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Abstract. We analyze a fully discrete numerical scheme for approximating the evolution of
graphs for surfaces evolving by anisotropic surface diffusion. The scheme is based on the idea of
second order operator splitting for the nonlinear geometric fourth order equation. This yields two
coupled spatially second order problems, which are approximated by linear finite elements. The time
discretization is semi-implicit. We prove error bounds for the resulting scheme and present numerical
test calculations that confirm our analysis and illustrate surface diffusion.
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1. Introduction. This article is concerned with the geometric problem of de-
termining an evolving surface Γ(t) whose motion is governed by the highly nonlinear
fourth order geometric anisotropic surface diffusion equation

V = ΔΓHγ on Γ(t),(1.1)

where V and ΔΓ denote, respectively, the normal velocity and the Laplace–Beltrami
(surface Laplacian) operator for Γ(t). Furthermore, Hγ denotes the anisotropic mean
curvature of the surface with respect to the positive, convex, and 1-homogeneous
surface energy density γ : R

n+1\{0} → R. We can introduce Hγ formally as the first
variation of the surface energy

Aγ(Γ) =

∫
Γ

γ(ν),(1.2)

where ν denotes the unit normal to Γ.
Modelling morphological surface evolution and growth is fundamental in materials

science and the study of microstructure. The surface evolution law (1.1) is referred
to as surface diffusion because it models the diffusion of mass within the bounding
surface of a solid body. At the atomistic level atoms on the surface move along the
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surface due to a driving force consisting of a chemical potential difference. For a
surface with surface energy density γ(ν) the appropriate chemical potential in this
setting is the anisotropic curvature Hγ . This leads to the flux law

ρV = −divΓ j,

where ρ is the mass density and j is the mass flux in the surface, with the constitutive
flux law [19], [21]

j = −D∇ΓHγ .

Here, D is the diffusion constant. From these equations we obtain the law (1.1)
after an appropriate nondimensionalization. The notion of surface diffusion is due to
Mullins [21] and for a review we refer the reader to [5].

Our sign convention is that Hγ with respect to the outer normal is positive for
the Wulff shape W := {p ∈ R

n+1 | 〈p, q〉 ≤ γ(q) ∀q ∈ R
n+1}.

This evolution has interesting geometrical properties: if Γ(t) is a closed surface
bounding a domain Ω(t), then the volume of Ω(t) is preserved and the surface energy
(or weighted surface area) of Γ(t) decreases. The corresponding result in the graph
case is given in Lemma 2.2. At present, the existence and uniqueness theory for surface
diffusion is limited to the isotropic case γ(q) := |q|, q ∈ R

n+1. For example, it is known
that for closed curves in the plane or closed surfaces in R

3 balls are asymptotically
stable subject to small perturbations; see [15], [17]. However, topological changes such
as pinch-off are possible [18], [20], and a one-dimensional graph may lose its graph
property in finite time whilst the surface evolves smoothly [16].

In what follows we shall study evolving surfaces Γ(t) which can be described, for
each t ≥ 0, as the graph of a height function u(·, t) over some base domain Ω ⊂ R

n,
i.e., Γ(t) = {(x, u(x, t)) ∈ R

n+1 | x ∈ Ω}. The area element and a unit normal,
denoted by Q(u) and ν(u), are then given by

Q(u) =
√

1 + |∇u|2, ν(u) =
(∇u,−1)√
1 + |∇u|2

=
(∇u,−1)

Q(u)

so that we can calculate the surface energy or weighted area for a graph Γ given by
the height function u as

Aγ(Γ) = Iγ(u) :=

∫
Ω

γ(ν(u))Q(u) =

∫
Ω

γ(∇u,−1)

in view of the homogeneity of γ. Thus the first variation of Aγ in the direction of a
function φ ∈ C∞

0 (Ω) is

d

dε
Iγ(u + εφ)|ε=0 =

n∑
i=1

∫
Ω

γpi(∇u,−1)φxi = −
n∑

i,j=1

∫
Ω

γpipj (∇u,−1)uxixjφ

= −
∫

Ω

Hγφ =

∫
Ω

wφ,

where we use −w to denote the anisotropic or weighted mean curvature of the surface
in the graph case so that

w := −
n∑

i,j=1

γpipj (∇u,−1)uxixj .(1.3)
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In order to translate (1.1) into a differential equation for u = u(x, t), we observe that
the normal velocity V of Γ(t) is given by V = − ut

Q(u) . Furthermore, if v : Ω → R,

then the Laplace–Beltrami operator on Γ(t) is given by (see (2.5) below)

ΔΓv =
1

Q(u)
∇ ·

((
Q(u)I − ∇u⊗∇u

Q(u)

)
∇v

)
,

where ⊗ denotes the usual tensor product of two vectors in R
n. Thus, anisotropic

surface diffusion for graphs is defined by the following highly nonlinear fourth order
evolutionary equation:

ut = −∇ ·
((

Q(u)I − ∇u⊗∇u

Q(u)

)
∇
(

n∑
i,j=1

γpipj
(∇u,−1)uxixj

))
.(1.4)

The aim of this paper is to analyze a fully discrete finite element approximation
of the initial-boundary value problem in the case of graphs. We use the second order
splitting method for fourth order problems proposed by Elliott, French, and Mil-
ner [14] for the fourth order Cahn–Hilliard equation and subsequently employed for
surface diffusion by Deckelnick, Dziuk, and Elliott [12]. Thus the space discretization
is accomplished using H1 conforming finite element spaces. For example, continu-
ous piecewise linear elements on triangulations are sufficient. On the other hand,
in time we use a novel semi-implicit discretization which requires only the solution
of linear algebraic equations but which preserves the Liapunov structure. This en-
sures the natural stability properties of the scheme with a time step independent of
the spatial mesh size. The scheme involves stabilizing the explicit Euler scheme by
adding a semi-implicit linear form which involves the discrete time derivative. This
stabilizing form has two terms. One involves the anisotropy and is designed to yield
a stable linearization. The second term is of higher order with respect to the time
step and is based on the Laplace–Beltrami form. It is designed to yield the L2 sta-
bility bound, (3.11), on the discrete solution similar to that enjoyed by the solution
of the partial differential equation. A similar idea was previously used in [11] for
the anisotropic mean curvature flow of graphs and in [23] for surface diffusion. The
main achievement of the paper is the derivation of a priori geometric error bounds.
We prove optimal order bounds for the difference of the normals measured in the L2

norm over either the continuous surface Γ(t) or the discrete surface Γh(t) and the
L2 norm on the discrete surface of the difference of the tangential gradients of the
anisotropic mean curvature. This latter bound is equivalent to an H−1 bound on the
difference in normal velocities. Some numerical computations are presented which
confirm the analysis and which illustrate the effect of anisotropy.

A second order splitting finite element scheme for axially symmetric surfaces was
presented by Coleman, Falk, and Moakher [7], [8] together with some stability results
and interesting numerical computations illustrating pinch-off and the formation of
beads. A first finite element error analysis for the second order splitting method for
surface diffusion in the axially symmetric case was presented by Deckelnick, Dziuk,
and Elliott [12]. Subsequently, Bänsch, Morin, and Nochetto [1] developed an optimal
order continuous in time finite element error analysis for the second order splitting
method in the case of multidimensional graphs. Our work has the distinctive feature
of analyzing a fully discrete second order splitting finite element method for nonlinear
surface anisotropy using a stable semi-implicit time stepping scheme.
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Remark 1.1. The analysis is easily extended to the more general evolution law

V = ΔΓ(Hγ − f) + g,(1.5)

where f is a force arising from an extra term in the energy and g is a surface growth
term. For example, including mechanical energy leads to the appearance of f and in
epitaxial growth g models the deposition of atoms.

Remark 1.2. Our results are presented for zero Neumann boundary conditions
with exact quadrature. The results and arguments also hold without change for
the case of Ω being a box and periodic boundary conditions. Minor modifications
are required for homogeneous Dirichlet boundary conditions. These three sets of
conditions have the property of being variationally separated and allow the second
order splitting method to work.

Remark 1.3. The approach to surface diffusion in this paper is entirely analogous
to the work of Elliott, French, and Milner [14] for the Cahn–Hilliard equation where
u is an order or phase field variable and w is the chemical potential. The variational
gradient flow structure is identical in each setting. Indeed the degenerate Cahn–
Hilliard equation yields a diffuse interface approximation to surface diffusion [4].

The paper is organized as follows. In section 2 we introduce some notation and
assumptions. We set up the numerical scheme and derive some preliminary estimates
in section 3, whilst section 4 contains the proof of the error bounds. Finally, section 5
contains some numerical results.

