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A di®use interface model for an advection di®usion equation on a moving surface is formulated

involving a small parameter " related to the thickness of the interfacial layer. The coe±cient

functions degenerate on the boundary of the di®use interface. In appropriately weighted Sobolev
spaces, existence and uniqueness of weak solutions is shown. Using energy methods the con-

vergence of solutions to the di®use interface model to the solution to the equation on the moving

surface as " ! 0 is proved. The approach is intended to be applied to phase ¯eld models

describing the surface motion. Among other problems we have surfactants on liquid-liquid
interfaces and species di®usion on moving grain boundaries in mind.
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1. Introduction

Surface quantities subject to partial di®erential equations on moving hypersurfaces

may arise in many applications ranging from °uid dynamics (surfactants on °uid-

°uid interfaces1,18) over biological systems (lipids on biomembranes19) to materials

science (species di®usion along grain boundaries13,12,20). In this paper we consider

prescribed motion of a hypersurface and present and analyze a di®use interface model

to approximate a linear advection di®usion equation.

Let f�ðtÞgt2ð0;T Þ denote a moving oriented hypersurface in Rd that is moving with

normal velocity V ðtÞºðtÞ : �ðtÞ ! Rd where ºðtÞ is the unit normal to �ðtÞ. Clearly,
for describing the purely geometric motion of �ðtÞ it is su±cient to prescribe the

normal velocity, but we also want to take advection along the surface into account
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and therefore allow for tangential contributions to the velocity ¯eld, v¿ . We denote

by v :¼ V º þ v¿ the velocity of material points on the surface. Let cðtÞ : �ðtÞ ! R be

a scalar conserved quantity for which we postulate that on each (material) portion

G � � moving with velocity v and with unit co-normal ¹ on @G

d

dt

Z
G
cdHd�1

� �����
t

¼ �
Z
@GðtÞ

qðtÞ � ¹ðtÞdHd�1; ð1:1Þ

where q is a tangential dissipative °ux. Source and reaction terms are neglected. We

assume that q is minus the surface gradient of c. This yields the following strong

surface pde9:

@ ²
t cþ cr� � v���c ¼ 0: ð1:2Þ

Here, r� is the tangential surface gradient accounting for variations along �ðtÞ;
�� ¼ r� � r� is the surface Laplace operator, and @ ²

t ¼ @ t þ v � r is the material

derivative. The latter is the derivative when following the trajectories given by v

which lie on �. The above surface pde is supplied with initial values cðt ¼ 0Þ ¼ �c. In

this study we will consider closed hypersurfaces.

Our aim is to approximate the above equation (1.2) in the form of a bulk equation

holding in a layer around � of a thickness (almost) proportional to a small length

scale " (we allow for small deviations). Let f�"ðtÞgt2I denote such a layer to which the

velocity ¯eld, now denoted by v", is extended in a suitable way. In this thin domain

we consider the equation

@ tð�"c"Þ þ v" � rð�"c"Þ þ �"c"r � v" �r � ð�"rc"Þ ¼ 0: ð1:3Þ
This means that �"c" is a bulk conserved quantity involving a dissipative °ux of the

form ��"rc". The function �" is a weight that is positive within the layer but

vanishes on its spatial boundary f@�"ðtÞgt.
To try such a narrow band approach is motivated by modeling and numerics. It

can be used in more complicated applications where the surface is unknown and

phase-¯eld methods are applied to model the surface motion as, e.g., in Refs. 6 and 5.

In such models, a phase-¯eld variable, �, changes its value across a thin layer from

one prescribed value to another, and this layer de¯nes a di®use surface. Our approach

gives an answer on how to set up an equation, using a suitable function � ¼ �ð�Þ, for a
surface quantity in such a situation. Also apart from the phase ¯eld methodology the

approach may turn out useful since in many applications moving hypersurfaces are

the limiting case of moving structures which are indeed thin in one direction.

We remark that such a function � appeared naturally in a phase ¯eld model of

di®usion induced grain boundary motion13,8 and was applied speci¯cally for

approximation purposes in Refs. 22 and 23. As in Refs. 13 and 8 and in contrast to

Refs. 22 and 23, we choose �� to have compact support in the layer �". This has

computational advantages in that the equation for c" is solved in a narrow band.

Such approximations arise naturally when the di®use interface motion is given by the

double obstacle phase ¯eld model proposed in Refs. 4 and 5 for which the di®use
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interface is of ¯nite thickness. Another interesting narrow band approximation

method25 is to choose �� to be the characteristic function of a layer with thickness

order �.

A di®erent approach involving bulk equations is to solve the surface partial di®er-

ential equation on all level sets of a prescribed function. This is inherently an Eulerian

method and yields degenerate equations. See Refs. 3, 15, 14, 10 for stationary surfaces

and Refs. 1 and 27 for evolving surfaces. On the other hand, an Eulerian approach to

transport and di®usion on evolving surfaces was given in Ref. 11. A narrow band

numerical formulation for surface elliptic equations was presented in Ref. 7.

