ usually is omitted. Clearly, ∂•ττ is orthogonal to τ since the vector
field has unit length. A short calculation yields that

∂•ττ = P γ̃⊥∇γ̃vτ where P γ̃⊥ = I − τ ⊗ τ (2.14)

is the projection to the plane normal to γ̃. The material derivative of h is obtained by computing the
derivative with respect to τ of the right hand side of (2.5) where r(s) is replaced by r(τ, s) with ∂τr = v:

∂•τh = −∇γ̃ · v h+∇γ̃
(
P γ̃⊥∇γ̃vτ

)
τ (2.15)
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Fig. 3.1. Sketch of an admissible two-phase membrane with vectors τ , µ, and ν.

3. Sharp Interface Equilibrium Equations. Using the calculus presented in the previous section
we will now derive the Euler-Lagrange equations of the membrane energy FSI defined in (1.2) under
constraints on enclosed volume and areas of the two membrane phases.

Definition 3.1. An admissible two-phase surface for FSI is the boundary Γ of a bounded,
simply connected open domain Ω ⊂ R3 and can be decomposed in the form Γ = Γ1 ∪ γ ∪ Γ2 where

• Γ1 and Γ2 are two-dimensional smooth oriented not necessarily connected hypersurfaces with
smooth boundaries that coincide and correspond to γ which consists of a finite number of smooth
curves, ∂Γ1 = ∂Γ2 = γ,

• locally around γ the surface Γ can be parametrized by a C1 map.
Limits of quantities on γ that may be discontinuous will get an upper index of the form (1) or (2)

depending on whether γ is approached from Γ1 or Γ2, and by [·](2)
(1) = (·)(2) − (·)(1) we denote the jump

across γ. We denote by µ the outer co-normal of Γ2. We also recall the notation of τ for the unit
tangential vector field along γ such that (τ ,µ,ν) is positively oriented (cf. Figure 3.1). After extension
as described around (2.7) these vector fields are continuous across γ since Γ is C1. Differentiating the
jump [ν](2)

(1) = 0 along γ, i.e., in the direction τ , we see that ∇Γντ is continuous across γ (also see [22])
so that hν = −τ · ∇Γντ and hd = −µ · ∇Γντ are continuous, too. Observe that hp = −µ · ∇Γνµ may
be discontinuous across γ.

Remark 3.2. The regularity assumptions on hν and hp are consistent with the approaches in [23,
24, 5, 11] where surfaces of revolution are considered (implying that hd = 0). See also Appendix A. We
refer to [21] for a study of the axisymmetric case where the assumption of Γ being C1 across γ is dropped.

Definition 3.3. Assume that positive numbers V , A1, and A2 are given such that

A1 +A2 ≥ 4π(3V/4π)2/3. (3.1)

For admissible two-phase membrane Γ = Γ1∪γ∪Γ2 enclosing the domain Ω the constraint functionals
are

CV (Γ) := |Ω| − V =
1
3

∫
Γ

x · ν − V, CAi(Γ) := |Γi| −Ai, i = 1, 2.

We remark that (3.1) is a natural requirement due to the fact that the sphere minimizes the area
enclosing a given volume. The constraints then read

CV (Γ) = 0, CAi(Γ) = 0, i = 1, 2, . (3.2)

Definition 3.4. Suppose that an admissible two-phase surface Γ = Γ1 ∪ γ ∪Γ2 is given as well as a
map w ∈ C1(Γ; R3) which is smooth on Γ1, Γ2, and on γ. The deformed surface Γ(τ) = Γ1(τ) ∪ γ(τ) ∪
Γ2(τ) in the direction w is defined by

Γ(τ) := {x(τ) := x+ τw(x) |x ∈ Γ}.

Such a map w is called admissible deformation field for the admissible two-phase surface Γ if there
is a small τ̄ such that for all τ ∈ (−τ̄ , τ̄) the set Γ(τ) is an admissible two-phase surface.

In the context of the above definition, the fields w, Pw, ∇Γw are continuous across γ yet the field
∇Γ(w · ν) may not be because ∇Γν may be discontinuous. But the field ∇γ(w · ν)τ defined along γ is
continuous.

Definition 3.5. Given a function E defined on admissible two-phase surfaces and given an admissible
two-phase surface Γ and an admissible deformation field w the variation of E in direction w is defined
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by

〈δE(Γ),w〉 :=
d

dτ
E(Γ(·))

∣∣∣
τ=0

.

Lemma 3.6. Variation of the bending energy. Assume that Γ = Γ1 ∪ γ ∪ Γ2 is an admissible
two-phase membrane and w an admissible deformation field. Then

〈δFB(Γ),w〉 =
∑
i=1,2

∫
Γi

k(i)
κ

(
∆Γκ+ |∇Γν|2(κ− κ(i)

s )− 1
2

(κ− κ(1)
s )2κ

)
ν ·w

+
∫
γ

[
kκ(hν + hp − κs)

](2)

(1)
ν · ∇Γwµ−

[
kκ∇Γ(hν + hp) · µ

](2)

(1)
ν ·w

+
∫
γ

[
1
2kκ(hν + hp − κs)2µ+ kκ(hν + hp − κs)∇Γνµ

](2)

(1)
· Pw

+
∫
γ

[
kghν

](2)

(1)
ν · ∇Γwµ+

[
kg
](2)

(1)
(∇γhd · τ ) (ν ·w)

+
∫
γ

[
kg(hνhp − h2

d)µ+ kghν∇Γνµ
](2)

(1)
· Pw. (3.3)

Proof. We start with the mean curvature bending terms in (1.2). The Leibniz formula (2.10) together
with identity (2.13) yields

d

dτ

∫
Γ1(τ)

k
(1)
κ

2

∣∣κ(·)− κ(1)
s

∣∣2∣∣∣
τ=0

=
∫

Γ1

k(1)
κ

(
∂◦t (κ− κ(1)

s )
)

(κ− κ(1)
s )− 1

2
k(1)
κ (κ− κ(1)

s )2κ ·w

+
∫
γ

1
2
k(1)
κ (κ(1) − κ(1)

s )2(−µ) ·w

=
∫

Γ1

k(1)
κ

(
∆Γ(ν ·w) + |∇Γ1ν|2ν ·w

)
(κ− κ(1)

s )− 1
2
k(1)
κ (κ− κ(1)

s )2κν ·w

+
∫
γ

−1
2
k(1)
κ (κ(1) − κ(1)

s )2µ · Pw,

and applying (2.4) twice to the first and once to the last term gives

=
∫

Γ1

(
k(1)
κ ∆Γκ+ k(1)

κ |∇Γ1ν|2(κ− κ(1)
s )− 1

2
k(1)
κ (κ− κ(1)

s )2κ
)

(ν ·w)

+
∫
γ

k(1)
κ (∇Γκ)(1) · µ(ν ·w)− k(1)

κ (κ(1) − κ(1)
s )
(
∇Γ(ν ·w)

)(1) · µ

+
∫
γ

−1
2
k(1)
κ (κ(1) − κ(1)

s )2µ · Pw

=
∫

Γ1

(
k(1)
κ ∆Γ1κ+ k(1)

κ |∇Γ1ν|2(κ− κ(1)
s )− 1

2
k(1)
κ (κ− κ(1)

s )2κ
)

(ν ·w) (3.4)

+
∫
γ

k(1)
κ

(
∇Γ(hν + hp)

)(1) · µ(ν ·w)− k(1)
κ (hν + h(1)

p − κ(1)
s )ν · ∇Γwµ

+
∫
γ

−1
2
k(1)
κ (hν + h(1)

p − κ(1)
s )2µ · Pw − k(1)

κ (hν + h(1)
p − κ(1)

s )
(
∇Γνµ)(1) ·w.