2. Notation and assumptions.

2.1. Differential geometry. Let Γ be a C2 hypersurface in R
n+1 with unit

normal ν. For any function η̄ = η̄(x1, . . . , xn+1) defined in a neighborhood N ⊂ R
n+1

of Γ we define its tangential gradient on Γ by

∇Γη̄ := Dη̄ − 〈Dη̄, ν〉ν,

where on R
n+1 〈·, ·〉 denotes the usual scalar product and Dη̄ denotes the usual

gradient. The tangential gradient ∇Γη̄ depends only on the values of η̄ on Γ and
〈∇Γη̄, ν〉 = 0. The Laplace–Beltrami operator on Γ is defined as the tangential diver-
gence of the tangential gradient, i.e.,

ΔΓη̄ = 〈∇Γ,∇Γη̄〉.

Let Γ have a boundary ∂Γ whose intrinsic unit outer normal, tangential to Γ, is
denoted by μ. Then the surface Green’s formula is∫

Γ

〈∇Γξ̄,∇Γη̄〉 =

∫
∂Γ

ξ̄〈∇Γη̄, μ〉 −
∫

Γ

ξ̄ΔΓη̄.(2.1)

We now turn to the situation in hand where Γ(t) = {(x, u(x, t)) ∈ R
n+1 | x ∈ Ω}.

For functions v = v(x), x ∈ Ω, we use the extension v̄(x, xn+1) = v(x) and define

∇Γv := ∇Γv̄ = Dv̄ − 〈Dv̄, ν(u)〉ν(u) = P (ν(u))Dv̄,

where we observe that Dv̄ = (∇v, 0), ν(u) = (∇u,−1)/Q(u) and P (ν(u)) is given by

P (ν(u)) := I − ν(u) ⊗ ν(u).
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Here, we have used the tensor product notation y ⊗ y := yyT . It follows that

〈∇Γv,∇Γη〉 = ∇v · ∇η − 1

Q(u)2
∇v · ∇u∇η · ∇u =

1

Q(u)
(∇v)tE(∇u)∇η,(2.2)

where

E(∇u) := Q(u)I − ∇u⊗∇u

Q(u)
.

For later use we note that

〈P (ν(u))Dv̄,Dw̄〉Q(u) = (∇v)tE(∇u)∇w,(2.3)

(∇v)tE(∇u)∇v ≥ |∇v|2
Q(u)

.(2.4)

Integrating (2.2) over Γ we derive∫
Γ

〈∇Γv̄,∇Γη̄〉 =

∫
Ω

〈∇Γv,∇Γη〉Q(u) =

∫
Ω

(∇v)tE(∇u)∇η.

If we combine this relation with (2.1) we obtain for test functions η, which vanish
on ∂Ω ∫

Γ

η̄ΔΓv̄ =

∫
Ω

η∇ · (E(∇u)∇v) =

∫
Ω

η
1

Q(u)
∇ · (E(∇u)∇v)Q(u),

so that

ΔΓv := ΔΓv̄ =
1

Q(u)
∇ · (E(∇u)∇v).(2.5)

2.2. The anisotropy. We suppose that γ : R
n+1 \ {0} → R is smooth with

γ(p) > 0 for p ∈ R
n+1 \ {0} and that γ is positively homogeneous of degree one, i.e.,

γ(λp) = |λ|γ(p) ∀λ �= 0, p �= 0.(2.6)

Here, | · | denotes the Euclidean norm. It is not difficult to verify that (2.6) implies

〈γ′(p), p〉 = γ(p), 〈γ′′(p)p, q〉 = 0,(2.7)

γpi
(λp) =

λ

|λ|γpi
(p), γpipj

(λp) =
1

|λ|γpipj
(p)(2.8)

for all p ∈ R
n+1 \ {0}, q ∈ R

n+1, λ �= 0, and i, j ∈ {1, . . . , n+ 1}. Finally, we assume
that there exists γ0 > 0 such that

〈D2γ(p)q, q〉 ≥ γ0|q|2 ∀ p, q ∈ R
n+1, |p| = 1, 〈p, q〉 = 0.(2.9)

Further information about the geometric properties and physical relevance of aniso-
tropic energy functionals can be found, respectively, in [2] and [24].

2.3. Function spaces. By (·, ·) we denote the L2(Ω) inner product (v, η) :=∫
Ω
v(x)η(x)dx for v, η ∈ L2(Ω) with norm ‖v‖ := (v, v)

1
2 . Also Hm,p(Ω) denotes

the usual Sobolev space with the corresponding norm being given by ‖u‖Hm,p(Ω) =

(
∑m

k=0 ‖Dku‖pLp(Ω))
1
p with the usual modification for p = ∞. For p = 2 we simply

write Hm(Ω) = Hm,2(Ω) with norm ‖ · ‖Hm(Ω).
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2.4. The variational formulation and initial-boundary value problem.
Rather than discretizing the fourth order equation (1.4) we use the height u of the
graph and the anisotropic curvature of the graph w as variables and consider the two
second order equations (1.1), (1.3),

ut = ∇ · (E(∇u)∇w),(2.10)

w = −
n∑

i,j=1

γpipj (∇u,−1)uxixj .(2.11)

The system is closed using Neumann boundary conditions and an initial condition
for u.

E(∇u)∇w · ν∂Ω = 0,(2.12)

〈γ′(ν(u)), (ν∂Ω, 0)〉 = 0,(2.13)

u(·, 0) = u0.(2.14)

The first equation, (2.12), is the zero mass flux condition whereas the second equa-
tion, (2.13), is the natural variational boundary condition which defines w as the
variational derivative or chemical potential for the surface energy functional. Note
that an initial condition on w is not required.

In order to write down the variational formulation it is convenient to introduce
the following forms:

Laplace–Beltrami (LB) form,

E(u;w, η) :=

∫
Ω

(∇w)tE(∇u)∇ηdx

Anisotropic mean curvature (AMC) form,

A(u, η) :=
n∑

i=1

∫
Ω

γpi(ν(u))ηxidx.

Then it is straightforward to show the following equivalence between the classical
form of the initial-boundary value problem and the variational formulation.

Lemma 2.1. Let u ∈ C1([0, T ];C4(Ω̄)), u(·, 0) = u0, and w ∈ C0([0, T ];C2(Ω̄)).
Then (u,w) is a solution of (2.10)–(2.13) iff u(·, 0) = u0 and the following variational
equations are satisfied:

(∂tu, η) + E(u;w, η) = 0 ∀ η ∈ H1(Ω),(2.15)

(w, η) −A(u, η) = 0 ∀ η ∈ H1(Ω).(2.16)

Lemma 2.2. The solution (u,w) satisfies for each t ∈ [0, T ] the surface energy
equation

Iγ(u) +

∫ t

0

E(u;w,w) ds = Iγ(u0)(2.17)

and the conservation laws

(u, 1) = (u0, 1), (w, 1) = 0.(2.18)
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Furthermore, for each t ∈ [0, T ] we have the bound

‖u(t)‖2 +

∫ t

0

‖w‖2 ds ≤ C(γ, u0, T ).(2.19)

Proof. Taking η = w in (2.15) and η = ∂tu in (2.16) and subtracting the resulting
equations yields (2.17). Taking η = 1 in (2.15) and (2.16) yields (2.18).

In order to prove the first part of (2.19), we use η = u in (2.15) and apply (2.29)
which gives

1

2

d

dt
‖u‖2 = −E(u;w, u) ≤ E(u;w,w)

1
2 E(u;u, u)

1
2 ≤ 1

2
E(u;w,w) +

1

2

∫
Ω

Q(u).

Integrating this inequality with respect to time we obtain with the help of (2.17),

‖u(t)‖2 ≤ ‖u0‖2 +

∫ t

0

E(u;w,w)ds +
1

inf |p|=1 γ(p)

∫ t

0

Iγ(u) ds ≤ C(γ, u0, T ).

Using η = w in (2.16) we deduce

‖w‖2 = A(u,w) ≤ sup
|p|=1

|γ′(p)|
∫

Ω

|∇w| ≤ C

(∫
Ω

|∇w|2
Q(u)

) 1
2
(∫

Ω

Q(u)

) 1
2

,

so that (2.4) and similar arguments as above yield∫ t

0

‖w‖2ds ≤ C

∫ t

0

E(u;w,w)ds + C

∫ t

0

Q(u) ds ≤ C(γ, u0, T ).

