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Abstract. We study the Osher-Solé-Vese model [11], which is the gradient
flow of an energy consisting of the total variation functional plus an H−1

fidelity term. A variational inequality weak formulation for this problem is

proposed along the lines of that of Feng and Prohl [7] for the Rudin-Osher-
Fatemi model [12]. A regularized energy is considered, and the minimization

problems corresponding to both the original and regularized energies are shown

to be well-posed. The Galerkin method of Lions [9] is used to prove the well-
posedness of the weak problem corresponding to the regularized energy. By

letting the regularization parameter ε tend to 0, we recover the well-posedness

of the weak problem corresponding to the original energy. Further, we show
that for both energies the solution of the weak problem tends to the minimizer

of the energy as t → ∞. Finally, we find the rate of convergence of the weak
solution of the regularized problem to that of the original one as ε ↓ 0.

1. Introduction. Suppose that a gray-scale image f (i.e. a function f : Ω ⊂ R2 →
R for some bounded open domain Ω, where f measures gray-scale intensity) has
been formed by adding Gaussian noise n of known standard deviation σ to a “clean”
image g:

f = g + n.
Clearly, without explicit knowledge of n the recovery of g from f is not possible.

One approach is to apply a “cartoon plus texture” model which splits f into two
parts u and v:

f = u + v,
where u consists of the objects present in g (the “cartoon” part of g) and v consists
of the small scale oscillations present in f (n plus the texture in g). The aim is to
recover the “cartoon” part.

To this end, Osher, Solé and Vese (OSV) [11] have proposed the minimization
problem

inf
u∈BV (Ω)∩F

Jλ (u) , Jλ (u) :=
∫

Ω

|∇u|+ λ

2
‖f − u‖2−1 ,
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where the BV semi-norm
∫
Ω
|∇u| is a regularising term to remove the texture, λ > 0

is a weighting parameter and the H−1 norm ‖f − u‖−1 is a fidelity term. Here∫
Ω

|∇u| := sup
v∈X

∫
Ω

u∇ · vdx,

with

X :=
{

v = (v1, . . . , vd) ∈
[
C1

0 (Ω)
]d

: ‖vi‖L∞(Ω) ≤ 1 ∀i = 1, . . . , d
}

.

The following function spaces are used:

V :=
{
η ∈ H1 (Ω) : (η, 1) = 0

}
, F :=

{
η ∈

(
H1 (Ω)

)′
: 〈η, 1〉 = 0

}
,

where 〈·, ·〉 denotes the duality pairing between
(
H1 (Ω)

)′ and H1 (Ω) such that

〈η, ξ〉 =
∫

Ω

η ξ dx ∀η ∈ L
6
5 (Ω) , ξ ∈ H1 (Ω) , d = 2, 3,

the right-hand side being well-defined due to the continuous embedding H1 (Ω) ↪→
L6 (Ω) for d = 2, 3.

By G : F → V is denoted (minus) the inverse Laplacian operator under Neumann
boundary conditions:

(∇Gη,∇ξ) = 〈η, ξ〉 ∀ξ ∈ H1 (Ω) ,

and F is equipped with the norm

‖η‖−1 := ‖∇Gη‖ ∀η ∈ F .

We denote by ‖·‖ and (·, ·) the usual norm and inner product on L2 (Ω).
The Euler-Lagrange equation for formally minimizing Jλ (·) is equivalent to

0 = −∇ ·
(
∇u

|∇u|

)
+ λG (u− f) in Ω,

∂u

∂ν
= 0 on ∂Ω. (1)

Observe that a solution u of equation (1) is a steady state of the evolutionary
equations

ut = ∇ ·
(
∇u

|∇u|

)
− λG (u− f) in Ω,

∂u

∂ν
= 0 on ∂Ω; (2)

Gut = ∇ ·
(
∇u

|∇u|

)
− λG (u− f) in Ω,

∂u

∂ν
=

∂

∂ν

(
∇ ·

(
∇u

|∇u|

))
= 0 on ∂Ω. (3)

Equations (2) and (3) may be viewed as the L2 and H−1 gradient flows for Jλ (·):

(2) :
d

dt
Jλ (u (t)) =

(
∇u (t)
|∇u (t)|

,∇u′ (t)
)

+ λ (G [u (t)− f ] , u′ (t)) = −‖u′ (t)‖2 ≤ 0,

(3) :
d

dt
Jλ (u (t)) =

(
∇u (t)
|∇u (t)|

,∇u′ (t)
)

+ λ (G [u (t)− f ] , u′ (t)) = −‖u′ (t)‖2−1 ≤ 0.