We also note that direct discretizations of (1.2) require evolving meshes following

the interface as described, e.g., in Refs. 9 and 12. In contrast, the bulk equation may

be solved on a ¯xed bulk mesh, more precisely, at a given time, on those mesh points

within the thin interfacial layer. An advantage of the di®use interface methods is that

topological changes of the surface are naturally captured. Apart from the question of

whether continuum mechanical models are valid around such events, numerical sharp

interface methods typically necessitate severe modi¯cation and adaptivity of the data

structures which is avoided in the di®use interface approach.

Previous work on the �-limit of semi-linear parabolic equations on thin domains

has considered the continuity of dynamics on ¯xed °at16,17 and curved21 domains.

Our analysis comprises the weak solvability of the degenerate equation (1.3) on an

evolving thin domain and then the sharp interface analysis as " ! 0. We consider a

moving closed curve embedded in R2 that is smoothly parametrized at all times over

the interval ð0; 2�Þ with periodic boundary conditions. The extension to arbitrary

space dimensions d is possible but only requires some more technical work.21 An

obvious restriction is that splitting and coalescence events of the moving curve

involving topological changes cannot be handled in this analysis.

Precise assumptions and problem statements are given in Sec. 2. In Sec. 3,

existence and uniqueness of a weak solution to (1.3) and continuous dependence on

the initial values is proved. To deal with the weight �" we work on weighted Sobolev

spaces as investigated in Ref. 2. Uniform bounds of the c" are derived so that they

converge to a function c which is shown to ful¯ll (1.2). This asymptotic analysis,

contained in Sec. 4, follows the lines of Ref. 24 but allows to consider moving surfaces

and degenerating weights �". Moreover, the formal analysis in Ref. 22 is now rigor-

ously justi¯ed in an even more general context. In a concluding Sec. 5 we make some

motivating remarks on the assumptions.

2. De¯nitions and Precise Problem Statements

2.1. Assumptions and notation

2.1.1. Evolution of the surface

Let I ¼ ½0;T Þ with some T > 0 be a time interval. We consider smooth closed curves

�ðtÞ embedded into R2 that smoothly depend on time. Let � ¼ fftg � �ðtÞgt. As
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remarked in the introduction we want to consider advection along the curve for which

a smooth velocity ¯eld v : � ! R2 is given such that the trajectories lie on �.

The evolving curve is parametrized by a smooth function ° : I � ð0; 2�Þ ! �

periodic with respect to the second variable such that gðt; sÞ :¼ j@s°ðt; sÞj � 2� > 0

for all ðt; sÞ 2 I � ð0; 2�Þ with a constant � > 0. Let ¿ ¼ @s°=j@s°j ¼: ð� 1; � 2Þ
denote the associated unit tangential vector and º :¼ ð� 2;�� 1Þ ¼ ¿ ? the unit nor-

mal. The normal velocity of the curve given in terms of ° must be consistent with the

velocity ¯eld, i.e.

@ t° � º ¼ V ¼ v � º: ð2:1Þ

2.1.2. Di®use interface

We further suppose that a family of functions �" 2 C 2ðI � R2Þ is given that depends

continuously on a parameter " 2 ð0; �"Þ with some �" > 0. The di®use interface

regions approximating the curves are de¯ned by �" :¼ fftg � �"ðtÞgt2I where

�"ðtÞ :¼ f�"ðtÞ > 0g. The notion of approximation is that the functions �" are such

that, as " ! 0, the sets �"ðtÞ converge to the curves �ðtÞ with respect to the Haus-

dor® distance uniformly in time and linearly in ".

Let � :¼ ð0; 2�Þ � ð�1; 1Þ. The parametrization of the curve leads to a para-

metrization of �" in the following way:

�"ðtÞ ¼ f°"ðt; s; zÞjðs; zÞ 2 �g; °"ðt; s; zÞ :¼ °ðt; sÞ þ "zqðt; s; z; "Þºðt; sÞ:
Here, q is a smooth function such that

q � 1 ! 0 inC 3ðI ��Þ as " ! 0: ð2:2Þ

Hence, the parametrization °" is also smooth.

We denote by dl ¼ j@s°ðt; sÞjds the length element of the curve �ðtÞ. The scalar

curvature �ðt; sÞ is de¯ned by the formula @ l¿ ¼ �º or @ lº ¼ ��¿ . As a consequence,

@sº ¼ �j@s°j�¿ . Let us state some formulas for the derivatives of °";

@s°" ¼ j@s°jð1� "zq�Þ¿ þ "z@sqº;

@z°" ¼ "ðq þ z@zqÞº;
@ tz°" ¼ "ð@ tðq þ z@zqÞº þ ðq þ z@zqÞ@ tºÞ:

ð2:3Þ

Moreover,

detðrðs;zÞ°"Þ ¼ "g" with g" ¼ j@s°jð1� "zq�Þðq þ z@zqÞ ð2:4Þ

and we assume that �" is small enough such that g" � �.