Remark 2.3. The surface energy equation (2.17) can be written as

∫
Γ(t)

γ(ν) +

∫ T

0

∫
Γ(t)

|∇ΓHγ |2 =

∫
Γ(0)

γ(ν).(2.20)

The conservation of u is equivalent to the conservation of the volume lying below the
graph of the surface. That the integral over Ω of the anisotropic mean curvature is
zero is a consequence of the fact that constant vertical variations in the height of the
graph do not change the anisotropic surface area.

2.5. Geometric lemmas. The following algebraic relations are elementary.
Lemma 2.4.

|∇(u− v)|2 = (Q(u) −Q(v))2 + |ν(u) − ν(v)|2Q(u)Q(v),(2.21) ∣∣∣∣ 1

Q(u)
− 1

Q(v)

∣∣∣∣ ≤ |ν(u) − ν(v)|,(2.22)

|Q(u) −Q(v)| ≤ Q(u)Q(v)|ν(u) − ν(v)|.(2.23)

Lemma 2.5 (properties of the anisotropy and the AMC form A). Let u, v ∈
H1,∞(Ω). Then

A(v, u− v) ≥ Iγ(u) − Iγ(v) − γ̄

∫
Ω

|ν(u) − ν(v)|2Q(u),(2.24)



FULLY DISCRETE SURFACE DIFFUSION OF GRAPHS 1119

where

γ̄ :=
1√

5 − 1
max

{
sup
|p|=1

|γ′(p)|, sup
|p|=1

|γ′′(p)|
}
.(2.25)

If in addition |∇u| ≤ K a.e. in Ω, then

|A(u, η) −A(v, η)| ≤ C(γ,K)

∫
Ω

|ν(u) − ν(v)||∇η|.(2.26)

Proof. The first inequality follows from the estimate

n∑
i=1

γpi(ν(v))(u− v)xi
≥ γ(ν(u))Q(u) − γ(ν(v))Q(v) − γ̄|ν(u) − ν(v)|2Q(u)(2.27)

which is contained in the proof of Theorem 3.1 in [11, p. 430]. Let us next turn
to (2.26). Lemma 6.1 in [11] implies that there exists c0 = c0(K) > 0 such that

|sν(u) + (1 − s)ν(v)| ≥ c0 a.e. in Ω ∀ s ∈ [0, 1].(2.28)

Note that c0 is independent of v. As a consequence,

|γpi
(ν(u)) − γpi

(ν(v))| =

∣∣∣∣∣∣
n+1∑
j=1

∫ 1

0

γpipj (sν(u) + (1 − s)ν(v))ds(νj(u) − νj(v))

∣∣∣∣∣∣
≤ 1

c0
max
|p|=1

|D2γ(p)||ν(u) − ν(v)| ≤ C(γ,K)|ν(u) − ν(v)|,

since D2γ is positively homogeneous of degree −1. This yields (2.26).
Lemma 2.6 (properties of the LB form E). Let u, v ∈ H1,∞(Ω). Then

|E(u;w, η)| ≤ E(u;w,w)
1
2 E(u; η, η)

1
2 .(2.29)

If in addition |∇u| ≤ K a.e. in Ω, then

E(v;u− v, u− v) ≤ C(K)

∫
Ω

|ν(u) − ν(v)|2Q(v),(2.30)

|E(u; η1, η2) − E(v; η1, η2)| ≤ C(K)‖∇η1‖∞
∫

Ω

|ν(u) − ν(v)||∇η2|Q(v),(2.31)

|E(u; η1, η2) − E(v; η1, η2)| ≤ εE(v; η1, η1)
(2.32)

+
C(K)

ε
‖∇η2‖2

∞

∫
Ω

|ν(u) − ν(v)|2Q(v).

Proof. Using (2.3) together with Young’s inequality we have

|E(u;w, η)| =

∣∣∣∣
∫

Ω

〈P (ν(u))Dw̄,Dη̄〉Q(u)

∣∣∣∣
≤

∫
Ω

〈P (ν(u))Dw̄,Dw̄〉 1
2 〈P (ν(u))Dη̄,Dη̄〉 1

2Q(u)

≤ E(u;w,w)
1
2 E(u; η, η)

1
2 .
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Next, observing that (∇(u− v), 0) = Q(u)ν(u) −Q(v)ν(v) we obtain

〈P (ν(v))(∇(u− v), 0), (∇(u− v), 0)〉
= 〈(I − (ν(v) ⊗ ν(v)))(Q(u)ν(u) −Q(v)ν(v)), (Q(u)ν(u) −Q(v)ν(v))〉
= Q(u)2(1 − 〈ν(u), ν(v)〉2) = Q(u)2(1 − 〈ν(u), ν(v)〉)(1 + 〈ν(u), ν(v)〉)
≤ Q(u)2|ν(u) − ν(v)|2,

since 1 − 〈ν(u), ν(v)〉 = 1
2 |ν(u) − ν(v)|2. Multiplication of the above inequality by

Q(v) followed by integration over Ω yields (2.30). From the definition of P (ν(u))
and (2.23) we infer

|P (ν(u))Q(u) − P (ν(v))Q(v)| ≤ C(K)|ν(u) − ν(v)|Q(v),

which implies (2.31). Finally, writing Dη̄ = (∇η, 0) and using (2.23) as well as (2.4)
we have

|E(u; η1, η2) − E(v; η1, η2)| ≤
∫

Ω

|〈P (ν(v))Dη̄1, Dη̄2〉||Q(v) −Q(u)|

+

∫
Ω

|〈(P (ν(v)) − P (ν(u)))Dη̄1, Dη̄2〉|Q(u)

≤
∫

Ω

〈P (ν(v))Dη̄1, Dη̄1〉
1
2 〈P (ν(v))Dη̄2, Dη̄2〉

1
2 |ν(u) − ν(v)|Q(u)Q(v)

+C(K)

∫
Ω

|ν(u) − ν(v)|
√

Q(v)
|∇η1|√
Q(v)

|∇η2|

≤ εE(v; η1, η1) +
C(K)

ε
‖∇η2‖2

∞

∫
Ω

|ν(u) − ν(v)|2Q(v).

This concludes the proof of (2.32).
Remark 2.7. We note that inequalities (2.30) and (2.32) were proved in [1] as

Lemmas 4.7 and 4.5, respectively. The argument used above, employing the projection
P , is more direct and slightly simpler than the one used in [1] in that it avoids the
splitting of Ω into subsets.

Lemma 2.8. Let u, v ∈ H1,∞(Ω) with |∇u| ≤ K a.e. in Ω. There exists a
constant c1 > 0 which depends only on K and γ0 from (2.9) such that for

D :=

∫
Ω

(γ(ν(v)) − 〈γ′(ν(u)), ν(v)〉)Q(v)

we have

D ≥ c1

∫
Ω

|ν(u) − ν(v)|2Q(v).

Proof. This is just a reformulation of Lemma 3.2 in [9].

3. Discretization.

3.1. The finite element approximation. We now turn to the discretization
of (2.15), (2.16). Let Th be a family of triangulations of Ω with maximum mesh size
h := maxτ∈Th

diam(τ). We suppose that Ω̄ is the union of the elements of Th so
that element edges lying on the boundary are curved. Furthermore, we suppose that

the triangulation is nondegenerate in the sense that maxτ∈Th

diam(τ)
ρτ

≤ κ, where the
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constant κ > 0 is independent of h and ρτ denotes the radius of the largest ball which
is contained in τ̄ . The discrete space is defined by

Sh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each τ ∈ Th}.

There exists an interpolation operator Πh : H2(Ω) → Sh such that

‖v − Πhv‖ + h‖∇(v − Πhv)‖ ≤ ch2‖v‖H2(Ω) ∀ v ∈ H2(Ω).(3.1)

We are now in position to give a precise formulation of our numerical scheme. Let
Δt := T

N for an integer N and tm := mΔt, m = 0, . . . , N . We denote by Um, Wm

the approximations to u(·, tm) and w(·, tm), respectively. Furthermore, let

δtv
m :=

vm+1 − vm

Δt
.

In order to formulate a semi-implicit scheme requiring just the solution of linear
equations we introduce the following form.

Stabilizing Anisotropic (SA) form,

B(u; v, η) := λB0(u; v, η) + ΔtE(u; v, η),(3.2)

where

B0(u; v, η) :=

∫
Ω

γ(ν(u))

Q(u)
∇v · ∇wdx.(3.3)

Remark 3.1. The purpose of the form B0 is to stabilize A, which will be evaluated
at the old time step. The second part in B is introduced in order to gain control on
‖Um‖ (see the proof of Lemma 3.4 below, in particular (3.14) and (3.15)) and the
corresponding error in the convergence analysis.