However, note that these are formal calculations because ∇u
|∇u| is not defined when

∇u = 0.
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Instead of solving the fourth order equation (3) directly, we introduce a splitting
into two coupled second order equations (c.f. [4]):

Gut = −w − λG (u− f) in Ω, (4)

w = −∇ ·
(
∇u

|∇u|

)
in Ω, (5)

∂u

∂ν
=

∂w

∂ν
= 0 on ∂Ω; (6)

Lemma 1.1. The equations (4), (5), (6) are equivalent to the OSV partial differ-
ential equation (PDE) ([11]):

ut = 4w − λ (u− f) in Ω, (7)

w = −∇ ·
(
∇u

|∇u|

)
in Ω, (8)

∂u

∂ν
=

∂w

∂ν
= 0 on ∂Ω. (9)

Proof. The two problems (4), (5), (6) and (7), (8), (9) have, respectively, the formal
variational formulations: for a.e. t ∈ (0, T ],

(Gu′ (t) , η) +
(
∇u (t)
|∇u (t)|

,∇η

)
= −λ (G [u (t)− f ] , η) ∀η ∈ H1 (Ω) , (10)

and

〈u′ (t) , η〉+ (∇w (t) ,∇η) = −λ (u (t) , η) + λ 〈f, η〉 ∀η ∈ H1 (Ω) , (11)

(w (t) , η) =
(
∇u (t)
|∇u (t)|

,∇η

)
∀η ∈ H1 (Ω) . (12)

Defining w (t) = −Gu′ (t) − λG [u (t)− f ] in equation (10) gives equation (12) and
that

(∇w (t) ,∇η) = − (∇Gu′ (t) ,∇η)− λ (∇G [u (t)− f ] ,∇η)

= −〈u′ (t) , η〉 − λ (u (t) , η) + λ 〈f, η〉 ,
and hence equation (11) holds.

Assuming that f, u (0) ∈ F , letting η = 1 in equation (11) gives that u (t) , u′ (t) ∈
F , and hence equation (11) gives that for a.e. t ∈ (0, T ],

(∇Gu′ (t) ,∇η) + (∇w (t) ,∇η) = −λ (∇G [u (t)− f ] ,∇η) ∀η ∈ H1 (Ω) .

It follows that w (t) = −Gu′ (t)−λG [u (t)− f ]. Substituting this into equation (12)
gives equation (10).

Since ∇u
|∇u| is not defined when ∇u = 0, we introduce standrad (e.g. Nashed-

Scherzer [10]) regularized version Jλ,ε (·) of the energy functional Jλ (·):

Jλ,ε (u) :=
∫

Ω

|∇u|ε dx +
λ

2
‖f − u‖2−1 ,

where ε > 0 is a small regularization parameter and

|p|ε :=
√
|p|2 + ε2 =

√
p2
1 + . . . + p2

n + ε2 for p = (p1, . . . , pn) ∈ Rd.
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It is convenient to note the following elementary algebraic inequality:

Lemma 1.2. For ε > 0,

− |p− q| ≤ (p− q) · q
|q|ε

≤ |p|ε − |q|ε ≤
(p− q) · p

|p|ε
≤ |p− q| ∀p, q ∈ Rd. (13)

Proof. The first and second inequalities follow from the fourth and third ones on
interchanging the rôles of p and q. Using

|p|2 − |p| |q| − (|p|ε − |q|ε) |p|ε

=
√
|p|2 |q|2 + ε2

(
|p|2 + |q|2

)
+ ε4 −

√
|p|2 |q|2 + 2ε2 |p| |q|+ ε4

and the inequality ε2
(
|p|2 + |q|2

)
≥ 2ε2 |p| |q| gives the third inequality. The fourth

inequality follows from using the inequality |·| ≤ |·|ε.

The inequalities (13) are a natural extension of the trivial inequalities

− |p− q| ≤ (p− q) · q
|q|

≤ |p| − |q| ≤ (p− q) · p
|p|

≤ |p− q| ∀p, q ∈ Rd. (14)

We will make use of the Poincaré inequality

‖η‖ ≤ CP (|(η, 1)|+ ‖∇η‖) ∀η ∈ H1 (Ω) . (15)

It is easy to show that ‖·‖−1 and ‖·‖(H1(Ω))′ are equivalent norms on F with

1
CP + 1

‖η‖−1 ≤ ‖η‖(H1(Ω))′ ≤ ‖η‖−1 ∀η ∈ F , (16)

and
‖η‖−1 ≤ CP ‖η‖ ∀η ∈ F ∩ L2 (Ω) , (17)

and that for d = 2, 3, there exists C ≡ C (Ω) such that

‖η‖−1 ≤ C ‖η‖ 6
5

∀η ∈ F ∩ L
6
5 (Ω) . (18)

The Poincaré-Wirtinger inequality ([2], p. 148)∥∥∥∥u− 1
|Ω|

∫
Ω

udx

∥∥∥∥
1

≤ C

∫
Ω

|∇u| ∀u ∈ BV (Ω) ,

with C ≡ C (Ω), gives that

‖u‖BV (Ω) ≤ (C + 1)
∫

Ω

|∇u| ∀u ∈ BV (Ω) ∩ F . (19)

It is easy to see that

Lemma 1.3. For v ∈ L2 (0, T ;F), the map Fv : L2 (0, T ;F) → R defined by

Fv (η) =
∫ T

0

〈v (t) ,Gη (t)〉 dt ∀η ∈ L2 (0, T ;F)

satisfies Fv ∈
(
L2 (0, T ;F)

)′.
This paper is organized as follows. In Section 2, the initial boundary value prob-

lems for the H−1 gradient flows for Jλ (·) and Jλ,ε (·) are formulated. A notion of
weak solution is introduced for each problem. In Section 3, the minimization prob-
lems for the two energies are shown to be well-posed. Well-posedness of the weak
formulations is established in Section 4. The convergence of the weak solution of
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each problem to the minimizer of the corresponding energy as t →∞ is established
in Section 5. In Section 6, a rate of convergence of the sequence of weak solutions
of the H−1 gradient flow for Jλ,ε (·) to the weak solution of the H−1 gradient flow
for Jλ (·) as the regularization parameter ε ↓ 0 is established.