For a function f : �" ! R on the physical space we can now de¯ne its counterpart
~f on the parameter space via ~f ðt; s; zÞ :¼ fðt;°"ðt; s; zÞÞ. Observe that

@ t
~f ðt; s; zÞ ¼ d

dt
fðt;°ðt; s; zÞÞ ¼ @ tfðt;°ðt; s; zÞÞ þ @ t° � rfðt;°ðt; s; zÞÞ:
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To transform spatial derivatives we need the derivatives of the coordinates ðs; zÞ 2 �

considered as functions of x 2 �"ðtÞ. By the inverse function theorem

r s
z

� �
¼ ðrðs;zÞ°"Þ�1 ¼ 1

"g"

"ðq þ z@zqÞ¿ ?

gð1� "zq�Þº? � "z@sq¿
?

� �
:

Hence, rf ¼ @s
~frsþ @z

~frz where

rs ¼ 1

gð1� "zq�Þ ¿ ; rz ¼ 1

"

1

q þ z@zq
º � z@sq

g"
¿ :

Furthermore, if f is a function on the moving curve �, then

r�f ¼ ¿
@s

~f

j@s°j
¼ ¿

@s
~f

g
:

In the following, with a slight abuse of notation the tilde on functions like f will be

dropped for convenience.

Next, we assume that there is a function �� : ð�1; 1Þ ! R and there are constants

C2 � C1 > 0 such that

sup
ðt;s;zÞ

j�"ðt; s; zÞ � ��ðzÞj ! 0 and sup
ðt;s;zÞ

j@ t�"j ! 0 as " ! 0; ð2:5Þ

C2 �
�"ðt;s;zÞ

��ðzÞ �C1 and j@ t�"ðt;s;zÞj; j@ tt�"ðt;s;zÞj �C2 ��ðzÞ 8 t;s;z; ": ð2:6Þ

The function �� is a non-negative di®erentiable weight function bounded by a positive

constant with ��ðzÞ> 0 if z2 ð�1;1Þ but which vanishes if jzj ¼ 1. We also assume

that it is normalized in the sense thatZ 1

�1
��ðzÞdz¼ 1: ð2:7Þ

We assume that there is a smooth extension of v to a ¯eld v" : � ! R2 such that

for a constant C > 0

jv"ðt; s; zÞ � vðt; sÞj � C"; j@ tv"ðt; s; zÞ � @ tvðt; sÞj � C" 8 t; s; z; ": ð2:8Þ
Observe that then thanks to the consistency assumption (2.1)

º � ðv" � @ t°"Þ ¼ º � ðv" � vÞ þ º � ðv� @ t° � "z@ tðqºÞÞ ¼ Oð"Þ: ð2:9Þ
For the initial data we assume that �c 2 H 1

perðð0; 2�ÞÞ.

2.2. Weighted Sobolev spaces

Since ��ð�1Þ ¼ 0, the coe±cients in (1.3) degenerate towards the boundary of the

interfacial layer. To overcome this problem, weighted Sobolev spaces can be used.

Consider the Borel measure

!��ðAÞ :¼
Z
A
��ðs; zÞdzds
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on Lebesgue-measurable sets A � �. The space

L2ð�; !��Þ :¼ ff : � ! R jf ! �� -measurable; jjfjjL 2ð�;! �� Þ < 1g;
where

jjfjjL2ð�;! �� Þ :¼
Z
�
��jfj2dzds

� �
1=2

is complete and a Hilbert space with the scalar product

ðf; gÞL2ð�;! �� Þ :¼
Z
�
fgd! �� ¼

Z
�
��fgdzds:

Since 1=�� 2 L1
locð�Þ we have that L2ð�; ! ��Þ � L1

locð�Þ (see Prop. 2.1 in Ref. 2 or

the references therein). For a function f 2 L2ð�; !��Þ we can therefore de¯ne a de-

rivative in a distributional sense. The ��-weighted Sobolev space H 1ð�; !��Þ is de¯ned
to be the set of all functions f 2 L2ð�; ! ��Þ such that the distributional derivatives

@sf; @zf belong to L2ð�; ! ��Þ again, i.e. are weak derivatives. It is a Hilbert space with

the scalar product

ðf; gÞH 1ð�;! �� Þ :¼
Z
�
��ðfgþrðs;zÞf � rðs;zÞgÞdzds:

On every set A �� � the function �� is bounded from below by a positive constant.

Hence, L2ðA; !��Þ coincides with the usual Lebesgue space L2ðAÞ. Thanks to this, one
can show that the smooth functions are dense in L2ð�; !��Þ and H 1ð�; ! ��Þ. A similar

argument is also used in the following lemma2 which is repeated here for convenience.