Scheme 3.2. We seek for each m ∈ [1, N ] a pair {Um,Wm} ∈ Sh ×Sh satisfying
for m ≥ 0

(δtU
m, η) + E(Um;Wm+1, η) = 0 ∀ η ∈ Sh,(3.4)

(Wm+1, η) −A(Um, η) − ΔtB(Um; δtU
m, η) = 0 ∀ η ∈ Sh.(3.5)

For simplicity we impose the initial condition,

U0 := Πhu0.(3.6)

The scheme does not require W 0. The constant λ is chosen to satisfy

λγmin > γ̄, where γmin = inf
|p|=1

γ(p) > 0(3.7)

in order to ensure stability (see Lemma 3.4 below).
Lemma 3.3 (properties of the SA form B). Suppose that u, v ∈ H1,∞(Ω). Then

B(u; v, v) ≤
(
λ sup

|p|=1

γ(p) + Δt

)
E(u; v, v).(3.8)

If in addition |∇u| ≤ K a.e. in Ω, then

|B(u; η1, η2) − B(v; η1, η2)|
(3.9)

≤ C‖∇η1‖L∞

(∫
Ω

|ν(u) − ν(v)||∇η2| + Δt

∫
Ω

|ν(u) − ν(v)||∇η2|Q(v)

)
.
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Proof. The inequality (3.8) follows immediately from (2.4). Next, if |∇u| ≤ K
a.e. in Ω, we deduce from (2.28) that

∣∣∣∣γ(ν(u))

Q(u)
− γ(ν(v))

Q(v)

∣∣∣∣
≤ 1

Q(u)

∣∣∣∣
∫ 1

0

〈γ′(sν(u) + (1 − s)ν(v))ds, ν(u) − ν(v)〉
∣∣∣∣ + C

∣∣∣∣ 1

Q(u)
− 1

Q(v)

∣∣∣∣
≤ C|ν(u) − ν(v)|.

Combining this inequality with (2.31) implies (3.9).

3.2. Stability.

Lemma 3.4. Suppose that (3.7) holds. Then the unique discrete solution satisfies

max
m∈[0,N ]

Iγ(Um) + Δt

N∑
k=1

E(Uk−1;W k,W k) ≤ C(γ, U0),(3.10)

max
m∈[0,N ]

‖Um‖2 + Δt

N∑
k=1

‖W k‖2 ≤ C(λ, γ, U0, T ).(3.11)

Proof. Taking η = ΔtWm+1 in (3.4), η = ΔtδtU
m in (3.5) and adding yields

ΔtE(Um;Wm+1,Wm+1) + A(Um, Um+1 − Um)
(3.12)

+(Δt)2B(Um; δtU
m, δtU

m) = 0.

Lemma 2.5 implies

A(Um, Um+1 − Um) ≥ Iγ(Um+1) − Iγ(Um) − γ̄

∫
Ω

|ν(Um+1) − ν(Um)|2Q(Um+1)

≥ Iγ(Um+1) − Iγ(Um) − (Δt)2
γ̄

γmin
B0(U

m; δtU
m, δtU

m),

where we have used (2.21). Inserting the above inequality into (3.12) and recalling
the definition of B we infer

Iγ(Um+1) − Iγ(Um) + ΔtE(Um;Wm+1,Wm+1)
(3.13)

+

(
λ− γ̄

γmin

)
(Δt)2B0(U

m; δtU
m, δtU

m) + (Δt)3E(Um, δtU
m, δtU

m) ≤ 0.

Summation over m yields (3.10) as well as

(Δt)2
N−1∑
m=0

B0(U
m; δtU

m, δtU
m)

(3.14)

+(Δt)3
N−1∑
m=0

E(Um; δtU
m, δtU

m) ≤ C(λ, γ, U0).
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Next, using η = ΔtUm+1 in (3.4) we deduce

1

2
‖Um+1‖2 − 1

2
‖Um‖2 +

1

2
‖Um+1 − Um‖2 = ΔtE(Um;Wm+1, Um+1)

≤ ΔtE(Um;Wm+1,Wm+1)
1
2 E(Um;Um+1, Um+1)

1
2

(3.15)
≤ ΔtE(Um;Wm+1,Wm+1)

1
2

(
E(Um;Um, Um)

1
2 + ΔtE(Um; δtU

m, δtU
m)

1
2

)
≤ ΔtE(Um;Wm+1,Wm+1) + Δt

∫
Ω

Q(Um) + (Δt)3E(Um; δtU
m, δtU

m).

Finally, using η = ΔtWm+1 in (3.5) we obtain with the help of (2.4) and (3.8) that

Δt‖Wm+1‖2 = ΔtA(Um,Wm+1) + (Δt)2B(Um; δtU
m,Wm+1)

≤ Δt sup
|p|=1

|γ′(p)|
(∫

Ω

|∇Wm+1|2
Q(Um)

) 1
2
(∫

Ω

Q(Um)

) 1
2

(3.16)

+ (Δt)2B(Um; δtU
m, δtU

m)
1
2B(Um;Wm+1,Wm+1)

1
2

≤ ΔtE(Um;Wm+1,Wm+1) + C(γ)Δt

∫
Ω

Q(Um)(3.17)

+C(Δt)2B(Um; δtU
m, δtU

m).

Now (3.11) follows from summing (3.15), (3.16) over m, the inequality
∫
Ω
Q(Um) ≤

C(γ)Iγ(Um), and (3.10), (3.14).
Remark 3.5. It follows in particular that

max
m∈[0,N ]

∫
Ω

Q(Um) ≤ C(γ, U0).(3.18)

3.3. Boundary conditions, domain perturbation, and quadrature. For
Neumann boundary conditions it is sufficient for the union of the elements to contain
Ω, provided exact quadrature is used. The above analysis can be easily extended to
higher order elements. On the other hand, when using piecewise linear elements it is
convenient to use a quadrature rule based on mass lumping for the L2 inner products.
The other integrals require just the measure of the regions of integration. In the case
of Dirichlet boundary conditions it is necessary either to analyze the effect of domain
perturbation in the case of linear finite elements with a polygonal interpolation of Ω
or to analyze isoparametric approximations for higher order elements.

4. Error bounds. We set

um := u(·, tm), wm := w(·, tm), Sm := δtu
m − ∂tu(·, tm+1).

Then we have for the continuous problem the analogue of the discrete scheme,

(δtu
m, η) + E(um+1;wm+1, η) = (Sm, η) ∀ η ∈ H1(Ω),(4.1)

(wm, η) −A(um, η) = 0 ∀ η ∈ H1(Ω).(4.2)

It is convenient to introduce the errors

emu := um − Um =: ρmu + θmu , emw := wm −Wm := ρmw + θmw ,

where

ρmu := um − Πhum, ρmw := wm − Πhwm

are the interpolation errors. It is our goal to prove the following error bounds.
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Theorem 4.1. Let (u,w) solve (2.10)–(2.14) and satisfy the regularity u ∈
H1,∞(0, T ;H2,∞(Ω)), utt ∈ L∞(0, T ;H1,∞(Ω)), w ∈ H1,∞(0, T ;H2,∞(Ω)), wtt ∈
L2(0, T ;L2(Ω)). Suppose also that (3.7) holds. Then there exists δ > 0 such that for
0 < Δt ≤ δ

max
m∈[0,N ]

(
‖emu ‖2 +

∫
Ω

|ν(um) − ν(Um)|2Q(Um)

)

+ Δt

N∑
k=1

(‖ekw‖2 + E(Uk−1; ekw, e
k
w)) ≤ C(h2 + (Δt)2),

where C and δ depend on γ, Ω, T , λ and the solution u.
The rest of this section will be devoted to the proof of Theorem 4.1. Subtract-

ing (3.4), (3.5) and (4.1), (4.2) yields, for all η ∈ Sh, the error equations

(δte
m
u , η) + E(um+1;wm+1, η) − E(Um;Wm+1, η) = (Sm, η),(4.3)

(em+1
w , η) −A(um, η) + A(Um, η) + ΔtB(Um; δtU

m, η) = (wm+1 − wm, η).(4.4)

4.1. An a priori estimate in the energy norm. The first step is to emulate
the energy bounds obtained for the continuous and discrete solutions by testing (4.3)
and (4.4) with em+1

w − ρm+1
w ∈ Sh and δte

m
u − δtρ

m
u ∈ Sh yielding

(δte
m
u , em+1

w ) + E(um+1;wm+1, em+1
w ) − E(Um;Wm+1, em+1

w )(4.5)

= (δte
m
u , ρm+1

w ) + E(um+1;wm+1, ρm+1
w )

−E(Um;Wm+1, ρm+1
w ) + (Sm, em+1

w − ρm+1
w ),

(em+1
w , δte

m
u ) −A(um, δte

m
u ) + A(Um, δte

m
u ) + ΔtB(Um; δtU

m, δte
m
u )(4.6)

= (em+1
w , δtρ

m
u ) −A(um, δtρ

m
u ) + A(Um, δtρ

m
u ) + ΔtB(Um; δtU

m, δtρ
m
u )

+ Δt(δtw
m, δte

m
u − δtρ

m
u ).