Our approach is similar to that of Feng, van Oehsen and Prohl in [6] and Feng
and Prohl [7] for the second order Rudin-Osher-Fatemi model [12]. However, we use
the Faedo-Galerkin method of Lions [9] to prove the existence of a weak solution
for ε > 0 in place of the maximal monotone operator approach of Feng and Prohl.
See also [5] for a related Cahn-Hilliard model.

2. Mathematical formulations of initial boundary value problems, defini-
tions of weak solutions. The problems considered are the OSV initial boundary
value problem and the analogous problem for Jλ,ε (·) (ε > 0), denoted by (Pε):

(P) given T > 0, find u (x, t) , w (x, t) : ΩT := Ω× (0, T ] → R such that

ut (x, t)−4w (x, t) = −λ (u (x, t)− f (x)) ∀ (x, t) ∈ ΩT , (20)

w (x, t) = −∇ ·
(
∇u (x, t)
|∇u (x, t)|

)
∀ (x, t) ∈ ΩT , (21)

u (x, 0) = u0 (x) ∀x ∈ Ω, (22)
∂u

∂ν
(x, t) =

∂w

∂ν
(x, t) = 0 ∀ (x, t) ∈ ∂ΩT ; (23)

(Pε) given T > 0, find uε (x, t) , wε (x, t) : ΩT → R such that

uε,t (x, t)−4wε (x, t) = −λ (uε (x, t)− f (x)) ∀ (x, t) ∈ ΩT , (24)

wε (x, t) = −∇ ·
(

∇uε (x, t)
|∇uε (x, t)|ε

)
∀ (x, t) ∈ ΩT , (25)

uε (x, 0) = u0,ε (x) ∀x ∈ Ω, (26)
∂uε

∂ν
(x, t) =

∂wε

∂ν
(x, t) = 0 ∀ (x, t) ∈ ∂ΩT ; (27)

where ∂ΩT := ∂Ω× (0, T ].

Since the expression ∇u
|∇u| is not defined when ∇u = 0, the PDEs (20) and (21)

are only formal statements. In order to give a rigorous definition of solution, convex
analysis and variational inequalities are used.

Remark 1. The natural image processing assumptions, that u0 = f and u0,ε = f ,
are not made here. This allows for a more general analysis of (P) and (Pε), in
particular under different regularity assumptions on u0, u0,ε and f .

It follows from equation (3), (a− b)(c− a) ≤ 1
2 [(c− b)2 − (a− b)2] and equation

(14) that
(Gut, v − u) + Jλ (v)− Jλ (u) ≥ 0,

for all suitably smooth test functions v, and similarly Lemma 1.2 gives that

(Guε,t, v − uε) + Jλ,ε (v)− Jλ,ε (uε) ≥ 0.

These last inequalities motivate the following definitions of weak solutions of (P),
(Pε):

Definition 2.1. Let Ω ⊂ Rd (2 ≤ d ≤ 3) be a bounded open domain with Lipschitz
boundary ∂Ω and suppose that u0, u0,ε ∈ BV (Ω) ∩ F and f ∈ F . Then
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• u is said to be a weak solution of the initial boundary value problem (P) if
u ∈ C (0, T ;F) ∩ L∞ (0, T ;BV (Ω)) ∩ H1 (0, T ;F), u (0) = u0 a.e. and u
satisfies for any s ∈ [0, T ],∫ s

0

〈u′ (t) ,G [v (t)− u (t)]〉 dt +
∫ s

0

[Jλ (v (t))− Jλ (u (t))] dt ≥ 0

∀ v ∈ L1 (0, T ;BV (Ω)) ∩ L2 (0, T ;F) ; (28)

• uε is said to be a weak solution of the initial boundary value problem (Pε)if
uε ∈ C (0, T ;F) ∩ L∞ (0, T ;BV (Ω)) ∩H1 (0, T ;F), uε (0) = u0,ε a.e. and uε

satisfies for any s ∈ [0, T ],∫ s

0

〈u′ε (t) ,G [v (t)− uε (t)]〉 dt +
∫ s

0

[Jλ,ε (v (t))− Jλ,ε (uε (t))] dt ≥ 0

∀ v ∈ L1 (0, T ;BV (Ω)) ∩ L2 (0, T ;F) . (29)

Note that, since

〈v′ (t)− u′ (t) ,G [v (t)− u (t)]〉 =
1
2

d

dt
‖v (t)− u (t)‖2−1 ,

and similarly for v (t)− uε (t), the inequalities (28), (29) are equivalent to∫ s