Since ∇Γν is a tangential tensor we may replace w by Pw in the last term. The computation of the
variation of the mean curvature bending energy of Γ2 is similar. Adding the terms together we recover
the first three lines on the right hand side of the asserted identity (3.3).
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With respect to the Gaussian curvature terms in (1.2) we observe that thanks to the Gauss-Bonnet
formula

∫
Γ1
k

(1)
g g = 2πk(1)

g −
∫
γ
k

(1)
g hg and

∫
Γ2
k

(2)
g g = 2πk(2)

g +
∫
γ
k

(2)
g hg. As {γ(τ)}τ is just a one-

dimensional evolving surface with velocity field w we can apply (2.9) to see that

d

dτ

∫
γ(·)

k(2)
g hg(·)

∣∣∣
τ=0

= k(2)
g

∫
γ

∂•τh · µ+ h · ∂•τµ+ hg∇γ ·w. (3.5)

Using the orthonormality of µ, τ , and ν and the identities (2.14) and (2.12) we obtain

∂•τµ = ∂•τµ · τ τ + ∂•τµ · ν ν
= −µ · ∂•ττ τ − µ · ∂•τν ν = −(µ · ∇γwτ )τ + (ν · ∇Γwµ)ν.

Thanks to (2.15) and since h is orthogonal to τ we obtain from (3.5)

d

dτ

∫
γ(·)

k(2)
g hg(·)

∣∣∣
τ=0

= k(2)
g

∫
γ

(
∇γ(P γ⊥∇γwτ )τ

)
· µ+ k(2)

g

∫
γ

hν(ν · ∇Γwµ).

When integrating by parts with respect to the first term this is

= k(2)
g

∫
γ

−(∇γµτ ) · P γ⊥∇γwτ + k(2)
g

∫
γ

hν(ν · ∇Γwµ)

=: I + II. (3.6)

The vector field ∇γµτ is orthogonal to µ, and since P γ⊥ maps vectors to the space span{µ,ν} in
each point on γ we have that

− (∇γµτ ) · P γ⊥∇γwτ = −(ν · ∇γµτ )(∇γwτ · ν)
= (µ · ∇γντ )(ν · ∇γwτ ) = −hd(ν · ∇γwτ ).

We now split the deformation field in the form

w = (w · ν)ν + (w · µ)µ+ (w · τ )τ =: wνν + wµµ+ wγτ . (3.7)

We assume that wγ = 0 because deformations in direction τ neither change the membrane shape nor
the position of the phase interface and, hence, don’t result in any energy change. In fact, if one kept the
terms with wγ in the following one would see that the contributions to I and II cancel each other. We
then have that

∇γw = ν ⊗∇γwν +∇γν wν + µ⊗∇γwµ +∇γµwµ

and then

ν · ∇γwτ = ∇γwν · τ + ν · ∇γµτ wµ
= ∇γwν · τ − µ · ∇γντ wµ = ∇γwν · τ + hdwµ.

Altogether we end up with

I = k(2)
g

∫
γ

−hd∇γwν · τ − h2
dwµ = k(2)

g

∫
γ

∇γhd · τ wν − h2
dwµ. (3.8)

We also want to employ the splitting (3.7) to deal with II but we have to deal with the fact that
∇Γwν = ∇Γ(w · ν) may not be continuous across γ. Since we are computing the variation of

∫
Γ2
k

(2)
g g

we consider limits of the fields on γ when approaching it from Γ2 and indicate this by the usual upper
index wherever necessary. From the splitting (3.7) we get

∇Γw = ν ⊗ (∇Γwν)(2) + (∇Γν)(2) wν + µ⊗∇Γwµ + (∇Γµ)(2) wµ
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which yields

ν · ∇Γwµ = (∇Γwν)(2) · µ+ ν · (∇Γµ)(2)µwµ

= ∇Γwµ · ν + (∇Γνµ)(2) ·w − µ · (∇Γν)(2)µwµ

= ν · ∇Γwµ+ (∇Γνµ)(2) · Pw + h(2)
p wµ.

We finally end up with

II = k(2)
g

∫
γ

hν
(
ν · ∇Γwµ+ (∇Γνµ)(2) · Pw + h(2)

p wµ
)
. (3.9)

Writing wµ = µ ·w = µ · Pw we get from (3.6), (3.8), (3.9)

d

dτ

∫
γ(·)

k(2)
g hg(·)

∣∣∣
τ=0

= k(2)
g

∫
γ

(
(∇γhd · τ ) (ν ·w) + (hνh(2)

p − h2
d)µ · Pw

+ hνν · ∇Γwµ+ hν(∇Γνµ)(2) · Pw
)
. (3.10)

Similarly for the variation of
∫
γ
k

(1)
g hg, and we obtain the last two lines of the asserted identity (3.3)

which completes the proof.
Remark 3.7. The formula for the variation of the Gaussian curvature term (3.10) is the same as the

one obtained in the appendix of [4] where a different calculus has been used. To see this one has to observe
that µ is the inner co-normal in our notation and that the shape operator is denoted by k = −∇Γν.

Lemma 3.8. Variation of line energy and constraint functionals. Assume that Γ = Γ1∪γ∪Γ2

is an admissible two-phase membrane and that w is an admissible deformation field. Then

〈δFL(Γ),w〉 =
∫
γ

−σ̄h ·w =
∫
γ

−σ̄hgµ · Pw − σ̄hνν ·w, (3.11)

〈δCV (Γ),w〉 =
∫

Γ

ν ·w, (3.12)

〈δCA1(Γ),w〉 =
∫

Γ1

−κν ·w +
∫
γ

(−µ) · Pw, (3.13)

〈δCA2(Γ),w〉 =
∫

Γ2

−κν ·w +
∫
γ

µ · Pw. (3.14)

Proof. The first identity is consequence of the fact that −h is the variation of the length of γ. The
subsequent identities follow from (2.10) applied to Ω and the Γi, respectively.

Definition 3.9. An admissible two-phase surface Γ = Γ1∪γ∪γ2 is a critical point of (1.2) subject
to the constraints (3.2) if for all admissible deformations w

0 =
〈
(δFB + δFL + λV δCV + λ

(1)
A δCA1 + λ

(2)
A δCA2)(Γ),w〉

where λV , λ(1)
A , and λ(2)

A are appropriate Lagrange multipliers.
To formulate the Euler-Lagrange equations we use the identities (3.3), (3.11), (3.12), (3.13), and

(3.14) and the fact that the fields ν · w, Pw, and ∇Γwµ are independent on γ. From the terms in
duality with Pw we obtain

0 =
[
kκ
2 (hν + hp − κs)2µ+ kg(hνhp − h2

d)µ
](2)

(1)

+
[
(kκ(hν + hp − κs) + kghν)∇Γνµ

](2)

(1)
− σ̄hgµ+ (λ(2)