Combining these equations and multiplying by Δt yields

Δt(A(um, δte
m
u ) −A(Um, δte

m
u ))

+ Δt(E(um+1;wm+1, em+1
w ) − E(Um;Wm+1, em+1

w ))

+ (Δt)2B(Um; δte
m
u , δte

m
u ) = Δt(A(um, δtρ

m
u ) −A(Um, δtρ

m
u ))

+ Δt(E(um+1;wm+1, ρm+1
w ) − E(Um;Wm+1, ρm+1

w ))(4.7)

+ Δt(Sm, em+1
w − ρm+1

w ) − Δt(em+1
w , δtρ

m
u )

+ Δt(δte
m
u , ρm+1

w ) − (Δt)2(δtw
m, δte

m
u − δtρ

m
u )

+ (Δt)2(B(Um; δtu
m, δte

m
u ) − B(Um; δtU

m, δtρ
m
u )) :=

7∑
j=1

Rm
j .

The proof of the error bounds is based on estimating the terms on both sides of
the above equation. We begin with the left-hand side of (4.7) which we denote by
Lm. First we recall the following lemma.

Lemma 4.2. Let

Dm :=

∫
Ω

(γ(ν(Um)) − 〈γ′(ν(um)), ν(Um)〉)Q(Um).
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Then we have for m ∈ [0, N − 1] and small Δt

Δt(A(um, δte
m
u ) −A(Um, δte

m
u )) ≥ Dm+1 −Dm

− (γ̄ + CΔt)

∫
Ω

|∇(em+1
u − emu )|2
Q(Um)

−CΔt

(
(Δt)2 +

∫
Ω

|ν(um+1) − ν(Um+1)|2Q(Um+1)

)
.

Proof. See [11, Lemma 4.2].

Lemma 4.2 and the definition of B0 now imply

Δt(A(um, δte
m
u ) −A(Um, δte

m
u ))

≥ Dm+1 −Dm − (Δt)2
(

γ̄

γmin
+ CΔt

)
B0(U

m; δte
m
u , δte

m
u )(4.8)

−CΔt

(
(Δt)2 +

∫
Ω

|ν(um+1) − ν(Um+1)|2Q(Um+1)

)
.

Next we examine

Δt(E(um+1;wm+1, em+1
w ) − E(Um;Wm+1, em+1

w ))

= ΔtE(Um; em+1
w , em+1

w ) + Δt(E(um+1;wm+1, em+1
w ) − E(um;wm+1, em+1

w ))

+ Δt(E(um;wm+1, em+1
w ) − E(Um;wm+1, em+1

w ))

=: αm
1 + αm

2 + αm
3 .

We infer from (3.18) and (2.4) that

|αm
2 | ≤ C(Δt)2‖∇wm+1‖L∞

∫
Ω

|∇em+1
w | ≤ C(Δt)2

(∫
Ω

Q(Um)

) 1
2
(∫

Ω

|∇em+1
w |2

Q(Um)

) 1
2

≤ εΔtE(Um, em+1
w , em+1

w ) +
C

ε
(Δt)3.

Furthermore, (2.32) yields

|αm
3 | ≤ εΔtE(Um, em+1

w , em+1
w ) +

C

ε
‖∇wm+1‖2

L∞

∫
Ω

|ν(um) − ν(Um)|2Q(Um).

Combining (4.8) and the estimates for αm
2 , αm

3 we derive

Lm ≥ Dm+1 −Dm + (1 − 2ε)ΔtE(Um; em+1
w , em+1

w )

+ (Δt)2
(
λ− γ̄

γmin
− CΔt

)
B0(U

m; δte
m
u , δte

m
u ) + (Δt)3E(Um; δte

m
u , δte

m
u )

(4.9)

− C

ε
Δt

(
(Δt)2 +

∫
Ω

|ν(um) − ν(Um)|2Q(Um)

+

∫
Ω

|ν(um+1) − ν(Um+1)|2Q(Um+1)

)
.
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4.2. L2-estimates. In order to proceed and estimate the terms Rm
j on the right-

hand side of (4.7), we need to derive bounds on the L2-norms of ek+1
w and ek+1

u .
Lemma 4.3. We have for m ∈ [0, N − 1]

‖em+1
w ‖2 ≤ E(Um; em+1

w , em+1
w ) + C(Δt)2B(Um; δte

m
u , δte

m
u )

+ C

∫
Ω

|ν(um) − ν(Um)|2Q(Um) + C(h2 + (Δt)2).

Proof. Inserting η = em+1
w − ρm+1

w into (4.4) and using (2.26) we infer

‖em+1
w ‖2

= (em+1
w , em+1

w − ρm+1
w ) + (em+1

w , ρm+1
w )

= A(um, em+1
w − ρm+1

w ) −A(Um, em+1
w − ρm+1

w )

−ΔtB(Um; δtU
m, em+1

w − ρm+1
w ) + Δt(δtw

m, em+1
w − ρm+1

w )

+ (em+1
w , ρm+1

w ) ≤ C

∫
Ω

|ν(um) − ν(Um)|(|∇em+1
w | + |∇ρm+1

w |)

+ Δt|B(Um; δtU
m, em+1

w − ρm+1
w )| + CΔt(‖em+1

w ‖ + ‖ρm+1
w ‖)

+ ‖em+1
w ‖‖ρm+1

w ‖ ≤ 1

2
‖em+1

w ‖2 + Δt|B(Um; δtU
m, em+1

w − ρm+1
w )|

+C((Δt)2 + h2) +
1

4

∫
Ω

|∇em+1
w |2

Q(Um)
+ C

∫
Ω

|ν(um) − ν(Um)|2Q(Um).

It remains to bound the term involving B. Clearly,

|B(Um; δtU
m, em+1

w )|
≤ B(Um; δtU

m, δtU
m)

1
2B(Um; em+1

w , em+1
w )

1
2

≤
(
B(Um; δtu

m, δtu
m)

1
2 + B(Um; δte

m
u , δte

m
u )

1
2

)
B(Um; em+1

w , em+1
w )

1
2

≤ C

((∫
Ω

Q(Um)

) 1
2

+ B(Um; δte
m
u , δte

m
u )

1
2

)
E(Um; em+1

w , em+1
w )

1
2 ,

by (3.8). Recalling (3.18) we deduce

Δt|B(Um; δtU
m, em+1

w )|

≤ 1

4
E(Um; em+1

w , em+1
w ) + C((Δt)2 + (Δt)2B(Um; δte

m
u , δte

m
u )).

Similarly,

Δt|B(Um; δtU
m, ρm+1

w )| ≤ C((Δt)2 + h2) + C(Δt)2B(Um; δte
m
u , δte

m
u ).

If we insert these inequalities into the estimate for ‖em+1
w ‖ and use (2.4) we arrive at

the desired bound.
Lemma 4.4. We have for 0 ≤ m ≤ N

max
k∈[0,m]

‖eku‖2 ≤ C

(
Δt

m−1∑
k=0

E(Uk; ek+1
w , ek+1

w ) + (Δt)3
m−1∑
k=0

E(Uk; δte
k
u, δte

k
u)

)

+ C((Δt)2 + h2) + CΔt

m−1∑
k=0

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk).
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Proof. Clearly,

1

2
‖ek+1

u ‖2 − 1

2
‖eku‖2 +

1

2
‖ek+1

u − eku‖2

= Δt(δte
k
u, e

k+1
u ) = Δt(δte

k
u, θ

k+1
u ) + Δt(δte

k
u, ρ

k+1
u )

(4.10)
= Δt(E(Uk;W k+1, θk+1

u ) − E(uk+1;wk+1, θk+1
u ))

+ Δt(Sk, θk+1
u ) + Δt(δte

k
u, ρ

k+1
u ),

where the last inequality follows from (4.3) with the choice η = Δtθk+1
u . To begin,

|E(Uk;W k+1, θk+1
u ) − E(uk+1;wk+1, θk+1

u )|

≤ |E(Uk; ek+1
w , θk+1

u )| + |E(Uk;wk+1, θk+1
u ) − E(uk;wk+1, θk+1

u )|

+ |E(uk;wk+1, θk+1
u ) − E(uk+1;wk+1, θk+1

u )|

= I + II + III.