0

〈v′ (t) ,G [v (t)− u (t)]〉 dt +
∫ s

0

[Jλ (v (t))− Jλ (u (t))] dt

≥ 1
2

[
‖v (s)− u (s)‖2−1 − ‖v (0)− u0‖2−1

]
(30)

∀ v ∈ L1 (0, T ;BV (Ω)) ∩ C (0, T ;F) : v′ ∈ L2 (0, T ;F) ,∫ s

0

〈v′ (t) ,G [v (t)− uε (t)]〉 dt +
∫ s

0

[Jλ,ε (v (t))− Jλ,ε (uε (t))] dt

≥ 1
2

[
‖v (s)− uε (s)‖2−1 − ‖v (0)− u0,ε‖2−1

]
(31)

∀ v ∈ L1 (0, T ;BV (Ω)) ∩ C (0, T ;F) : v′ ∈ L2 (0, T ;F) (32)

respectively.

3. Well-posedness of the energy minimization problems.

Theorem 3.1. [d = 2, 3] Suppose that λ > 0 and f ∈ F . Then
• the minimization problem

inf
u∈BV (Ω)∩F

Jλ (u) (33)

has a unique solution;
• for each ε ≥ 0, the minimization problem

inf
uε∈BV (Ω)∩F

Jλ,ε (uε) (34)

has a unique solution.

Proof. The result for Jλ,ε (·) is proved (the result for Jλ (·) can be proved analo-
gously). The argument used is a standard one; see for example [1], [3], [11].
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Let {uε,n}n∈N be a minimizing sequence. There exists a constant M > 0 such
that ∫

Ω

|∇uε,n| ≤
∫

Ω

|∇uε,n|ε ≤ Jλ,ε (uε,n) ≤ M ∀n ∈ N.

It follows from inequality (19) that

‖uε,n‖BV (Ω) ≤ (C + 1)M .

Also,

‖uε,n‖2−1 ≤ 2 ‖uε,n − f‖2−1 + 2 ‖f‖2−1 ≤
4
λ

Jλ,ε (uε,n) + 2 ‖f‖2−1 ≤
4M

λ
+ 2 ‖f‖2−1 .

It follows (see [2], p. 125) that there exists uε ∈ BV (Ω) ∩ F and a subsequence of
{uε,n}n∈N (still denoted by {uε,n}n∈N) such that

uε,n
∗
⇀

BV−w∗
uε, uε,n ⇀

F
uε, uε,n →

L1(Ω)
uε as n →∞.

Moreover,

0 ≤
∣∣∣∣∫

Ω

uεdx

∣∣∣∣ =
∣∣∣∣∫

Ω

(uε,n − uε) dx

∣∣∣∣ ≤ ‖uε,n − uε‖1 → 0 as n →∞

⇒
∫

Ω

uεdx = 0.

Recall that a functional J is said to be “convex” if

J (γu1 + (1− γ) u2) ≤ γJ (u1) + (1− γ) J (u2)

whenever u1 6= u2 and γ ∈ (0, 1), and “strictly convex” if the inequality is strict.
The strict convexity of Jλ,ε (·) follows from the convexity of J0,ε (·) ([1], Theorem

2.4) and the strict convexity of ‖(·)− f‖2−1:

γ ‖u1−f‖2−1+(1−γ) ‖u2−f‖2−1−‖γu1 + (1−γ)u2−f‖2−1 = γ (1−γ) ‖u1−u2‖2−1 .

Since Jλ,ε (·) is convex, it is lower semi-continuous in BV (Ω) with respect to con-
vergence in L1 (Ω) (see [7]). It follows that

Jλ,ε (uε) ≤ lim inf
n→∞

Jλ,ε (uε,n) ,

and hence that uε is a solution of the minimization problem (34).
Suppose that ũε 6= uε is another solution. The strict convexity of Jλ,ε (·), gives

that

Jλ,ε

(
uε + ũε

2

)
<

Jλ,ε (uε) + Jλ,ε (ũε)
2

= inf
uε∈BV (Ω)∩F

Jλ,ε (uε) ,

a contradiction. Hence the solution of the minimization problem (34) is unique.



924 C.M. ELLIOTT AND S.A SMITHEMAN

4. Well-posedness of the weak formulations.

4.1. Statement of result.

Theorem 4.1 (c.f. [7], Theorems 1.1 to 1.4). Let Ω ⊂ Rd (2 ≤ d ≤ 3) be a bounded
open domain with Lipschitz boundary ∂Ω and suppose that u0, u0,ε ∈ BV (Ω) ∩ F
and f ∈ F . Then

• there exists a unique weak solution u of (P),
• there exists a unique weak solution uε of (Pε).