A − λ
(1)
A )µ

on γ. On may multiply with µ this yields a scalar equation where we may replace ∇Γνµ · µ = −hp
which yields equation (3.18) below. We observe that multiplying with τ does not give further equations
since ∇Γνµ · τ = −hd is continuous by assumption and kκ(hν + hp − κs) + kghν is continuous, too, by
condition (3.16) below.
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Problem 3.10. Sharp interface equilibrium equations. For given real values V , A1, A2

fulfilling (3.1) find an admissible two-phase membrane Γ = Γ1 ∪ γ ∪Γ2 and find Lagrange multipliers λV ,
λ

(1)
A , and λ(2)

A such that

0 = k(i)
κ ∆Γiκ+ k(i)

κ |∇Γiν|2(κ− κ(i)
s )

− 1
2k

(i)
κ (κ− κ(i)

s )2κ+ λV − λ(i)
A κ on Γi, i = 1, 2, (3.15)

0 =
[
kκ(hν + hp − κs) + kghν

](2)

(1)
on γ, (3.16)

0 = −
[
kκ∇Γ(hν + hp)

](2)

(1)
· µ+

[
kg
](2)

(1)
∇γhd · τ − σ̄hν on γ, (3.17)

0 =
[
kκ
2 (hν + hp − κs)2 + kg(hνhp − h2

d)
](2)

(1)

−
[
(kκ(hν + hp − κs) + kghν)hp

](2)

(1)
− σ̄hg +

[
λA
](2)

(1)
on γ, (3.18)

0 = |Ω| − V, (3.19)
0 = |Γi| −Ai, i = 1, 2. (3.20)

Remark 3.11. Equation (3.15) is the (normal) force balance for the membrane and is independent of
the phase separation. On the phase interface, (3.16) is a continuity condition, and the conditions (3.17)
and (3.18) can be considered as force balances in the normal and co-normal direction, respectively. We
show in Appendix A that for axisymmetric shapes the conditions coincide with (1), (3)–(5) in [11].

4. Diffuse Interface Equilibrium Equations. We now consider the phase field version (1.5) for
the membrane energy.

Definition 4.1. An admissible phase field surface for the membrane energy (1.5) is the smooth
boundary Γ of a bounded, simply connected open set Ω ⊂ R3 together with a smooth field c : Γ→ R which
is called order parameter or phase field variable.

As specified in the introduction we are interested in critical points (Γ, c) of F(·, ·) defined by (1.5)
subject to side conditions concerning the areas of the two phases and the volume of the enclosed domain.
To take the area constraints into account in the phase field model we consider the function h(c) = 1

2c(3−c
2)

if −1 < c < 1, h(c) = 1 if c ≥ 1, and h(c) = −1 if c ≤ −1 and impose a constraint on
∫

Γ
h(c) and on

|Γ|. In fact, in the limit as ε → 0 one expects that
∫

Γ
h(c) → |Γ1| − |Γ2|. Recalling that we want to

preserve the areas of Γ1 and Γ2 in this limit motivates to preserve
∫

Γ
h(c) and |Γ| = |Γ1|+ |Γ2| instead.

The constraints on the total area and on the phase area difference read

CA(Γ, c) = 0, Cc(Γ, c) = 0 (4.1)

in terms of the functionals

CA(Γ, c) := |Γ| − (A1 +A2), Cc(Γ, c) :=
∫

Γ

h(c)− (A1 −A2).

The constraint Cc will be called mass constraint in the following with the notion behind that
∫

Γ
h(c) could

correspond to some kind of mass. The volume constraint

CV (Γ, c) := |Ω| − V = 0 (4.2)

is kept in the diffuse interface setting where we use the same notation CV for the functional for convenience.
Definition 4.2. Given an admissible phase field surface (Γ, c), a smooth normal vector field w =

wν : Γ → R3 and a smooth function η : Γ → R, the deformed admissible phase field surface (Γ(τ), c(τ))
in direction (w, η) for a small τ ∈ R is defined by

Γ(τ) := {x(τ) := x+ τw(x)ν(x) |x ∈ Γ},
c(τ) : Γ(τ)→ R, c(τ,x(τ)) := c(x) + τη(x). (4.3)

Such a pair (w, η) is called admissible deformation (field) for an admissible phase field surface.
By the regularity assumptions on admissible phase field surfaces there is a small τ0 > 0 so that

(Γ(τ), c(τ)) is indeed is admissible for all τ ∈ (−τ0, τ0). In particular, for each point x(τ) on Γ(τ) there
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is a unique point x ∈ Γ with x(τ) = x+ τw(x)ν(x). Therefore

d

dτ
c(·,x(·))

∣∣
τ=0

= ∂τ c(0,x(0)) + ∂τx(0) · ∇c(0,x(0))

= ∂τ c(0,x) + w(x)ν(x) · ∇c(x) = ∂◦τ c(·,x(·))|τ=0.

On the other hand, from (4.3) we see that d
dτ c(·,x(·))|τ=0 = η(x), whence

∂•τ c(·,x(·))
∣∣
τ=0

= ∂◦τ c(·,x(·))
∣∣
τ=0

= η(x). (4.4)

In the case η = 0 this means that we extend the phase field constantly in the normal direction away from
Γ in order to define it on the deformed surface Γ(τ).

Definition 4.3. Let E = E(Γ, c) be a functional defined on admissible phase field surfaces, let (Γ, c)
be an admissible surface and let (w, η) be an admissible deformation field. The variation of E in (Γ, c)
in direction (w, η) is defined by 〈

δE(Γ, c), (w, η)
〉

=
d

dτ
E
(
Γ(·), c(·)

)∣∣∣
τ=0

.

Lemma 4.4. Variation of the mean curvature bending energy. For an admissible phase field
surface (Γ, c) with admissible deformation (w, η) we have that

〈
δFMC(Γ, c), (w, η)

〉
=
∫

Γ

(1
2

(κ− κs(c))2k′κ(c)− kκ(c)(κ− κs(c))κ′s(c)
)
η

+
∫

Γ

(
∆Γ

(
kκ(c)(κ− κs(c))

)
+ |∇Γν|2kκ(c)(κ− κs(c))−

1
2
kκ(c)(κ− κs(c))2κ

)
w. (4.5)

Proof. Using (2.10) and then (2.13) and (4.4) we obtain

d

dτ
FMC

(
Γ(·), c(·)

)∣∣∣
τ=0

=
∫

Γ

1
2
k′κ(c)(κ− κs(c))2η − kκ(c)(κ− κs(c))κ′s(c)η

+
∫

Γ

kκ(c)(κ− κs(c))(∆Γw + |∇Γν|2w)− 1
2
kκ(c)

∣∣κ− κs(c)∣∣2κw.
Twice integrating by parts in the term with ∆Γw yields the assertion.