Lemma 2.1. The embedding H 1ð�; !��Þ ,!L2ð�; !��Þ is compact.

Proof. Let ffngn2N be a bounded sequence in H 1ð�; ! ��Þ, w.l.o.g. bounded by 1, and

let � > 0 be an arbitrary small real number.

For 	 2 ð0; 1Þ de¯ne �	 :¼ fðs; zÞ 2 �jz 2 ð�1þ 	; 1� 	Þg and

f 	
nðs; zÞ :¼

fnðs; zÞ if ðs; zÞ 2 �	;

0 else:

�
Since the fn are bounded in L2ð�; ! ��Þ we have for the error of this cuto® thatZ

�
��jfn � f 	

nj2dzds ¼
Z
�n� 	

��jfnj2

� sup
jzj�1�	

��ðzÞVolð�n�	Þjjfnjj2L2ð�;! �� Þ

<
� 2

4
ð2:10Þ

for all n if 	 is small enough, which is assumed for the following.

On �	 the function �� is bounded from below by a constant �� 	
0 > 0, hence

jjf 	
njj2H 1ð�Þ �

1

�� 	
0

jjf 	
njj 2H 1ð�;! �� Þ �

1

�� 	
0

:
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Let R 2 R denote an upper bound of ��. Since the embedding H 1ð�Þ ! L2ð�Þ is

compact there is a number N� 2 N and there are N� functions gi 2 L2ð�Þ �
L2ð�; !��Þ; i ¼ 1; . . . ;N� , such that for all n 2 N there is an index i with jjf 	

n �
gijjL 2ð�Þ < 1ffiffiffi

R
p �

2. Therefore

jjf 	
n � gijjL 2ð�;! �� Þ �

Z
�
Rjf	n � gij2dzds

� �
1=2

<
�

2
:

Together with (2.10) this means that for every n 2 N there is an index i 2
f1; . . . ;N�g such that jjfn � gijjL 2ð�;! �� Þ < �.

We introduce the spaces

X :¼ ff 2 H 1ð�; ! ��Þjf periodic in sg;
B :¼ ff 2 L2ð�; !��Þjf periodic in sg

and will consider the spaces L2ðI;XÞ and L2ðI;BÞ with the generic norms

jjfjjL2ðI;XÞ :¼
Z T

0
jjfðtÞjj2X

� �1=2

; jjfjjL 2ðI;BÞ :¼
Z T

0
jjfðtÞjj2B

� �1=2

:

2.3. Problem formulations

2.3.1. Equation on the evolving curve

We multiply (1.2) by a test function 
 and integrate, ¯rst over �ðtÞ and then with

respect to time. After that, we partially integrate with respect to space (recall that

the curves are closed) and transform to the space I � ð0; 2�Þ:

0 ¼
Z T

0

Z
�ðtÞ

ð@ ²
t cþ cr� � v���cÞ
dH1dt

¼
Z T

0

Z
�ðtÞ

@ tc
þrc � @ t°
þ rc � ðv� @ t°Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼r�c�ðv�@ t°Þ by ð2:1Þ




0
@

þ c
r� � ðv� @ t°Þ þ c
r� � @ t° þr�c � r�


1
AdH1dt

¼
Z T

0

Z
�ðtÞ

ðð@ tcþ @ t° � rcÞ
� cr�
 � ðv� @ t°Þ

þ c
r� � @ t° þr�c � r�
ÞdH1dt

¼
Z T

0

Z 2�

0
@ t~c ~
gþ @s~c ~
¿ � ð~v � @ t°Þ þ ~c ~
¿ � @s ~v þ @s~c@s ~


1

g

� �
dsdt:
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We perform a partial integration with respect to time in the ¯rst term and arrive at

Problem 2.1. Find c 2 L2ðI;H 1
perðð0; 2�ÞÞÞ such that

0 ¼
Z 2�

0
�c
ð0Þgð0Þds�

Z T

0

Z 2�

0
c@ tð
gÞdsdt

þ
Z T

0

Z 2�

0
�c@s
¿ � ðv� @ t°Þ þ c
¿ � @st° þ @sc@s


1

g

� �
dsdt ð2:11Þ

for all 
 2 L2ðI;H 1
perðð0; 2�ÞÞÞ with @ t
 2 L2ðI;L2

perðð0; 2�ÞÞÞ and 
ðT Þ ¼ 0.