Further,
• if ui (i = 1, 2) are weak solutions of (P) for data u0,i ∈ BV (Ω) ∩ F and

fi ∈ F then

‖u2 (s)− u1 (s)‖−1 ≤ ‖u0,2 − u0,1‖−1 +
√

λT ‖f2 − f1‖−1 ∀s ∈ [0, T ] ; (35)

• if uε,i (i = 1, 2) are weak solutions of (Pε) for data u0,ε,i ∈ BV (Ω) ∩ Fand
fi ∈ F then

‖uε,2 (s)− uε,1 (s)‖−1 ≤ ‖u0,ε,2 − u0,ε,1‖−1 +
√

λT ‖f2 − f1‖−1 ∀s ∈ [0, T ] . (36)

4.2. Overview of proof. Firstly, the existence of a weak solution of (Pε) is es-
tablished by using the Faedo-Galerkin method of Lions ([9]). This consists of three
parts:

Proof of local existence and uniqueness (Sections 4.3, 4.4) A countable
orthogonal basis of

{
ηi

}
i∈N of V is constructed using eigenfunctions of the

Neumann Laplacian. For k ∈ N, we seek uε,k in the span of
{
ηi

}k

i=1
which

solves the variational PDE with test space spanned by
{
ηi

}k

i=1
. We deduce

local existence and uniqueness of uε,k.

Proof of global existence (Section 4.5) Specific choice(s) of test function(s)
yield bounds on relevant norms of uε,k which are independent of k and remain
finite as ε ↓ 0.

Passage to the limit (Section 4.6) The bounds on the seequence {uε,k}k∈N
give various convergence results as k →∞ (the limit is denoted by uε). These
convergence results are used to pass to the limit of each term in a weaker
reformulation of the finite dimensional problem (which is analogous to the
weaker reformulation (31) of the equations (24) and (25)), yielding that uε

satisfies inequality (31). An argument of Lichnewsky and Temam [8] is used
to show that uε (0) = u0,ε and uε ∈ C (0, T ;F).

Uniqueness of the weak solution of (Pε) is an immediate consequence of inequal-
ity (36), which is proved via an argument of Lichnewsky and Temam [8] in Section
4.7.

In Section 4.8, the existence of a weak solution of (P) is established. This is
achieved by using the bounds found in Section 4.5 to give various convergence
results for the sequence {uε}ε>0 of weak solutions of (Pε) for initial data u0,ε = u0

as ε ↓ 0 (the limit is denoted by u). These convergence results are used to pass to
the limit of each term in inequality (31), giving that u satisfies inequality (30).

The proofs that u (0) = u0, that u ∈ C (0, T ;F) and of inequality (35) are
analogous to those of the corresponding results for (Pε).
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4.3. Definition of Galerkin problems. The orthogonal basis
{
ηi

}
i∈N ⊂ V of

V consisting of the (L2-normalized) eigenfunctions of the Laplacian operator with
zero Neumann boundary conditions together with the corresponding non-decreasing
sequence of eigenvalues {λi}i∈N is considered:

−4ηi (x) = λiη
i (x) ∀x ∈ Ω,

∂ηi

∂ν
(x) = 0 ∀x ∈ ∂Ω,(

ηi, ηi
)

= 1, 0 < λ1 ≤ λ2 ≤ . . . .

It follows that(
∇ηi,∇η

)
= λi

(
ηi, η

)
∀η ∈ V, i ∈ N, Gηi =

1
λi

ηi ∀i ∈ N. (37)

For k ∈ N, V k is defined to be the finite dimensional subspace of V spanned by{
ηi

}k

i=1
.

The kth Galerkin problem is to find uε,k (t) , wε,k (t) ∈ V k such that for a.e.
t ∈ (0, T ],(

u′ε,k (t) , ηk

)
+ (∇wε,k (t) ,∇ηk) = −λ (uε,k (t) , ηk) + λ 〈f, ηk〉 ∀ηk ∈ V k, (38)

(wε,k (t) , ηk) =
(

∇uε,k (t)
|∇uε,k (t)|ε

,∇ηk

)
∀ηk ∈ V k, (39)

uε,k (0) = P ku0,ε,k, (40)

where {u0,ε,k}k∈N ⊂ C∞ (Ω)∩F is chosen such that for each p ∈
[
1, d

d−1

)
(see [13],

p. 225)

‖u0,ε,k − u0,ε‖p → 0 and
∫

Ω

|∇u0,ε,k| →
∫

Ω

|∇u0,ε| as k →∞, (41)

and P k : V → V k is taken to be the (Faedo-)Galerkin projection operator:

P kη :=
k∑

i=1

(
η, ηi

)
ηi ∀η ∈ V.

The operator P k satisfies

∀η ∈ V, ηk ∈ V k,
(
P kη, ηk

)
= (η, ηk) ,

(
∇P kη,∇ηk

)
= (∇η,∇ηk) ; (42)

∀η ∈ V, P kη → η in H1 (Ω) as k →∞; (43)

∀η ∈ V,
∥∥P kη

∥∥
−1

≤ ‖η‖−1 ; (44)

∀η ∈ C (0, T ;V) , P kη → η in C
(
0, T ;H1 (Ω)

)
as k →∞; (45)

∀η ∈ C1 (0, T ;V) ,
∂

∂t

(
P kη

)
= P k

(
∂η

∂t

)
. (46)

Equations (42), (43), (45) and (46) are standard results, and equation (44) follows
from equations (37) and (42):∥∥P kη