Lemma 4.5. Variation of the Gaussian curvature bending energy. For an admissible phase
field surface (Γ, c) with admissible deformation field (w, η) we have that〈

δFGC(Γ, c), (w, η)
〉

=
∫

Γ

(
gk′g(c)

)
η +

∫
Γ

(
∇Γ ·

(
k′g(c)(κI +∇Γν)∇Γc

))
w (4.6)

Proof. We use formula (2.2) for the Gaussian curvature. With (2.10), (4.4), (2.12)

d

dτ

∫
Γ(·)

1
2
kg(c(·))|∇Γ(·)ν(·)|2

∣∣∣
τ=0

=
3∑
i=1

∫
Γ

1
2
∂◦τ
(
kg(c)|∇Γνi|2

)
− 1

2
kg(c)|∇Γνi|2κw

=
∑
i

∫
Γ

1
2
k′g(c)∂

◦
τ c|∇Γνi|2 + kg(c)∇Γνi · ∇Γ∂

◦
τνi

+
∑
i

∫
Γ

−kg(c)∇Γνi ·D(wν)∇Γνi −
1
2
kg(c)|∇Γνi|2κw

=
∫

Γ

1
2
k′g(c)|∇Γν|2η +

∫
Γ

kg(c)
∑
i

∇Γνi · ∇Γ(−Diw)

−
∫

Γ

kg(c)
(∑

i

∇Γνi ⊗∇Γνi : ν
)
w −

∫
Γ

1
2
kg(c)|∇Γν|2κw.
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Using (2.3) we obtain that∫
Γ

kg(c)
∑
i

∇Γνi · ∇Γ(−Diw) =
∫

Γ

∑
i

∇Γ

(
kg(c)∇Γνi

)
·Diw

=
∫

Γ

∑
i

k′g(c)∇Γc · ∇ΓνiDiw + kg(c)∆ΓνiDiw

=
∫

Γ

k′g(c)∇Γν∇Γc · ∇Γw − kg(c)∇Γκ · ∇Γw

=
∫

Γ

∇Γ ·
(
− kg(c)∇Γν∇Γc+ kg(c)∇Γκ

)
w.

Applying (4.5) with kκ = kg and κs = 0 we get

d

dτ

∫
Γ(·)

1
2
kg(c(·))κ(·)2

∣∣∣
τ=0

=
∫

Γ

(1
2
k′g(c)κ

2
)
η

+
∫

Γ

(
∆Γ

(
kg(c)κ

)
+ kg(c)|∇Γν|2κ−

1
2
kg(c)κ2κ

)
w.

Altogether

d

dτ

∫
Γ(·)

1
2
kg(c(·))

(
κ2 − |∇Γ(·)ν(·)|2

)∣∣∣
τ=0

=
∫

Γ

1
2
κ2k′g(c)η +

∫
Γ

(
∆Γ

(
kg(c)κ

)
+ |∇Γν|2kg(c)κ−

1
2
kg(c)κ2κ

)
w

−
∫

Γ

1
2
|∇Γν|2k′g(c)η −

∫
Γ

∇Γ ·
(
− k′g(c)∇Γν∇Γc+ kg(c)∇Γκ

)
w

−
∫

Γ

−kg(c)
(∑

i

∇Γνi ⊗∇Γνi : ∇Γν
)
w +

∫
Γ

1
2
kg(c)|∇Γν|2κw

=
∫

Γ

gk′g(c)η +∇Γ ·
(
∇Γ(kg(c)κ)− kg(c)∇Γκ+ k′g(c)∇Γν∇Γ

)
w

+
∫

Γ

(
|∇Γν|2κ+

∑
i

∇Γνi ⊗∇Γνi : ∇Γν − gκ
)
kg(c)w.

Observe that ∇Γ(kg(c)κ)− kg(c)∇Γκ = κk′g(c)∇Γc. Furthermore,

|∇Γν|2κ+
∑
i

∇Γνi ⊗∇Γνi : ∇Γν − gκ = 0 (4.7)

so that we end up with the claimed formula (4.6) for the variation of the Gaussian curvature bend-
ing energy. To show (4.7) one can employ an orthogonal matrix Q ∈ R3×3 such that Q−1∇ΓνQ =
diag(−κ1,−κ2, 0) where κ1, κ2 are the principal curvatures and proceed using that each of the summands
is invariant under such a similarity transformation.

Remark 4.6. If kg(c) = kg is a constant independent of c then the energy
∫

Γ
kgg is a topological

invariant by the Gauss-Bonnet theorem so that its variation must vanish. Formula (4.6) indeed then
yields 〈FGC(Γ, c), (w, η)〉 = 0 since k′g(c) = 0.

Lemma 4.7. Variation of line energy and constraint functionals. For an admissible phase
field surface (Γ, c) with admissible deformation field (w, η) we have that〈

δFGL(Γ, c), (w, η)
〉

=
∫

Γ

(
− σε∆Γc+

σ

ε
ψ′(c)

)
η (4.8)

−
∫

Γ

σ
(
ε∇Γc⊗∇Γc : ∇Γν +

(ε
2
|∇Γc|2 +

1
ε
ψ(c)

)
κ
)
w, (4.9)〈

δCc(Γ, c), (w, η)
〉

=
∫

Γ

h′(c)η − h(c)κw, (4.10)〈
δCV (Γ, c), (w, η)

〉
=
∫

Γ

w,
〈
δCA(Γ, c), (w, η)

〉
= −

∫
Γ

κw. (4.11)
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Proof. For the first assertion, we use (2.11) for the term involving ∇Γc, (2.9) for the term with
the double well potential, (2.4) for partial integration (recall that Γ is closed whence no boundary term
appears), (2.1) and (4.4) to obtain (4.9):

d

dτ
FGL

(
Γ(·), c(·)

)∣∣∣
τ=0

=σ

∫
Γ

ε∇Γc · ∇Γ∂
•
τ c− ε∇Γc⊗∇Γc : 2D(w) +

1
ε
ψ′(c)∂•τ c

+ σ

∫
Γ

(ε
2
|∇Γc|2 +

1
ε
ψ(c)

)
∇Γ ·w

=σ

∫
Γ

−ε∆Γc η +
1
ε
ψ′(c)η − ε∇Γc⊗∇Γc : ∇Γν w

+ σ

∫
Γ

−
(ε

2
|∇Γc|2 +

1
ε
ψ(c)

)
κw.

The other identities can be proved similarly.
Definition 4.8. For given values V , A1, A2 fulfilling (3.1), an admissible phase field surface (Γ, c)

is a critical point of the diffuse interface membrane energy (1.5) subject to constraints (4.1) and (4.2)
if

0 =
(
δFMC + δFGC + δFGL + δFM + λV δCV + λAδCA + λcδCc

)
(Γ, c)

where λV , λA, and λc are appropriate Lagrange multipliers.
Using (4.5), (4.6), (4.9), (4.11), and (4.10) critical points fulfill
Problem 4.9. Diffuse interface equilibrium equations. For given values V , A1, A2 fulfilling

(3.1) find an admissible phase field surface (Γ, c) and Lagrange multipliers λV , λA, and λc such that

0 = ∆Γ

(
kκ(c)(κ− κs(c))

)
+ |∇Γν|2kκ(c)(κ− κs(c))− 1

2kκ(c)(κ− κs(c))2κ

+∇Γ ·
(
k′g(c)(κI +∇Γν)∇Γc

)
− σε∇Γc⊗∇Γc : ∇Γν − σ

(
ε
2 |∇Γc|2 + 1

εψ(c)
)
κ

+ λV −
(
λA + λch(c)

)
κ, (4.12)

0 = 1
2 (κ− κs(c))2k′κ(c)− kκ(c)(κ− κs(c))κ′s(c) + gk′g(c)

− εσ∆Γc+ σ
εψ
′(c) + λch

′(c), (4.13)

0 = |Ω| − V, 0 = |Γ| − (A1 +A2), 0 =
∫

Γ

h(c)− (A1 −A2). (4.14)

We may consider the level set γε := {x ∈ Γ | c(x) = 0} as an approximation to the phase interface γ
in the sharp interface model. For performing an asymptotic analysis of the above diffuse interface model
it is convenient to write the governing equations close to γε in terms of the curvatures hν , hp, and hd
which are defined close to γε as described in Section 2.2. Recalling the relations (2.8) we obtain