2.3.2. Di®use interface approximation

The procedure is similar in the di®use interface setting. Boundary terms do not occur

during the partial integration since �" vanishes there. We obtain

0 ¼
Z T

0

Z
�"ðtÞ

ð@ ²
t ð�"c"Þ þ �"c"r � v" �r � ð�"rc"ÞÞ
dxdt

¼
Z T

0

Z
�"ðtÞ

ð@ tð�"c"Þ
þrð�"c"Þ � @ t°"
þrð�"c"Þ � ðv" � @ t°"Þ


þ �"c"
r � ðv" � @ t°"Þ þ �"c"
r � @ t°" þ �"rc" � r
Þdxdt

¼
Z T

0

Z
�"ðtÞ

ðð@ tð�"c"Þ þ @ t°" � rð�"c"ÞÞ
� �"c"r
 � ðv" � @ t°"Þ

þ �"c"
r � @ t°" þ �"rc" � r
Þdxdt

¼
Z T

0

Z
�
ð@ tð�"c"Þ
g" þ �"c"ð@s
rsþ @z
rzÞ � ðv" � @ t°"Þg"

þ �"c"
ðrs � @s@ t°" þrz � @z@ t°"Þg"
þ �"ð@sc"rsþ @zc"rzÞ � ð@s
rsþ @z
rzÞg"Þ"dzdsdt:

Using the formulas for rs and rz, multiplying with 1=", partially integrating with

respect to time in the ¯rst term and de¯ning the coe±cient functions

a0 :¼ �"
��
g";

a1 :¼
ffiffiffiffiffiffiffiffiffi
�"g"

pffiffiffi
��

p
gð1� "zq�Þ ;

a2 :¼ �"g"
��ðq þ z@zqÞ

;

b0 :¼ @ t�"g"
��

þ ðq þ z@zqÞ�"
��

¿ � @st°" þ
gð1� "zq�Þ�"

��

1

"
º � z@sq¿

� �
� @zt°";

b1 :¼ � ðq þ z@zqÞ�"
��

¿ � ðv" � @ t°"Þ;
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b2 :¼ � gð1� "zq�Þ�"
��

1

"
º þ z@sq�"

��
¿

� �
� ðv" � @ t°"Þ;

b3 :¼ z@sq
ffiffiffiffiffi
�"

pffiffiffiffiffiffiffi
��g"

p :

We ¯nally obtain

Problem 2.2. Find c" 2 L2ðI;XÞ such that

0 ¼
Z
�
���c
ð0Þa0ð0Þdzds�

Z T

0

Z
�
��c"@ tð
a0Þdzdsdt

þ
Z T

0

Z
�
�� b0c"
þ b1c"@s
þ b2c"@z


�

þða1@sc" � b3@zc"Þða1@s
� b3@z
Þ þ
1

"2
a2@zc"@z


�
dzdsdt ð2:12Þ

for all 
 2 L2ðI;XÞ with @ t
 2 L2ðI;BÞ and 
ðT Þ ¼ 0.

3. Analysis of the " Problem

The linear Problem 2.2 can be solved by proceeding as in the case without weight. In

fact, the essential detail is the compactness of the embedding X ,!B which has been

provided in Lemma 2.1. Before presenting an existence and uniqueness result let us

¯rst brie°y discuss the coe±cient functions in (2.12).

By the smoothness of ° and °", the quantities ¿ ;º; g" and � are also smooth. By

(2.3), (2.8) and its consequence (2.9) the terms 1
" º � @zt°" and

1
" º � ðv" � @ t°"Þ as well

as their time derivatives are of order Oð"0Þ. Hence, thanks to the assumptions (2.6),

(2.5) and (2.8) all the coe±cient functions ai; bj and their time derivatives are uni-

formly bounded and continuous. The assumption (2.6), the positivity of g" as

assumed below (2.4), and (2.2) furthermore imply that the coe±cients ai are uni-

formly bounded from below by positive constants. We stress that all these constants

are independent of ", which will turn out to be useful in the next section.

Theorem 3.1. Under the assumptions stated in Sec. 2 and if " is small enough there

is a unique solution c" 2 L2ðI;XÞ \H 1ðI;BÞ to Problem 2.2 which satisfies the

estimates

sup
t2I

Z
�
��jc"ðtÞj2dzdsþ jj@sc"jj2L2ðI;BÞ þ

1

"2
jj@zc"jj2L 2ðI;BÞ � C

Z 2�

0
�c 2ds; ð3:1Þ

sup
t2I

Z
�
�� j@sc"ðtÞj2 þ

1

"2
j@zc"ðtÞj2

� �
dzdsþ jj@ tc"jj2L2ðI;BÞ � C; ð3:2Þ

with a positive constant C independent of ".
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Proof. In the following, the Ci; i ¼ 1; 2; . . . ; denote positive constants independent

of ðt; s; z; "Þ. One may argue with a time discretization. For a number N 2 N let

� ¼ T=2N and tNn :¼ n�;n ¼ 0; . . . ; 2N . Set cN0 :¼ �c; aN
0;n :¼ a0ðtNn Þ and similarly for

the other coefficient functions. Now, consider the subsequent problems for

n ¼ 1; . . . ; 2N : find cNn 2 X such that

0 ¼
Z
�
�� aN

0;n

cNn � cNn�1

�

þ bN0;nc

N
n 
þ bN1;nc

N
n @s
þ bN2;nc

N
n @z


�

þðaN
1;n@sc

N
n � bN3;n@zc

N
n ÞðaN

1;n@s
� bN3;n@z
Þ þ
1

"2
aN
2;n@zc

N
n @z


�
dzds ð3:3Þ

for all 
 2 X. The Lax�Milgram theorem can be applied to show that (3.3) has a

unique solution. To obtain a coercive operator it may be necessary to reduce � and ",

but the properties of the coefficient functions allow one to find appropriate values

independently of n and N.