∥∥2

−1
=

∥∥∇G [
P kη

]∥∥2
=

(
P kη,G

[
P kη

])
=

(
η,G

[
P kη

])
=

(
∇Gη,∇G

[
P kη

])
≤ ‖∇Gη‖

∥∥∇G [
P kη

]∥∥ = ‖η‖−1

∥∥P kη
∥∥
−1

.
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Since H1 (Ω) ↪→ L6 (Ω) ↪→ L
d

d−1 (Ω) for d = 2, 3, equations (41) and (43) give that
for p ∈

[
1, d

d−1

)
,

‖uε,k (0)− u0,ε‖p → 0 and (|∇uε,k (0)| , 1) →
∫

Ω

|∇u0,ε| as k →∞. (47)

Lemma 4.2. The equations (38), (39) are equivalent to(
Gu′ε,k (t) , ηk

)
= −

(
∇uε,k (t)
|∇uε,k (t)|ε

,∇ηk

)
− λ (G [uε,k (t)− f ] , ηk)

∀ηk ∈ V k, a.e. t ∈ (0, T ] . (48)

Proof. Defining wε,k (t) = −Gu′ε,k (t) − λGuε,k (t) + λP k [Gf ] in equation (48) and
using equation (42) gives equation (39), and a further usage of equation (42) gives

(∇wε,k (t) ,∇ηk) = −
(
∇Gu′ε,k (t) ,∇ηk

)
− λ (∇G [uε,k (t)− f ] ,∇ηk)

= −
(
u′ε,k (t) , ηk

)
− λ (uε,k (t) , ηk) + λ 〈f, ηk〉 ,

and hence equation (38) holds.
Since uε,k (t) , u′ε,k (t) ∈ V, equation (38) gives that for a.e. t ∈ (0, T ],(
∇Gu′ε,k (t) ,∇ηk

)
+ (∇wε,k (t) ,∇ηk) = −λ (∇G [uε,k (t)− f ] ,∇ηk) ∀ηk ∈ V k.

It follows by equation (42) that wε,k (t) = −Gu′ε,k (t)− λGuε,k (t) + λP k [Gf ]. Sub-
stituting this into equation (39) and using equation (42) gives equation (48).

4.4. Local existence and uniqueness for Galerkin problems. Take

uε,k (t) =
k∑

i=1

cε,k,i (t) ηi ∀k ∈ N,

and define the vectors cε,k (t), c0,ε,k, fk and ηk of length k by

[cε,k (t)]i = cε,k,i (t) , [c0,ε,k]i =
(
uε,k (0) , ηi

)
, [fk]i =

〈
f, ηi

〉
, [ηk]i = ηi ∀i ≤ k.

The non-linear operator Aε,k : Rk → Rk is defined by

[Aε,k (c)]i := λi

(
∇ [c · ηk]
|∇ [c · ηk]|ε

,∇ηi

)
∀i ≤ k.

The kth Galerkin problem (48) is equivalent to

c′ε,k (t) + Aε,k (cε,k (t)) = −λcε,k (t) + λfk, cε,k (0) = c0,ε,k.

In order to invoke the standard Picard Theorem and obtain the existence of a unique
solution of this problem on some time interval [0, Tk], it is sufficient to show that
Aε,k is globally Lipschitz. For a vector c of length k and i ≤ k,

[Aε,k (c)]i = λi

d∑
j=1

(
Gd

(
∂ [c · ηk]

∂x1
, . . . ,

∂ [c · ηk]
∂xj−1

,
∂ [c · ηk]
∂xj+1

, . . . ,

∂ [c · ηk]
∂xd

,
∂ [c · ηk]

∂xj

)
,
∂ηi

∂xj

)
,

where the nonlinear operator Gd : Rd → R is defined by

Gd (c) :=
cd

|c|ε
∀c = (c1, . . . , cd) ∈ Rd.
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Since
∂Gd (c)

∂cd
=
|c|2ε − c2

d

|c|3ε
and

∂Gd (c)
∂ci

= −cicd

|c|3ε
∀i = 1, . . . , d− 1,

it follows that ∣∣∣∣∂Gd (c)
∂ci

∣∣∣∣ ≤ 1
|c|ε

≤ 1
ε

∀i = 1, . . . , d.

Hence, by Taylor’s Theorem, Gd (·) is globally Lipschitz:

|Gd (c)−Gd (c̃)| ≤ 1
ε
‖c− c̃‖1 ∀c, c̃ ∈ Rd,

where ‖·‖1 is the discrete L1 norm: ‖c‖1 := |c1|+ . . . + |cd|. It follows that Aε,k (·)
is globally Lipschitz:

‖Aε,k (c)−Aε,k (c̃)‖1 ≤
kd2λ2

k

ε
‖c− c̃‖1 ∀c, c̃ ∈ Rd.