Before we estimate these terms we first note that (2.30) and (3.18) imply

E(Uk; θk+1
u , θk+1

u )

≤ 2E(Uk; ek+1
u , ek+1

u ) + 2E(Uk; ρk+1
u , ρk+1

u )
(4.11)

≤ 4E(Uk; eku, e
k
u) + 4(Δt)2E(Uk; δte

k
u, δte

k
u) + C‖∇ρk+1

u ‖2
L∞

∫
Ω

Q(Uk)

≤ C

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk) + 4(Δt)2E(Uk; δte
k
u, δte

k
u) + Ch2.

We then infer from (2.29) and (4.11)

I ≤ E(Uk; ek+1
w , ek+1

w )
1
2 E(Uk; θk+1

u , θk+1
u )

1
2 ≤ E(Uk; ek+1

w , ek+1
w )

+C

(
(Δt)2E(Uk; δte

k
u, δte

k
u) + h2 +

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

)
.

Next, (2.32) together with (4.11) implies

II ≤ E(Uk; θk+1
u , θk+1

u ) + C‖∇wk+1‖2
L∞

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

≤ C

(
(Δt)2E(Uk; δte

k
u, δte

k
u) + h2 +

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

)
,

as well as

III ≤ E(Uk; θk+1
u , θk+1

u ) + C‖∇wk+1‖2
L∞

∫
Ω

|ν(uk+1) − ν(uk)|2Q(uk)

≤ C

(
(Δt)2E(Uk; δte

k
u, δte

k
u) + (Δt)2 + h2 +

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

)
.

Collecting the above estimates we derive

Δt|E(Uk;W k+1, θk+1
u ) − E(uk+1;wk+1, θk+1

u )| ≤ ΔtE(Uk; ek+1
w , ek+1

w )

+CΔt

(
(Δt)2E(Uk; δte

k
u, δte

k
u) + (Δt)2 + h2 +

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

)
.
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Next,

Δt|(Sk, θk+1
u )| ≤ C(Δt)2(‖eku‖ + ‖ek+1

u − eku‖ + ‖ρk+1
u ‖)

≤ 1

4
‖ek+1

u − eku‖2 + CΔt‖eku‖2 + CΔt((Δt)2 + h4).

If we insert the above estimates into (4.10), sum from k = 0 to m− 1, and rearrange
terms, we obtain

1

2
‖emu ‖2 ≤ 1

2
‖e0

u‖2 + Δt

m−1∑
k=0

E(Uk; ek+1
w , ek+1

w ) + C(Δt)3
m−1∑
k=0

E(Uk; δte
k
u, δte

k
u)

+C((Δt)2 + h2) + CΔt

m−1∑
k=0

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

+CΔt

m−1∑
k=0

‖eku‖2 + Δt

m−1∑
k=0

(δte
k
u, ρ

k+1
u ).

Integrating by parts discretely in time we infer

∣∣∣∣∣Δt
m−1∑
k=0

(δte
k
u, ρ

k+1
u )

∣∣∣∣∣ =

∣∣∣∣∣−Δt

m−1∑
k=0

(eku, δtρ
k
u) + (emu , ρmu ) − (e0

u, ρ
0
u)

∣∣∣∣∣ ≤ Ch2,

since maxk∈[0,N ] ‖eku‖2 ≤ C by Lemma 3.4. Thus,

‖emu ‖2 ≤ 2Δt

m−1∑
k=0

E(Uk; ek+1
w , ek+1

w ) + C(Δt)3
m−1∑
k=0

E(Uk; δte
k
u, δte

k
u) + C((Δt)2 + h2)

+CΔt

m−1∑
k=0

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk) + CΔt

m−1∑
k=0

‖eku‖2.

The result now follows with the help of a discrete Gronwall argument.

4.3. Estimating the right-hand side of (4.7). Invoking (2.26) we obtain

|Rk
1 | = Δt|A(uk, δtρ

k
u) −A(Uk, δtρ

k
u)|

≤ CΔt

∫
Ω

|ν(uk) − ν(Uk)||∇δtρ
k
u| ≤ CΔth

(∫
Ω

|ν(uk) − ν(Uk)|2
) 1

2

(4.12)

≤ CΔth2 + CΔt

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk).
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Lemma 2.6 and (3.18) imply

|Rk
2 | ≤ Δt|E(uk+1;wk+1, ρk+1

w ) − E(uk;wk+1, ρk+1
w )|

+ Δt|E(uk;wk+1, ρk+1
w ) − E(Uk;wk+1, ρk+1

w )|

+ Δt|E(Uk; ek+1
w , ρk+1

w )| ≤ CΔt‖∇wk+1‖L∞

×
(∫

Ω

|ν(uk+1) − ν(uk)||∇ρk+1
w |Q(uk)

(4.13)

+

∫
Ω

|ν(uk) − ν(Uk)||∇ρk+1
w |Q(Uk)

)

+ ΔtE(Uk; ek+1
w , ek+1

w )
1
2 E(Uk; ρk+1

w , ρk+1
w )

1
2

≤ εΔtE(Uk; ek+1
w , ek+1

w ) +
C

ε
Δt((Δt)2 + h2)

+CΔt

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk).

Next, Lemma 4.3 gives

|Rk
3 + Rk

4 | ≤ C(Δt)2(‖ek+1
w ‖ + ‖ρk+1

w ‖) + Δt‖ek+1
w ‖‖δtρku‖

≤ εΔt‖ek+1
w ‖2 +

C

ε
Δt((Δt)2 + h4)

(4.14)
≤ εΔtE(Uk; ek+1

w , ek+1
w ) + ε(Δt)3B(Uk; δte

k
u, δte

k
u)

+ εΔt

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk) +
C

ε
Δt((Δt)2 + h2).

Integrating by parts discretely in time yields∣∣∣∣∣
m−1∑
k=0

Rk
5

∣∣∣∣∣ =

∣∣∣∣∣−Δt

m−1∑
k=0

(eku, δtρ
k
w) + (emu , ρmw ) − (e0

u, ρ
0
w)

∣∣∣∣∣
(4.15)

≤ ε max
k∈[0,m]

‖eku‖2 +
C

ε
h4.

Similarly,∣∣∣∣∣
m−1∑
k=0

Rk
6

∣∣∣∣∣ ≤
∣∣∣∣∣−(Δt)2

m−1∑
k=0

(δtw
k, δte

k
u)

∣∣∣∣∣ + (Δt)2

∣∣∣∣∣
m−1∑
k=0

(δtw
k, δtρ

k
u)

∣∣∣∣∣
≤ (Δt)2

∣∣∣∣∣
m−1∑
k=1

(
wk+1 − 2wk + wk−1

(Δt)2
, eku

)
(4.16)

− Δt(δtw
m−1, emu ) + Δt(δtw

0, e0
u)

∣∣∣∣∣ + Ch2Δt

≤ CΔt max
k∈[0,m]

‖eku‖ + Ch2Δt ≤ ε max
k∈[0,m]

‖eku‖2 +
C

ε
((Δt)2 + h4).

Finally, let us write

Rk
7 = (Δt)2(B(Uk; δtu

k, δte
k
u) − B(Uk; δtu

k, δtρ
k
u) + B(Uk; δte

k
u, δtρ

k
u))

= I + II + III.
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In view of the definition of B we have

I = (Δt)2λ

∫
Ω

γ(ν(uk))

Q(uk)
∇δtu

k · ∇δte
k
u

+ (Δt)2λ

∫
Ω

(
γ(ν(Uk))

Q(Uk)
− γ(ν(uk))

Q(uk)

)
∇δtu

k · ∇δte
k
u

+ (Δt)3E(Uk; δtu
k, δte

k
u) = (Δt)2λ(Gk,∇δte

k
u) + I2 + I3,

where we have written Gk := γ(ν(uk))
Q(uk)

∇δtu
k. We infer from (2.28) and (2.4) that

|I2| ≤ C(Δt)2
∫

Ω

|ν(uk) − ν(Uk)||∇δte
k
u|

≤ ε(Δt)3
∫

Ω

|∇δte
k
u|2

Q(Uk)
+

C

ε
Δt

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

≤ ε(Δt)3E(Uk; δte
k
u, δte

k
u) +

C

ε
Δt

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk).

Furthermore, (2.29) and (3.18) yield

|I3| ≤ ε(Δt)3E(Uk; δte
k
u, δte

k
u) +

C

ε
(Δt)3.