0 = ∆Γ

(
kκ(c)(hν + hp − κs(c))

)
+ (h2

ν + h2
p + 2h2

d)kκ(c)(hν + hp − κs(c))
− 1

2kκ(c)(hν + hp − κs(c))2(hν + hp)

+∇Γ ·
(
k′g(c)((hν + hp)I +∇Γν)∇Γc

)
− σε∇Γc⊗∇Γc : ∇Γν − σ

(ε
2
|∇Γc|2 + 1

εψ(c)
)
(hν + hp)

+ λV −
(
λA + λch(c)

)
(hν + hp), (4.15)

0 = 1
2 (hν + hp − κs(c))2k′κ(c)− kκ(c)(hν + hp − κs(c))κ′s(c)
+ (hνhp − h2

d)k
′
g(c)− εσ∆Γc+ σ

εψ
′(c) + λch

′(c) (4.16)

where

∇Γν = − hντ ⊗ τ − hpµ⊗ µ− hdτ ⊗ µ− hdµ⊗ τ (4.17)

which we get from ∇Γν = STS∇ΓνS
TS with the orthogonal matrix S = (τ ,µ,ν).
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5. Asymptotic Analysis. The goal is now to relate the diffuse interface problem to the sharp
interface problem by matching appropriate asymptotic ε-expansions. The technique is carefully explained
in [17] yet we have to extend it since the membrane shape, i.e., the underlying space, depends on ε.

5.1. Assumptions. Let {(Γε, cε), λV,ε, λA,ε, λc,ε}ε be a family of solutions to Problem 4.9. Denoting
the curvatures associated with the solutions appearing in (4.12) and (4.13) by κε and gε, respectively,
the fields occurring in (4.15), (4.16), and (4.17) are denoted by hν,ε, hp,ε, hd,ε, µε, and τ ε . We assume
that there is a limiting surface Γ0 to which the surfaces Γε converge as ε → 0 and that this limit is an
admissible two-phase surface. In fact, in numerical simulations [14] we have observed that κε remains
bounded in L∞ as ε → 0. The compactness and regularity properties of integral varifolds [2] to which
the Γε belong suggest that any limiting surface indeed is a C1 surface.

More precisely, we assume that we can parametrize Γε over Γ0 in the form Γε = {pε(x) |x ∈ Γ0}
where the functions pε are C1 across γ0 and smooth in Γ0,1 and Γ0,2 and can be expanded as

pε(x) = x+ εp1(x) +O(ε2), (5.1)

with p1 ∈ C1(Γ0). Further, we assume that the level sets

γε := {xε ∈ Γε | cε(xε) = 0} (5.2)

converge to a finite number of smooth curves γ0 on Γ0, and additionally we assume that the parameteri-
zation is such that

γε = {pε(x) |x ∈ γ0}. (5.3)

Writing Γ0 = Γ0,1 ∪ γ0 ∪Γ0,2 in the sense of Definition 3.1 the domains Γ0,i, i = 1, 2, are the limits of the
sets Γε,1 := {cε > 0}, Γε,2 := {cε < 0}.

We note that (5.1) implies linear convergence of Γε in ε which is what we have observed in our numer-
ical simulations, see [14] (a paper on the more general model presented in this study is in preparation).
We also observed linear convergence of γε in ε which motivates assumption (5.3). Intuitively, one may
think of pε(x)−x pointing in the normal direction with respect to Γ0 but the additional assumption (5.3)
means that, in general, there will be tangential contributions. We stress that for the following asymptotic
analysis up to first order in ε this is not of relevance.

The unit normal on Γε can be expanded in the form

νε(pε(x)) = ν0(x) + εν1(x) +O(ε2) (5.4)

where ν1 is a vector field tangential to Γ0. Furthermore, one can show that the expansion of the surface
gradient on Γε for any field fε : Γε → R is

∇Γεfε(pε(x)) = ∇Γ0(fε ◦ pε)− ε(∇Γ0p1)⊥∇Γ0(fε ◦ pε) +O(ε2). (5.5)

If we further assume that the field fε can be expanded in the form

fε(pε(x)) = f0(x) + εf1(x) +O(ε2) (5.6)

then (5.5) results in

∇Γεfε(pε(x)) = ∇Γ0f0 + ε
(
− (∇Γ0p1)⊥∇Γ0f0 +∇Γ0f1

)
+O(ε2).

5.2. Outer expansions. Away from the interfacial layer around the curve γε we assume that we
may expand curvature, order parameter, and Lagrange multipliers in the form

κε(pε(x)) = κ0(x) + εκ1(x) +O(ε2),

cε(pε(x)) = c0(x) + εc1(x) +O(ε2),

λi,ε = λi,0 + ελi,1 +O(ε2), i = V,A, c (5.7)

with smooth functions κi, ci on each domain Γ0,j , j = 1, 2, that are bounded when approaching γ0. From
the expansion (5.4) and since Γ0 is smooth away from γ0 we conclude that ∇Γενε = ∇Γ0ν0 +O(ε). All
these expansions are plugged into the equations of Problem 4.9 which are expanded in ε-series again.
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5.3. Outer solutions. To order ε−1 the equation (4.13) yields 0 = ψ′(c0). The only stable solutions
are the minima of w, whence c0 = ±1. Recalling the definition of Γε,i, i = 1, 2, we see that we will have
c0 = 1 in Γ0,1 and c0 = −1 in Γ0,2. The equation to the next order ε0 reads 0 = −σψ′′(c0)c1−λc,0h′(c0).
Since ψ′′(±1) > 0 and h′(±1) = 0 we obtain that c1 = 0.

Since k′G(c0) = 0, ∇Γ0c0 = 0, ψ′(c0) = 0, and h(c0) = c0 = −(−1)i on Γ0,i, i = 1, 2, the equation
determining the membrane shape (4.12) yields to leading order

0 = ∆Γ0

(
kκ(c0)(κ0 − κs(c0))

)
+ |∇Γ0ν0|2

(
kκ(c0)(κ0 − κs(c0))

)
− 1

2
kκ(c0)(κ0 − κs(c0))2κ0 + λV,0 −

(
λA,0 + h(c0)λc,0

)
κ0

= ∆Γ0

(
k(i)
κ (κ0 − κ(i)

s )
)

+ |∇Γ0ν0|2
(
k(i)
κ (κ0 − κ(i)

s )
)

− 1
2
k(i)
κ (κ0 − κ(i)

s )2κ0 + λV,0 −
(
λA,0 − (−1)iλc,0

)
κ0. (5.8)

To check that this equation becomes (3.15) we have to identify the Lagrange multipliers.
For the first constraint in (4.14) we obtain to leading order that

0 = |Ω0| − V =
1
3

∫
Γ0

x0 · ν0 − V = CV (Γ0)

which is (3.19). We see that λV,0 in (5.8) does the job of λV in (3.15). Since∫
Γε

h(cε) =
∫

Γ0

h(c0) +O(ε) = |Γ0,1| − |Γ0,2|+O(ε)

the second and third constraint in (4.14) yield 0 = |Γ0,1|+|Γ0,2|−(A1+A2) and 0 = |Γ0,1|−|Γ0,2|−(A1−A2)
to leading order, respectively, which is equivalent to (3.20). We identify

λ
(1)
A = λA,0 + λc,0, λ

(2)
A = λA,0 − λc,0 (5.9)

but we will need to check that the recurrence of the λ(i)
A in (3.18) is correctly recovered.