4.5. Global existence for Galerkin problems. Since d
d−1 > 6

5 for d = 2, 3,
inequality (18) and the limit (47) give that

‖uε,k (0)− u0,ε‖−1 → 0 as k →∞. (49)

Using that |p|ε ≤ |p|+ ε and 1
2 (a + b)2 ≤ a2 + b2 gives

Jλ,ε (uε,k (0)) =
(
|∇uε,k (0)|ε , 1

)
+

λ

2
‖f − uε,k (0)‖2−1

≤ (|∇uε,k (0)| , 1) + ε |Ω|+ λ ‖uε,k (0)‖2−1 + λ ‖f‖2−1 .
(50)

It follows from the limits (47) and (49) that {Jλ,ε (uε,k (0))}k∈N is bounded.

Lemma 4.3. For s ∈ [0, T ],

(i) ‖uε,k (s)‖2−1 + 2
∫ s

0

(
∇uε,k (t)
|∇uε,k (t)|ε

,∇uε,k (t)
)

dt + λ

∫ s

0

‖uε,k (t)‖2−1 dt

≤ ‖uε,k (0)‖2−1 + λT ‖f‖2−1 , (51)

(ii)
∫ s

0

∥∥u′ε,k (t)
∥∥2

−1
dt = Jλ,ε (uε,k (0))− Jλ,ε (uε,k (s)) . (52)

Proof. (i) Letting η = uε,k (t) in equation (48) gives that

d

dt
‖uε,k (t)‖2−1 + 2

(
∇uε,k (t)
|∇uε,k (t)|ε

,∇uε,k (t)
)

+ λ ‖uε,k (t)‖2−1 ≤ λ ‖f‖2−1 ,

and integrating with respect to t from 0 to s gives inequality (51).
(ii) Taking η = u′ε,k (t) in equation (48) gives that∥∥u′ε,k (t)

∥∥2

−1
= − d

dt
[Jλ,ε (uε,k (t))] ,

and integrating with respect to t from 0 to s gives inequality (52).

It follows from inequalities (50) and (51), limit (49), equation (52) and the non-
negativity of Jλ,ε (·) that there exists C ≡ C (u0,ε, f, λ, T, ε, Ω) such that

‖uε,k‖L∞(0,T ;F) ,
∥∥u′ε,k

∥∥
L2(0,T ;F)

≤ C. (53)

It follows from

V k ⊂ V ⊂ H1 (Ω) ↪→ W 1,1 (Ω) ↪→ BV (Ω) ∀k ∈ N
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that

uε,k (s) ∈ BV (Ω) ∩ V ∀k ∈ N.

Inequality (19) gives that

‖uε,k (s)‖BV (Ω) ≤ (C + 1) (|∇uε,k (s)| , 1) .

Further, inequality (50) and equation (52) give that there exists
C ≡ C (u0,ε, f, λ, ε, Ω) such that

(|∇uε,k (s)| , 1) ≤ Jλ,ε (uε,k (s)) ≤ Jλ,ε (uε,k (0)) ≤ C.

Hence there exists C ≡ C (u0,ε, f, λ, ε, Ω) such that

‖uε,k‖L∞(0,T ;BV (Ω)) ≤ C. (54)

4.6. Passage to the limit. Since
(
H1 (Ω)

)′ is a Hilbert space and F is a closed
subspace of

(
H1 (Ω)

)′, F is a Hilbert space. It follows that F is a reflexive Banach
space, and hence so too is L2 (0, s;F) for s ∈ (0, T ]. Further, BV (Ω) is the dual of
a separable space and hence so too is L∞ (0, T ;BV (Ω)).

It follows from the bounds (53) and (54) that there exist a subsequence of
{uε,k}k∈N, still denoted by {uε,k}k∈N, and uε ∈ L∞ (0, T ;BV (Ω)) ∩ L∞ (0, T ;F)
such that u′ε ∈ L2 (0, T ;F) and as k →∞,

uε,k ⇀ uε in L2 (0, s;F) ∀s ∈ (0, T ] ,

uε,k (s) ⇀ uε (s) in F
uε,k (s) → uε (s) ∈ BV (Ω) in L1 (Ω)

}
for a.e. s ∈ [0, T ] .

(55)

Suppose that v ∈ C1
(
0, T ;C1 (Ω)

)
∩C1 (0, T ;V) (a density argument is given further

on which shows that it is sufficient to consider such functions), and take vk (t) =
P kv (t).

Inequality (17) and limit (43) give that

‖v (t)− vk (t)‖−1 ≤ CP ‖v (t)− vk (t)‖ → 0 as k →∞. (56)

Inequality (44) and equation (46) give that for all k ∈ N,

‖vk (t)‖−1 ≤ ‖v (t)‖−1 , ‖v′k (t)‖−1 ≤ ‖v′ (t)‖−1 . (57)

Hence for all k ∈ N,

‖vk‖L2(0,T ;F) ≤ ‖v‖L2(0,T ;F) , ‖v′k‖L2(0,T ;F) ≤ ‖v′‖L2(0,T ;F) . (58)

Also, it follows from inequality (17), limit (45) and equation (46) that

‖v − vk‖L2(0,T ;F) , ‖v′ − v′k‖L2(0,T ;F) , ‖∇v −∇vk‖L2(ΩT ) → 0 as k →∞. (59)