Observing that B(Uk; δtρ
k
u, δtρ

k
u) ≤ Ch2 we finally have

|II| ≤ (Δt)2B(Uk; δtu
k, δtu

k)
1
2B(Uk; δtρ

k
u, δtρ

k
u)

1
2 ≤ CΔt((Δt)2 + h2),

|III| ≤ (Δt)2B(Uk; δte
k
u, δte

k
u)

1
2B(Uk; δtρ

k
u, δtρ

k
u)

1
2

≤ ε(Δt)2B(Uk; δte
k
u, δte

k
u) +

C

ε
Δt((Δt)2 + h2).

Summing the above estimates, integrating the first term in I by parts in time, and
taking into account the estimate (which follows from (2.21) and (2.23))

‖∇eku‖L1 ≤
(∫

Ω

|∇eku|2
Q(Uk)

) 1
2
(∫

Ω

Q(Uk)

) 1
2

≤ C

(∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

) 1
2

,

we derive ∣∣∣∣∣
m−1∑
k=0

Rk
7

∣∣∣∣∣ ≤ λ

∣∣∣∣∣−(Δt)2
m−1∑
k=0

(δtG
k,∇eku) + Δt(Gm,∇emu ) − Δt(G0,∇e0

u)

∣∣∣∣∣
+
C

ε
((Δt)2 + h2) + ε(Δt)2

m−1∑
k=0

B(Uk, δte
k
u, δte

k
u)

+
C

ε
Δt

m−1∑
k=0

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)(4.17)

≤ ε

∫
Ω

|ν(um) − ν(Um)|2Q(Um) + ε(Δt)2
m−1∑
k=0

B(Uk, δte
k
u, δte

k
u)

+
C

ε
((Δt)2 + h2) +

C

ε
Δt

m−1∑
k=0

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk).
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Collecting (4.12)–(4.17) and recalling Lemma 2.8 finally yields

∣∣∣∣∣∣
m−1∑
k=0

7∑
j=1

Rk
j

∣∣∣∣∣∣ ≤ εΔt
m−1∑
k=0

E(Uk; ek+1
w , ek+1

w )

+ ε(Δt)2
m−1∑
k=0

B0(U
k; δte

k
u, δte

k
u) + ε max

k∈[0,N ]
‖eku‖2

(4.18)

+ ε(Δt)3
m−1∑
k=0

E(Uk; δte
k
u, δte

k
u) +

C

ε
((Δt)2 + h2)

+CΔt

m∑
k=0

Dk + εDm.

4.4. Completion of the proof of the error bound. We are now in position
to complete the proof of the error estimate. Starting from the relation

∑m−1
k=0 Lk =∑m−1

k=0

∑7
j=1 R

k
j and using (4.9) together with (4.18) and Lemma 4.4 we deduce

(1 − ε)Dm + (Δt)2
(
λ− γ̄

γmin
− ε− CΔt

)m−1∑
k=0

B0(U
k; δte

k
u, δte

k
u)

+ (1 − Cε)Δt

m−1∑
k=0

E(Uk; ek+1
w , ek+1

w ) + (1 − Cε)(Δt)3
m−1∑
k=0

E(Uk; δte
k
u, δte

k
u)

≤ D0 +
C

ε
((Δt)2 + h2) +

C

ε
Δt

m∑
k=0

Dk.

It follows from (2.7) that D0 =
∫
Ω
(γ(ν(U0))−γ(ν(u0))−〈γ′(ν(u0)), (ν(U0)−ν(u0))〉)Q(U0)

so that by Taylor expansion and (2.28) D0 ≤ Ch2. After choosing ε and Δt sufficiently
small we obtain

Dm +
Δt

2

m∑
k=1

E(Uk, ek+1
w , ek+1

w ) + c0(Δt)2
m−1∑
k=0

B(Uk; δte
k
u, δte

k
u)

≤ C((Δt)2 + h2) + CΔt

m−1∑
k=0

Dk.

Gronwall’s lemma together with Lemma 2.8 implies that

max
m∈[0,N ]

∫
Ω

|ν(um) − ν(Um)|2Q(Um) + Δt

N∑
k=1

E(Uk−1, ekw, e
k
w)

+ (Δt)2
N−1∑
k=0

B(Uk; δte
k
u, δte

k
u) ≤ C((Δt)2 + h2)

and the remainder of the proof of Theorem 4.1 now follows from Lemmas 4.3 and 4.4.
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5. Numerical results.

5.1. The algebraic problem. Let {χj} denote the usual nodal basis functions
for Sh. Set

Mi,j = (χi, χj), Em
i,j = E(Um;χi, χj), Bm

i,j = B(Um;χi, χj)

and

Fm
j = −A(Um, χj) + B(Um;Um, χj).

It follows that the nodal values Um+1, Wm+1 solve the linear algebraic system

1

Δt
MUm+1 + EmWm+1 =

1

Δt
MUm,

BmUm+1 −MWm+1 = Fm.

Note that the structure of this system is of the same form as that arising in discretiza-
tions of the Cahn–Hilliard equation. Eliminating Wm+1 by inverting the mass matrix
in the second equation leads to the “fourth order” system

1

Δt
MUm+1 + EmM−1BmUm+1 =

1

Δt
MUm + EmM−1Fm.(5.1)

In our practical computations we have used mass lumping, so that M becomes a
diagonal matrix. Although the system is unsymmetric, both the biconjugate gradient
(BICG) and conjugate gradient (CG) methods were used to solve the linear equations.
Remarkably, it was discovered that CG converged.

5.2. Convergence tests. We measured the actual error in different norms for
several quantities for test problems, for which we know the continuous solutions. For
this we have to extend our method to include right-hand sides f and g as indicated
in (1.5). The tables contain the errors for the graph u = u(x, t),

E∞,2,u = max
m∈[0,N ]

‖um − Um‖,

E∞,2,ν = max
m∈[0,N ]

(∫
Ω

|ν(um) − ν(Um)|2Q(Um)

) 1
2

,

and for the curvature w = w(x, t),

E2,2,w =

(
Δt

N∑
m=0

‖wm −Wm‖2

) 1
2

,

E2,E,∇w =

(
Δt

M−1∑
m=0

E(Um;wm −Wm, wm −Wm)

) 1
2

.

These are the errors which were estimated in Theorem 4.1. Additionally we provide
the errors

E∞,∞,u = max
m∈[0,N ]

‖um − Um‖L∞ , E∞,2,∇u = max
m∈[0,N ]

‖∇um −∇Um‖.
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Table 5.1

Errors for the isotropic test problem with Δt = 0.1h.

h E∞,2,u eoc E∞,2,ν eoc E2,2,w eoc E2,E,∇w eoc
1.0 8.495 - 0.4538 - 0.2264 - 5.534 -
0.7368 3.299 3.10 0.1702 3.21 0.6294 −3.35 2.965 2.04
0.4203 0.6255 2.96 0.06580 1.69 0.2343 1.76 1.097 1.77
0.2219 0.1564 2.17 0.03241 1.11 0.06291 2.06 0.4664 1.34
0.1137 0.04360 1.91 0.01622 1.04 0.01597 2.05 0.2234 1.10
0.05754 0.01306 1.77 0.008113 1.02 0.003942 2.05 0.1109 1.03

We also measure the error

E2,2,∇w =

(
Δt

M−1∑
m=0

∫
Ω

|∇wm −∇Wm|2
Q(Um)

) 1
2

,

which is bounded from above by E2,E,∇w. The error in the normal velocity is given by

E2,2,V =

(
Δt

N∑
m=1

∫
Ω

(V (um) − V (Um))2Q(Um)

) 1
2

,

where

V (um) = −ut(·, tm)

Q(um)
, V (Um) = −Um − Um−1

ΔtQ(Um)
.