5.4. Interface coordinates. Since the interfacial layer has a thickness scaling with ε we want to
use a coordinate across the interface scaling in the same way. In other words, in this new coordinate the
interfacial layer is blown up to a thickness of order one which enables to investigate the limits of fields
such as cε and κε in a sensible way. Again, expansions of the fields will be inserted into the governing
equations. In order to obtain boundary values for the resulting problems these inner expansions are
matched with the outer expansions employed in the phases.

Let us denote by τ 0 a unit tangent along γ0 and by µ0 the outer unit co-normal of Γ0,2 (= inner unit
co-normal of Γ0,1) on γ0 where we may assume that (τ 0,µ0,ν0) is positively oriented. The fields τ 0 and
µ0 are extended away from γ0 as explained in Section 2.2. We also recall the definition of d(x) in (2.7)
which we use for points x ∈ Γ0,1 so that µ0(x) = ∇Γ0d(x). The latter identity is extended to Γ0,2 by
considering −d(x) in points x, i.e., d is the signed distance to γ0 with positive sign in Γ0,1 and negative
sign in Γ0,2.

Let x̃(s) be a parameterization of γ0 by arc-length s with ∂sx̃(s) = τ 0(x̃(s)). We may extend it to
a parameterization x(s, r) of Γ0 locally around γ0 by requiring that d(x(s, r), γ0) = d(x(s, r), x̃(s)) = r.
Furthermore, ∂dx(s, r) = µ0(x(s, r)), and for fixed s the curve r 7→ x(s, r) is a geodesic. We infer that
∇Γ0(∇Γ0d)µ0 points in the direction of ν0 so that

τ 0 · ∇Γ0(∇Γ0d)µ0 = 0, µ0 · ∇Γ0(∇Γ0d)µ0 = 0. (5.10)

With z(x) := d(x)/ε we now introduce a scaled distance function as a new coordinate. In a point
x(s, εz) we then have

∇Γ0d(x) = µ0(x̃) + ε∇Γ0(∇Γ0d(x̃))µ0(x̃)z +O(ε2). (5.11)

The arc-length parameter s may also be considered as a function of x, and then ∇Γ0s(x) = τ 0(x) for all
x ∈ γ0. An expansion of ∇Γ0s is obtained in a similar fashion to that for ∇Γ0d:

∇Γ0s(x) = τ 0(x̃) + ε∇Γ0(∇Γ0s(x̃))µ0(x̃)z +O(ε2). (5.12)
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Given any field fε on Γε, writing f̃ε(s(x), z(x)) := fε(pε(x)), and recalling (5.5) we see that

∇Γεfε(pε(x)) =
(
I − ε(∇Γ0p1)⊥

)(
τ 0 + ε∇Γ0(∇Γ0s)µ0z

)
∂sf̃ε(s(x), z(x))

+
1
ε

(
I − ε(∇Γ0p1)⊥

)(
µ0 + ε∇Γ0(∇Γ0d)µ0z

)
∂z f̃ε(s(x), z(x)) +O(ε) (5.13)

where ∇Γ0p1, τ 0, µ0, and the derivatives of s and d are evaluated at x̃(s(x)). Assume now that the field
fε can be expanded in the form

fε(pε(x)) = F0(s, z) + εF1(s, z) +O(ε2) (5.14)

close to the interface γε in terms of the new coordinates (s, z). Then we end up with an ε-expansion of
the form

∇Γεfε(pε(x)) = 1
εµ0∂zF0

+
(
τ 0∂sF0 − (∇Γ0p1)⊥µ0∂zF0 +∇Γ0(∇Γ0d)µ0z∂zF0 + µ0∂sF1

)
+O(ε) (5.15)

for the spatial derivative of fε close to γε where ∇Γ0p1, µ0, τ 0, and ∇Γ0(∇Γ0d) are evaluated at x̃(s).

5.5. Matching conditions. In view of (5.6) and (5.14) we have two expansions of a field fε on Γε,
the first one being valid away from the interface γε and the second one, expressed in terms of rescaled
coordinates, close to γε. These expansions are supposed to match, and this leads to some conditions
on the functions fi and Fi. Here, we only state these conditions and refer to the appendix of [18] for a
careful derivation. As z → ±∞

F0(s, z) ∼ f0(x(s, 0±)), (5.16)

F1(s, z) ∼ f1(x(s, 0±)) +
(
∇Γ0f0(x(s, 0±)) · µ0(x(s, 0))

)
z, (5.17)

∂zF1(s, z) ∼ ∇Γ0f0(x(s, 0±)) · µ0(x(s, 0)) (5.18)

where 0± stands for the limit as d↘ 0 (approaching γ0 from Γ0,1) and d↗ 0 (from Γ0,2), respectively.

5.6. Inner expansions. Recalling that µε = ∇Γεdε(xε) where dε is the signed distance to γε on
Γε, the expansions (5.1) and the smoothness of pε away from γ0 yields that there is an expansion of µε
of the form

µε(pε(x)) = µ0(x) + εµ1(x) +O(ε2).

With the Taylor-expansion of µ0(x(s, r)) in x̃(s) = x(s, 0) and replacing r = εz again we see that

µε(pε(x)) = µ0(x̃) + ε
(
∇Γ0(∇Γ0d(x̃))µ0(x̃)z + µ1(x̃)

)
+O(ε2). (5.19)

In particular, since µ1(x̃) = d
dεµε(pε(x̃))|ε=0 and since |µε(pε(x̃))| = 1 for all ε the first order correction

is orthogonal to the co-normal on γ0, µ1(x̃) · µ0(x̃) = 0. Similarly, the expansion of τ ε can be derived:

τ ε(pε(x)) = τ 0(x̃) + ε
(
∇Γ0(∇Γ0s(x̃))µ0(x̃)z + τ 1(x̃)

)
+O(ε2). (5.20)

We assume that within the interfacial layer around the curve γε we have expansions of the form

hν,ε(pε(x)) = Hν,0(s) + εHν,1(s, z) +O(ε2),

hd,ε(pε(x)) = Hd,0(s) + εHd,1(s, z) +O(ε2),

hp,ε(pε(x)) = Hp,0(s, z) + εHp,1(s, z) +O(ε2),

cε(pε(x)) = C0(s, z) + εC1(s, z) +O(ε2).

Since by assumption the limiting surface Γ0 is an admissible two-phase surface and, hence, C1 the
quantities hν and hd are continuous in the limit, or hν,0(x(s, 0+)) = hν,0(x(s, 0−)) and similarly for hd.
The matching condition (5.16) motivates to assume that Hν,0 and Hd,0 are independent of z.

The above expansions are plugged into the governing equations (4.15), (4.16), and (4.17) where the
spatial derivatives are expanded as in (5.15).
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5.7. Inner solutions: First order. The phase field equations (4.13) yields to order ε−1

0 = σ
(
∂zzC0 − ψ′(C0)

)
. (5.21)

Recalling that c0 = ±1 in Γ0,i, i = 1, 2, respectively, the matching condition (5.16) yields the boundary
conditions C0(s, z) → ±1 as z → ±∞. By (5.2) and (5.3) cε(pε(x)) = 0 for x ∈ γ0 = {x(s, 0)}, hence
we also have that C0(s, 0) = 0. The solution is given by C0(z) = tanh(z) and, in particular, does not
depend on s. Multiplying (5.21) with ∂zC0 and integrating with respect to sz from −∞ to z̃ we obtain

ψ(C0(z̃)) = 1
2 |∂zC0(z̃)|2 (5.22)

which is commonly known as equipartition of energy. Let

Q0 := kκ(C0)(Hν,0 +Hp,0 − κs(C0)) + kg(C0)Hν,0.