We may insert 
 ¼ cNn in (3.3), multiply with � and sum up for n ¼ 1; . . . ; �n with

some �n � 2N . Observe that the ¯rst term gives

X�n
n¼1

�

Z
�
��aN

0;n

cNn � cNn�1

�
cNn

�
X�n
n¼1

1

2

Z
�
��aN

0;nðcNn Þ2 �
1

2

Z
�
��aN

0;nðcNn�1Þ2
� �

¼ 1

2

Z
�
��aN

0; �nðcN�n Þ2 �
1

2

Z
�
��aN

0;0ðcN0 Þ2 þ
X�n
n¼1

�

Z
�
��
aN
0;n�1 � aN

0;n

2�
ðcNn�1Þ2

� C1jjcN�n jj 2B � C2jj�cjj2B � C3

X�n�1

n¼0

� jjcNn jj2B

thanks to the properties of a0, in particular its positivity. Together with the other

terms in (3.3) one can derive

jjcN�n jj2B þ
X�n
n¼1

� jj@sc
N
n jj 2B þ 1

"2
jj@zc

N
n jj2B

� �
� C4jj�cjj2B þ C5

X�n�1

n¼0

� jjcNn jj2B:

A Gronwall argument yields

sup
n2f1;...;2Ng

jjcNn jj 2B þ
X2N

n¼1

� jj@sc
N
n jj2B þ 1

"2
jj@zc

N
n jj2B

� �
� C6jj�cjj2B: ð3:4Þ

In order to obtain an estimate for time shifts we may furthermore test (3.3) with

ðcNn � cNn�1Þ=� . Clearly for the ¯rst term

X�n
n¼1

�

Z
�
��aN0;n

cNn � cNn�1

�

����
����2 � C7

X�n
n¼1

�
cNn � cNn�1

�

����
����2

B

: ð3:5Þ
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Next we observe that

X�n
n¼1

�

Z
�
��aN

2;n@zc
N
n @z

cNn � cNn�1

�

�
X�n
n¼1

1

2

Z
�
��ðaN

2;nj@zc
N
n j2 � aN

2;nj@zc
N
n�1j2Þ

¼
Z
�
��aN

2; �n j@zc
N
�n j2 �

Z
�
��aN

2;0j@zc
N
0 j2 þ

X�n
n¼1

�

Z
�
��
aN
2;n�1 � aN

2;n

2�
j@zc

N
n�1j2

� C8jj@zc
N
�n jj 2B � C9jj @z�c|{z}

¼0

jj2B � C10

X�n
n¼1

� jj@zc
N
n jj2B: ð3:6Þ

The last term can be estimated by (3.4). Furthermore, we have that

X�n
n¼1

�

Z
�
��bN2;nc

N
n @z

cNn � cNn�1

�

¼
X�n
n¼1

Z
�
��ðbN2;ncNn @zc

N
n � bN2;n�1c

N
n�1@zc

N
n�1 þ ðbN2;n�1c

N
n�1 � bN2;nc

N
n Þ@zc

N
n�1Þ

¼
Z
�
�� bN2; �nc

N
�n @zc

N
�n � bN2;0c

N
0 @zc

N
0|fflffl{zfflffl}

¼@z�c¼0

0
B@

1
CA

þ
X�n
n¼1

�

Z
�
�� bN2;n

cNn�1 � cNn
�

þ bN2;n�1 � bN2;n
�

cNn�1

 !
@zc

N
n�1

��	

Z
�
��j@zc

N
�n j2 � C11

Z
�
��jcN�n j2

� 	
X�n
n¼1

�

Z
�
��

cNn � cNn�1

�

����
����2 � C12

X�n
n¼1

�

Z
�
��ðj@zc

N
n�1j2 þ jcNn j2Þ;

where 	 > 0 is so small such that C7 � 	 > 0 and C8 � 	 > 0 (eventually even smaller,

taking further terms into account). The remaining terms can be handled similarly

and ¯nally we see that

X�n
n¼1

�
cNn � cNn�1

�

����
����2

B

þ jj@sc
N
�n jj2B þ 1

"2
jj@zc

N
�n jj2B

� C13 þ C14

X�n
n¼1

�ðjjcNn jj2B þ jj@zc
N
n jj2B þ jj@sc

N
n jj2BÞ:
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In view of (3.4) we infer that