Between two spatial discretization levels with grid sizes h1 and h2 we compute the
experimental order of convergence

eoc(h1, h2) = log
E(h1)

E(h2)

(
log

h1

h2

)−1

for the errors E(h1) and E(h2) for each of the error norms.
For isotropic surface diffusion we used the function

u(x, t) =
1

2
cos(t)

(
1 + |x|2 − 3

4
|x|4 +

1

6
|x|6

)

as continuous solution on the domain Ω = {x ∈ R
2 | |x| < 1} and on the time interval

[0, T ] = [0, 1]. We calculated the right-hand side g from the equation

g = V − ΔΓHγ ,

and used this function as a right-hand side in our algorithm to compute Um and Wm.
We have chosen λ = 1. In Tables 5.1 and 5.2 we show the results for the time step size
Δt = 0.1h and Tables 5.3 and 5.4 contain the results for Δt = h2. The results confirm
the theoretical estimates from Theorem 4.1. Obviously the errors E∞,2,ν and E∞,2,∇u

as well as the errors E2,E,∇w and E2,2,∇w exhibit the same orders of convergence.
The anisotropic case was tested, see Tables 5.5 and 5.6, with the exact solution

u(x, t) =
√

1 − 4t− 4x2
1 − x2

2
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Table 5.2

Errors for the isotropic test problem with Δt = 0.1h.

h E∞,∞,u eoc E2,2,V eoc E∞,2,∇u eoc E2,2,∇w eoc
1.0 5.027 - 9.113 - 0.4676 - 5.529 -
0.7368 1.848 3.28 3.548 3.09 0.1767 3.19 2.952 2.06
0.4203 0.3365 3.03 0.6565 3.01 0.06754 1.71 1.090 1.78
0.2219 0.07905 2.27 0.2053 1.82 0.03305 1.12 0.4636 1.34
0.1137 0.01990 2.06 0.1093 0.94 0.01654 1.04 0.2221 1.10
0.05754 0.004986 2.03 0.07361 0.58 0.008272 1.02 0.1102 1.03

Table 5.3

Absolute errors for the isotropic test problem with Δt = h2.

h E∞,2,u eoc E∞,2,ν eoc E2,2,w eoc E2,E,∇w eoc
1. 1.523 - 0.5929 - 0.1119 - 3.135 -
0.7368 0.5954 3.08 0.1827 3.85 0.4998 −4.90 2.203 1.16
0.4203 0.5108 0.27 0.06818 1.76 0.1906 1.72 0.9358 1.53
0.2219 0.1661 1.76 0.03228 1.17 0.06028 1.80 0.4549 1.13
0.1137 0.04476 1.96 0.01622 1.03 0.01591 1.99 0.2234 1.06
0.05754 0.01146 2.00 0.008113 1.02 0.004031 2.02 0.1112 1.02

Table 5.4

Absolute errors for the isotropic test problem with Δt = h2.

h E∞,∞,u eoc E2,2,V eoc E∞,2,∇u eoc E2,2,∇w eoc
1. 1.003 - 0.9711 - 0.5960 - 3.116 -
0.7368 0.3781 3.19 0.7349 0.91 0.1854 3.82 2.189 1.16
0.4203 0.2202 0.96 0.6887 0.12 0.06911 1.76 0.9296 1.53
0.2219 0.07354 1.72 0.2628 1.51 0.03292 1.16 0.4522 1.13
0.1137 0.01989 1.96 0.1163 1.22 0.01654 1.03 0.2221 1.06
0.05754 0.005087 2.00 0.05621 1.07 0.008271 1.02 0.1105 1.03

Table 5.5

Absolute errors for the anisotropic test problem with Δt = h2.

h E∞,2,u eoc E∞,2,ν eoc E2,2,w eoc E2,E,∇w eoc
0.1250 0.1475e-1 - 0.1354e-1 - 0.1409e-1 - 0.1207e-3 -
0.7138e-1 0.4999e-2 1.93 0.8346e-2 0.86 0.3483e-2 2.50 0.5734e-4 1.33
0.3807e-1 0.1458e-2 1.96 0.4399e-2 1.02 0.8862e-3 2.18 0.1997e-4 1.68
0.1964e-1 0.3937e-3 1.98 0.2216e-2 1.04 0.2221e-3 2.09 0.6971e-5 1.59
0.9969e-2 0.1032e-3 1.98 0.1110e-2 1.02 0.5553e-4 2.05 0.3079e-5 1.21

Table 5.6

Absolute errors for the anisotropic test problem with Δt = h2.

h E∞,∞,u eoc E2,2,V eoc E∞,2,∇u eoc E2,2,∇w eoc
0.1250 0.8037e-1 - 0.7644e-1 - 0.1547e-1 - 0.1200e-3 -
0.7138e-1 0.2658e-1 1.98 0.4285e-1 1.03 0.9390e-2 0.89 0.5710e-4 1.33
0.3807e-1 0.7753e-2 1.96 0.2293e-1 0.99 0.4894e-2 1.04 0.1988e-4 1.68
0.1964e-1 0.2093e-2 1.98 0.1182e-1 1.00 0.2453e-2 1.04 0.6921e-5 1.59
0.9969e-2 0.5481e-3 1.98 0.5997e-2 1.00 0.1227e-2 1.02 0.3080e-5 1.22

on the domain Ω = {x ∈ R
2 | |x| < 0.125} and for t ∈ [0, 0.125]. Domain and

time interval have to be relatively small in order to remain in the setting of a graph.
As in the isotropic case we have used a right-hand side g, and since u does not
satisfy the natural boundary condition, we have extended the concept to include the
inhomogeneous Neumann boundary condition 〈γ′(∇u,−1), (ν∂Ω, 0)〉 = c for a given



FULLY DISCRETE SURFACE DIFFUSION OF GRAPHS 1135

Fig. 5.1. Initial function which leads to loss of the graph property after short time and solution
becoming vertical (cut along the x1-x3 plane of symmetry).
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Fig. 5.2. Lipschitz-norm of the discrete solution (vertical axis) plotted as a function of time
t ∈ [0, 0.0005] for the initial function from (5.1) for different spatial discretization levels.

function c on ∂Ω. As anisotropy we have used

γ(p) =
√

0.25p2
1 + p2

2 + p2
3

and the stabilizing parameter was λ = 1.
We add an example of a surface which moves under isotropic surface diffusion and

which loses its graph property in finite time. Nevertheless the discrete solution exists
for all times. In Figure 5.1 two steps of the evolution are shown. In Figure 5.2 the
maxima of the moduli of the gradients of the discrete solution is plotted as a function
of time. The computational domain is Ω = (−1, 1)2 and the time interval is [0, 0.0005].
The graph of the solution becomes vertical after a short time, but the discrete solution
continues to exist. We show the maximal gradient for the discretization levels 9, 10,
11, and 12. Observe that the number 1/h is 8.0, 11.32, 16.0, and 22.63 for these levels
and by comparison with peaks in the graph of Figure 5.2 we see the suggestion of
“infinite” gradients.

5.3. Numerical experiments. We end this section with two illustrative com-
putations. First, we demonstrate the smoothing property of isotropic surface diffusion
by choosing a highly oscillatory initial function u0,

u0(x) = 1 + 0.1
(
sin(2(m + 1)πx1)

(5.2)
+ sin(2mπx1)(sin(2(m + 1)πx2) + sin(2mπx2))

)
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Fig. 5.3. Solution u for the initial data (5.2) at times 0.0, 3.5 × 10−6, and 6.3 × 10−6.

Fig. 5.4. Level lines of the solution from Figure 5.3.

with m = 4. The computational domain is the unit disk Ω = {x ∈ R
2 | |x| < 1},

and we have used natural boundary conditions. The grid has to be fine in order to
capture the frequency of the initial function. In order to show the rapid smoothing
of u0 we have chosen an extremely small time step proportional to h4. In Figure 5.3
we show the solution at the times 0.0, 7.0 × 10−6 and 1.4 × 10−5. Figure 5.4 shows
level lines of the solution for these time steps. The level lines are equally distributed
between the values 0.65 and 1.35 and are the same in all three cases.

Second, we computed an example for anisotropic surface diffusion with an ex-
tremely strong anisotropy. The anisotropy is chosen to be a regularized l1 norm,

γ(p) =

3∑
j=1

√
p2
j + ε2|p|2,(5.3)

where we have chosen ε = 10−3. Thus the Frank diagram is a smoothed octahedron
and the Wulff shape is a smoothed cube. The initial data were taken to depend on
three random numbers r1, r2, r3 ∈ (0, 1),

u0(x) =
1

4

(
sin(2πr1x1) +

1

4
sin(3πr2x2)

)
(0.1 sin(2πr3x1) + sin(5πr1x2))

(5.4)
× sin(2πr2x1x2).

We used Neumann boundary conditions and the right-hand side (for the curvature
equation) f = 1 − x2

1 − x2
2. The domain is given as Ω = (−1, 1) × (−1, 1), and the

triangulation contains 16641 vertices and 32768 triangles. We chose λ = 4. In Figure
5.5 we show the graph of the solution u in the direction of the x1-axis. Figure 5.6
shows the graph for the time steps 0, 50, and 200. The Wulff shape (a smooth cube)
appears in the solution as a consequence of the right-hand side f .
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Fig. 5.5. Anisotropic surface diffusion for the initial function (5.4) with anisotropy (5.3),
viewed from the x1-axis. Time steps 0, 50, 200.

Fig. 5.6. The solution from Figure 5.5 shown as graph.
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