The membrane equation (4.12) to order ε−2 reads 0 = ∂zzQ0, hence Q0 is a linear function in z. The
matching condition (5.16) implies that ∂zQ0 → 0 as z → ±∞ whence ∂z

(
kκ(C0)(Hν,0 +Hp,0−κs(C0)) +

Hν,0kg(C0)
)

= ∂zQ0 = 0, and we further conclude that

Q0 = k(1)
κ (hν,0 + h

(1)
p,0 − κ(1)

s ) + hν,0k
(1)
g = k(2)

κ (hν,0 + h
(2)
p,0 − κ(2)

s ) + hν,0k
(2)
g

so that, in particular, kκ(hν,0 +hp,0−κs)+hν,0kg is continuous across γ0 and we have recovered equation
(3.16).

5.8. Inner solutions: Tangential force balance. Using that ∂sC0 = 0 equation (4.13) to order
ε0 reads

0 = −σ
(
∂zzC1 − hg,0∂zC0 − 2µ0 · ∇Γ0p1µ0∂zzC0 − ψ′′(C0)C1

)
+ 1

2

(
Hν,0 +Hp,0 − κs(C0)

)2
k′κ(C0)− kκ(C0)

(
Hν,0 +Hp,0 − κs(C0)

)
κ′s(C0)

+ λc,0h
′(C0) (5.23)

which can be considered as an equation for the correction C1. We multiply with ∂zC0 and integrate with
respect to z from −∞ to ∞. The third summand then vanishes because

∫∞
−∞ ∂zzC0∂zC0 = 0. By (5.17)

and (5.18) and since c1 = 0 we see that C1(s, z) → 0 and ∂zC1(s, z) → 0 as z → ±∞, whence using
(5.21) ∫ ∞

−∞

(
∂zzC1 − ψ′′(C0)C1

)
∂zC0 =

∫ ∞
−∞

(−∂zzC0 + ψ′(C0))∂zC1 = 0.

As a solvability condition for (5.23) we therefore obtain that

0 =
∫ ∞
−∞

(
σhg,0(∂zC0)2 + λc,0h

′(C0)∂zC0

)
+
∫ ∞
−∞

1
2 (Hν,0 +Hp,0 − κs(C0))2∂zkκ(C0)

−
∫ ∞
−∞

kκ(C0)(Hν,0 +Hp,0 − κs(C0))∂zκs(C0) (5.24)

Consider the function

f(hp, c, hν , hd) := 1
2kκ(c)(hν + hp − κs(c))2 + kg(c)(hνhp − h2

d)

which clearly is convex in hp. The relation between the partial derivative

q(hp, c, hν , hd) := ∂hpf(hp, c, hν , hd) = kκ(c)(hν + hp − κs(c)) + kg(c)hν

and hp may be inverted and we may write hp = hp(q, c, hν , hd). The Legendre transform of f with respect
to hp is

j(q, c, hν , hd) := f(hp(q, c, hν , hd), c, hν , hd)− qhp(q, c, hν , hd)
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and fulfills ∂cj = ∂cf . We remark that j is given by

j(q(hp, c, ...), ...) = 1
2kκ(c)(hν + hp − κs(c))2 + kg(c)(hνhp − h2

d)
− (kκ(c)(hν + hp − κs(c)) + kg(c)hν)hp (5.25)

Observe that Q0 = q(Hp,0, C0, Hν,0, Hd,0). Using that ∂zQ0 = 0 and the matching condition (5.16)∫ ∞
−∞

∂cf(Hp,0, C0, Hν,0, Hd,0)∂zC0

=
∫ ∞
−∞

∂cj(Q0, C0, Hν,0, Hd,0)∂zC0 + ∂qj(Q0, C0, Hν,0, Hd,0)∂zQ0

=
∫ ∞
−∞

∂zj(Q0, C0, Hν,0, Hd,0)

= j(Q0, c0, hν,0, hd,0)(s, 0+)− j(Q0, c0, hν,0, hd,0)(s, 0−)

With
∫∞
−∞(∂zC0)2 =

∫∞
−∞(tanh′(z))2 = 4

3 and (1.4) and observing that by (5.9) 2λc,0 = λ
(1)
A − λ

(2)
A we

obtain from (5.24) that

0 =
∫ ∞
−∞

σhg,0(∂zC0)2 + λc,0h
′(C0)∂zC0 + ∂cf(Hp,0, C0, Hν,0, Hd,0)∂zC0

= σhg,0
( ∫ ∞
−∞

(∂zC0)2
)

+ 2λc,0 +
∫ ∞
−∞

∂zj(Q0, C0, Hν,0, Hd,0)

= σ̄hg,0 + λ
(1)
A − λ

(2)
A +

[
j(Q0, c0, hν,0, hd,0)

](1)

(2)
.

Thanks to (5.25) we see that we have recovered (3.18). Furthermore, the identification (5.9) now is fully
justified.

5.9. Inner solutions: Normal force balance. Equation (4.15) to order ε−1 is

0 = ∂zz
(
k′κ(C0)C1(Hν,0 +Hp,0 − κs(C0)) + kκ(C0)(Hν,1 +Hp,1 − κ′s(C0)C1)

)
+ ∂zz

(
Hν,0k

′
g(C0)C1

)
+ ∂z

(
Hν,1∂zkg(C0)

)
− ∂sHd,0∂zkg(C0)

+ 2(Hd,0µ0 · ∇Γ0p1τ 0 −Hd,0τ 1 · µ0)∂zzkg(C0)

+ σ(∂zC0)2Hp,0 − σ
(

1
2 (∂zC0)2 + ψ(C0)

)
(Hν,0 +Hp,0) (5.26)

where as usual τ 0 and µ0 are evaluated at x̃(s) and we used that ∂sC0 = 0 and ∂zQ0 = 0. In the last
line we may use the equipartition of energy (5.22) to replace ψ(C0) by 1

2 (∂zC0)2 and altogether arrive at
−σ(∂zC0)2Hν,0 in that line.