X2N

n¼1

�
cNn � cNn�1

�

����
����2

B

þ sup
n2f1;...;2Ng

jj@sc
N
n jj2B þ 1

"2
jj@zc

N
n jj2B

� �
� C15: ð3:7Þ

De¯ne the functions cN ; ĉN 2 L2ðI;XÞ by

cNðtÞ :¼ t� tNn�1

�
cNn þ tNn � t

�
cNn�1; cNþðtÞ :¼ cNn ; if t 2 ðtNn�1; t

N
n �:

We will now use test functions 
N 2 XN � L2ðI;XÞ of the form 
NðtÞ ¼ 
N
n 2 X for

all t 2 ðtNn�1; t
N
n �. Observe thatXM � XN forM � N. Analogously, the functions aN

i

and bNj are de¯ned. It follows directly from (3.3) that

0¼
X2N

n¼1

Z
�
�� aN

0 @ tc
N
M þ bN0 c

Nþ
M þ bN1 c
Nþ@s


M þ bN2 c
Nþ@z


M

�

þðaN
1 @sc

Nþ � bN3 @zc
NþÞðaN

1 @s

M � bN3 @z


MÞ þ 1

"2
aN
2 @zc

Nþ@z

M

�
dzds ð3:8Þ

for all 
M 2XM with M �N .

By the estimates (3.4) and (3.7) there is a function c 2 L1ðI;XÞ \H 1ðI;BÞ�
ð,!C 0ðI;BÞ compact26) such that

cN ; cNþ *
	

c in L1ðI;XÞ;
cN ! c in C 0ðI;BÞ;

@ tc
N * @ tc in L2ðI;BÞ;

for a subsequence as N ! 1. From (3.4) and (3.7) we also see that the estimates

(3.1) and (3.2) are ful¯lled. The approximations of the coe±cient functions converge

in C 0ðI ��Þ. Going to the limit in (3.8) therefore yields (2.12) for all 
M 2 XM ;

M 2 N. With a density argument and after partial integration with respect to time

we see that c indeed ful¯lls (2.12).

The uniqueness follows directly from estimate (3.1).

4. Asymptotic Analysis

For the following convergence theorem, the so-called energy methods are applied.

Theorem 4.1. As " ! 0, the solutions c" to Problem 2.2 converge in C 0ðI;BÞ to a

function c with the following properties:

(1) @zc ¼ 0, hence c ¼ cðt; sÞ can be considered as a function on I � ð0; 2�Þ,
(2) c 2 L2ðI;H 1

perðð0; 2�ÞÞÞ solves Problem 2.1.
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Proof. By Ref. 26, Cor. 4, the embedding L2ðI;XÞ \H 1ðI;BÞ ,!C 0ðI;BÞ is

compact. The key estimates (3.1) and (3.2) imply that there is a function c 2
L2ðI;XÞ \H 1ðI;BÞ such that

c" * c in L2ðI;XÞ;
@ tc" * @ tc in L2ðI;BÞ;
c" ! c in C 0ðI;BÞ and almost everywhere

for a subsequence as " ! 0. Since by (3.1) 1
" @zc" is bounded in L2ðI;BÞ we

additionally have that @zc" ! 0 in L2ðI;BÞ, whence @zc ¼ 0. This means that

c ¼ cðt; sÞ 2 L2ðI;H 1
perðð0; 2�ÞÞÞ \H 1ðI;L2

perðð0; 2�ÞÞÞ.
Concerning the coe±cients in (2.12) we immediately deduce the following con-

vergence statements as " ! 0 : a0 ! g; a1 ! 1=
ffiffiffi
g

p
; a2 ! g; b1 ! �¿ � ðv� @ t°Þ, and

b3 ! 0 in C 0ð½0;T �;C 0ð�ÞÞ. The ¯rst term in b0 converges to zero thanks to (2.5),

which also implies that @ ta0 ! @ tg. For the last one observe that by (2.3) 1
" º �

@ tz°" ¼ @ tq þ z@ tzq ! 0 so that altogether b0 ! ¿ � @st°.

Consider now test functions 
 2 L2ðI;XÞ \H 1ðI;BÞ with @z
 ¼ 0 and 
ðT Þ ¼ 0

in (2.12). The above convergence statements yield

0 ¼
Z
�
���c
ð0Þa0ð0Þdzds�

Z T

0

Z
�
��ðc"@ t
a0 þ c"
@ ta0Þdzdsdt

þ
Z T

0

Z
�
��ðb0c"
þ b1c"@s
þ ða1@sc" � b3@zc"Þa1@s
Þdzdsdt

!
Z
�
���c
ð0Þgð0Þdzds�

Z T

0

Z
�
��c@ tð
gÞdzdsdt

þ
Z T

0

Z
�
�� ¿ � @st°c
� ¿ � ðv� @ t°Þc@s
þ 1

g
@sc@s


� �
dzdsdt:

Apart from �� all terms in the last two lines do not depend on z any more. ByZ
�
��ðzÞ�cðsÞ
ð0; sÞgð0; sÞdzds ¼

Z 1

�1
��ðzÞdz|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼1 by ð2:7Þ

Z 2�

0
�cðsÞ
ð0; sÞgð0; sÞds

and proceeding analogously with the other terms we see that c indeed solves Pro-

blem 2.1. In Ref. 9 it is shown that there is a unique weak solution to Problem 2.1. As

a consequence, the whole set of function fc"g" converges to c as stated above.