We integrate with respect to z from 0 to a variable that we, for convenience, denote by z again and
obtain

0 = ∂z
(
k′κ(C0)C1(Hν,0 +Hp,0 − κs(C0)) + kκ(C0)(Hν,1 +Hp,1 − κ′s(C0)C1)

)
+ ∂z

(
Hν,0k

′
g(C0)C1

)
+
(
Hν,1∂zkg(C0)

)
− ∂sHd,0kg(C0)

+ 2(Hd,0µ0 · ∇Γ0p1τ 0 −Hd,0τ 1 · µ0)∂zkg(C0)

− σ
∫ z

0

(∂zC0)2dz Hν,0 +A (5.27)

with an integration constant A. We are interested in the limit of this identity when z → ±∞ and use the
matching conditions (5.16)–(5.18) to draw conclusions. The fields C0, C1, Hν,0, Hp,0, Hd,0 are bounded
and their derivatives with respect to z converge to zero. Since κ′s(±1) = 0 we also have that κ′s(C0)→ 0.
Furthermore as z → ±∞

Hν,1(s, z) ∼ hν,1(x(s, 0±)) +∇Γ0hν,0(x(s, 0±)) · µ0(x̃(s))z,

but since κi = hν,i + hp,i, i = 0, 1, have bounded limits on γ0 (see assumptions after (5.7)) we see that
Hν,1 is at most of linear growth in z as z → ±∞. But ∂zkg(C0) exponentially decays so that

Hν,1∂zkg(C0)→ 0 as z → ±∞.
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With
∫ ±∞

0
(∂zC0)2 = ±2/3 and the relation (1.4) we obtain

(5.27)→ k(1)
κ ∇Γ0(hν,0 + hp,0) · µ− k(1)

g ∂shd,0 − σ̄
2hν,0 −A as z →∞,

(5.27)→ k(2)
κ ∇Γ0(hν,0 + hp,0) · µ− k(2)

g ∂shd,0 − σ̄
2hν,0 −A as z → −∞,

where the functions are evaluated at x(s, 0+) in the first row and at x(s, 0−) in the second row. We
remark that ∂shd,0 = ∇γ0hd,0 · τ 0. Subtracting the two rows we recover the only remaining equation
(3.17) which finishes the asymptotic analysis.

Concluding, we have formally shown that the limiting membrane Γ0 = Γ0,1 ∪ γ0 ∪ Γ0,2 together with
λV,0, λA,0 + λc,0, and λA,0 − λc,0 solves Problem 3.10.

Appendix A. Sharp interface equilibrium equations in the axisymmetric case.
We briefly show that the interface conditions (3.15)–(3.18) coincide with the conditions in the ax-

isymmetric case as stated, for instance, in [11].
The boundary Γ of the vesicle is obtained by rotating a curve around a symmetry axis. Denoting by

s the arc-length parameter of the curve and by θ ∈ [0, 2π] the rotation angle the membrane surface may
be parameterized in the form (s, θ) 7→ (x(s), r(s) cos(θ), r(s) sin(θ)) where x(s) the coordinate along the
symmetry axis and r(s) ≥ 0 is the distance to it. For any s we may consider the curve

γ̃(s) = {(x(s), r(s) cos(θ), r(s) sin(θ)) | θ ∈ [0, 2π]},

and the phase interface γ is such a curve at a specific position s∗.
Let ψ(s) denote the angle between the plane perpendicular to the symmetry axis and the surface Γ

so that hg(s) = cos(ψ(s))/r(s) and hν(s) = − sin(ψ(s))/r(s) for the geodesic and the normal curvature
of a curve γ̃. We here have chosen the orientation to be such that ν points outward of the vesicle. Since
the curvature vector of a γ̃ is given by

hγ̃(s, θ) =
(

0,−cos(θ)
r(s)

,− sin(θ)
r(s)

)
the normal curvature then has the opposite sign than in [11]. Furthermore, hp(s) = −ψ′(s) (again with
the opposite sign than in [11]) and hd = 0.

Some lengthy calculations involving rewriting the surface gradient ∇Γ in terms of the coordinates
(s, θ) show that for any quantity f = f̃(s) that depends on s but not on θ we have that ∆Γf =
f̃ ′′(s) + r′(s)∂sf̃ ′(s)/r(s) (we will drop the tilde sign in the following when considering the field in the
new coordinates for convenience). Furthermore, thanks to (2.8), some short calculations show that

|∇Γν|2(κ− κs)− 1
2 (κ− κs)2κ = 1

2κ(κ2 − κ2
s) + 2( sin(ψ)

r κ+ sin2(ψ)
r2 )(κ− κs).

Defining Q := −kκκ′ (where the prime denotes the derivative with respect to s; observe that κ = hν +hp
depends on s only), equation (3.15) then becomes

0 = −Q′ − r′

r
Q+

kκ
2
κ
(
κ2 − κ2

s

)
+ 2kκ(κ− κs)

( sin(ψ)
r

κ+
sin2(ψ)
r2

)
+ λAκ− λV

which is equation (1) of [11]. Using that ∇Γκ ·µ = −∂sκ we obtain from the normal force balance (3.17)
equation (3) of [11], 0 = −

[
Q′
](2)

(1)
+ σ̄ sin(ψ)

r .
The continuity condition (3.16) gives

0 =
[
kκ(κ− κs)

](2)

(1)
−
[
kg
](2)

(1)

sin(ψ)
r

(A.1)

which is just (4) of [11]. With respect to the tangential force balance (3.18) we observe that[
kκ
2 (hν + hp − κs)2 + kg(hνhp − h2

d)
](2)

(1)
−
[
(kκ(hν + hp − κs) + kghν)hp

](2)

(1)

=
[
kκ
2 (hν + hp − κs)(hν + hp − κs − 2hp)

](2)

(1)

=
[
kκ(hν + hp − κs)

](2)

(1)
hν +

[
kκ
2 (hν + hp − κs)(−hν − κs − hp)

](2)

(1)
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which, using (A.1), is

= −
[
kg
](2)

(1)

sin2(ψ)
r2

−
[
kκ
2 (κ2 − κ2

s)
](2)

(1)
. (A.2)

Altogether, (3.18) yields

0 = −
[
kg
](2)

(1)

sin2(ψ)
r2

−
[
kκ
2 (κ2 − κ2

s)
](2)

(1)
− σ̄ cos(ψ)

r
+
[
λA
](2)

(1)

from which we recover the remaining equation (5) of [11].

Appendix B. Relation to results for open membranes.
Equilibrium conditions for two-phase membranes are stated in [32], Section 4.3. Using |∇Γν| = κ2−2g

and with the change of notation κ → 2H, g → K, λV → p, λiA → 2µi, and κs → −c0 we see that our
condition (3.15) coincides with equation (88) in that paper. Furthermore, with the change of notation
µ → e2, hν → kn, hd → τg, ∇γ(·) · τ → d

ds (·), kg → k̄, and hg → kg we also see that (3.16) coincides
with condition (90) and (3.17) with (89). But our condition (3.18) reveals the additional term

−
[
(kκ(hν + hp − κs) + kghν)hp

](2)

(1)
(B.1)

in comparison with the corresponding condition (91).
In [32], the conditions for two-phase membranes are derived from the conditions for open membranes

and can be traced back to the identities (71)–(76) where the variation of the energy of an open membrane
is stated. The authors then assume that the two-phase membrane is smooth (see above identity (87) in
[32]). Therefore, the quantity Ω323, which is ∇Γ(ν ·w) ·µ in our notation, is continuous across the phase
interface. Under this assumption it then would not be necessary to split up the term ∇Γ(ν ·w) in our
calculation (3.4). And since hp = −µ · ∇Γνµ then would be continuous across γ the term (B.1) would
vanish thanks to (3.16) so that (3.18) would coincide with (91).

We stress that condition (3.16) implies that, in general, the mean curvature is discontinuous across
γ. Furthermore, in our calculation (A.2) it can be seen that we need the additional term (B.1) in order
to obtain the equilibrium conditions for axisymmetric shapes stated in [11].

In turn, for an open membrane (i.e., Γ1 is not present) without volume constraint (λV = 0) we obtain
the equations (81), (83), (85), (86) in [32] (or (87)–(90) in [34]) since then kκ(κ−κs) + kghν = 0 on γ by
(3.16) so that the second term in (3.18) vanishes.
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