5. Discussion and Remarks

We have shown the existence and uniqueness of a weak solution to (1.3) by trans-

forming the moving domain �" to a ¯xed (in time) parameter space and using a

suitably weighted Sobolev space to deal with the function �". Further we have proved

that these solutions c" converge to a weak solution to (1.2) as " ! 0. The estimate on
1
" @zc" is essential to obtain a limiting function ful¯lling @zc ¼ 0 which means that
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variations in the direction normal to the hypersurface vanish in the limit. We con-

clude with several remarks.

5.1. Possible extensions of the results

In the case of open curves one has to prescribe boundary conditions for c on @� to

close (1.2). The parametrization must then re°ect the fact that the boundary points

move with velocity v, hence @ t°ðt; sÞ ¼ vðt; sÞ for s 2 f0; 2�g. An extension to

hypersurfaces of higher dimension is possible, too. Parametrizing � over a reference

manifoldM the derivatives with respect to s become weighted surface gradientsrM,

cf. Ref. 21. In all these cases the set up in normal direction and the form of �" are not

a®ected.

5.2. Choice of the pro¯le

In the phase ¯eld approach with double-obstacle potentials in order to describe the

moving surface,4,5 to leading order the phase ¯eld variable � has a sinusoidal pro¯le in

the normal direction to the interface. For �, of particular interest is a pro¯le of the

form 1� �2,

��ðzÞ ¼ 2

�
ð1� sinðzÞÞð1þ sinðzÞÞ:

This function grows like the squared distance to �1 close to the boundary

ð0; 2�Þ � f�1g � @�. Our hope is that the degeneracy of �� turns out to be helpful in

numerical simulations. It keeps the mass of the surface quantity in the di®use

interfacial region independently of the extension of the velocity ¯eld away from the

sharp interface. To see this, we integrate (1.3) over �"ðtÞ for general �� and apply a

transport identity. Recall that the motion ¯eld for t 7! @�"ðtÞ is @ t°" rather than v".

0 ¼
Z
�"ðtÞ

ð@ tð�"c"Þ þ v" � rð�"c"Þ þ �"c"r � v" �r � ð�"rc"ÞÞdHd�1

¼
Z
�"ðtÞ

ð@ tð�"c"Þ þ @ t°" � rð�"c"Þ þ �"c"r � @ t°"

þr � ð�"c"ðv" � @ t°"Þ � �"rc"ÞÞdHd�1

¼ d

dt

Z
�"

�"c"dHd�1

� �����
t

þ
Z
@�"ðtÞ

�"ðc"ðv" � @ t°"Þ � rc"Þ � º@�"ðtÞdHd�2:

Since 1
"

R
�"
�"c" !

R
� �c it is desirable that d

dt ð
R
�"
�"c"Þ ¼ 0. Choosing a uniformly

positive �� one needs other requirements in order for the °ux over the boundary to

vanish. In more complex applications the di®use interfacial domain �" as well as the

velocity ¯eld v" may be unknown and subject to other pdes so that, in general,

v" � @ t°" 6¼ 0 on @�"ðtÞ. Consequently, there is a Robin boundary condition for c"
which may be di±cult to implement in simulations. The degenerating �" elegantly

circumvents this condition.
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5.3. Initial conditions

We simply extended �c constantly in z, which is natural in view of the fact that the

di®usivity in z direction is fast, scaling with 1="2. Choosing another extension results

in the function c : s 7! R 1
�1 ��ðzÞ�cðs; zÞdz replacing �c in the ¯rst term of (2.11) from the

asymptotic analysis. A requirement to approximate the originating problem is then

clearly that c ¼ �c.

5.4. Source terms and reactions

In the identity (1.1) to derive the equation for c on the moving surface, source terms

of the form
R
Gf on the right-hand side with a given function f de¯ned on � can easily

be taken into account and lead to the additional term �f on the left-hand side of

(1.2). In the corresponding equation (1.3) on the di®use interface the additional term

reads ��"f" where f" is a suitable extension of f away from � de¯ned similarly to v",

for example extended constantly in normal direction. Under appropriate regularity

assumptions on f and its extension both the analysis and the asymptotic analysis can

still be established analogously as presented. Reaction terms are left for future

research.
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