Since the limits (55) are insufficient to identify the limit of each term in the
Galerkin problem (48) as k → ∞, a resulting variational inequality for which pas-
sage to the limit is possible is found. The process of deducing this variational
inequality from equation (48) is the finite dimensional analogue of the deduction
of the variational inequality (31) from equation (3): taking ηk = vk (t)− uε,k (t) in
equation (48), using that
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(a− b) (c− a) ≤ 1
2

[
(c− b)2 − (a− b)2

]
and Lemma 1.2, and integrating with re-

spect to t from 0 to s gives∫ s

0

(v′k (t) ,G [vk (t)− uε,k (t)]) dt +
∫ s

0

[Jλ,ε (vk (t))− Jλ,ε (uε,k (t))] dt

≥ 1
2

[
‖vk (s)− uε,k (s)‖2−1 − ‖vk (0)− uε,k (0)‖2−1

]
. (60)

Lemma 4.4 gives the k →∞ limit of each term in the variational inequality (60).

Lemma 4.4. For v ∈ C1
(
0, T ;C1 (Ω)

)
∩C1 (0, T ;V) and vk (t) = P kv (t) (k ∈ N),

(i) lim
k→∞

∫ s

0

(v′k (t) ,Gvk (t)) dt =
∫ s

0

(v′ (t) ,Gv (t)) dt,

(ii) lim
k→∞

∫ s

0

(v′k (t) ,Guε,k (t)) dt =
∫ s

0

(v′ (t) ,Guε (t)) dt,

(iii) lim
k→∞

∫ s

0

Jλ,ε (vk (t)) dt =
∫ s

0

Jλ,ε (v (t)) dt,

(iv) lim inf
k→∞

∫ s

0

Jλ,ε (uε,k (t)) dt ≥
∫ s

0

Jλ,ε (uε (t)) dt,

(v) lim inf
k→∞

‖vk (s)− uε,k (s)‖2−1 ≥ ‖v (s)− uε (s)‖2−1 ,

(vi) lim
k→∞

‖vk (0)− uε,k (0)‖2−1 = ‖v (0)− u0,ε‖2−1 .

Proof. (i) The bounds (58) and limits (59) give∣∣∣∣∫ s

0

(v′k (t) ,Gvk (t)) dt−
∫ s

0

(v′ (t) ,Gv (t)) dt

∣∣∣∣
≤

∣∣∣∣∫ s

0

(v′k (t) ,G [vk (t)− v (t)]) dt

∣∣∣∣ +
∣∣∣∣∫ s

0

(v′k (t)− v′ (t) ,Gv (t)) dt

∣∣∣∣
≤

[
‖v′k‖L2(0,T ;F) ‖vk − v‖L2(0,T ;F) + ‖v′k − v′‖L2(0,T ;F) ‖v‖L2(0,T ;F)

]
→0 as k →∞.

(ii) Define T1 and T2 by∣∣∣∣∫ s

0

(v′k (t) ,Guε,k (t)) dt−
∫ s

0

(v′ (t) ,Guε (t)) dt

∣∣∣∣
≤

∣∣∣∣∫ s

0

(v′k (t)− v′ (t) ,Guε,k (t)) dt

∣∣∣∣ +
∣∣∣∣∫ s

0

(v′ (t) ,G [uε,k (t)− uε (t)]) dt

∣∣∣∣
=: T1 + T2.

The bounds (53) and limits (59) give that

T1 ≤ ‖v′k − v′‖L2(0,T ;F) ‖uε,k‖L2(0,T ;F) → 0 as k →∞.

The limits (55) and Lemma 1.3 give that∫ s

0

(v′ (t) ,G [uε,k (t)− uε (t)]) dt → 0 as k →∞,

and hence T2 → 0 as k →∞.
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(iii) The limits (59) and Lemma 1.2 give that∣∣∣∣∫ s

0

(|∇vk (t)|ε − |∇v (t)|ε , 1) dt

∣∣∣∣ ≤ ∫ s

0

(|∇ [vk (t)− v (t)]| , 1) dt

≤ |Ω|
1
2 T

1
2 ‖∇vk −∇v‖L2(ΩT ) → 0 as k →∞,∣∣∣∣∫ s

0

(vk (t)− v (t) ,Gf) dt

∣∣∣∣ ≤ T
1
2 ‖f‖−1 ‖vk − v‖L2(0,T ;F) → 0 as k →∞.

By an analogous argument to that used to prove (i),∣∣∣∣∫ s

0

(vk (t) ,Gvk (t)) dt−
∫ s

0

(v (t) ,Gv (t)) dt

∣∣∣∣ → 0 as k →∞.

(iv) Since Jλ,ε (·) is convex (see proof of Theorem 3.1), the limits (55) give that

Jλ,ε (uε (t)) ≤ lim inf
k→∞

Jλ,ε (uε,k (t)) ,

and using Fatou’s lemma gives the result.
(v) Limits (43) and (55) and inequality (17) give that for a.e. s ∈ [0, T ],

vk (s)− uε,k (s) ⇀ v (s)− uε (s) in F as k →∞,

and using the lower semi-continuity of a norm with respect to weak convergence
gives the result.

(vi) The limit (49) and bounds (56), (57) yield

|(vk (0) ,Gvk (0))− (v (0) ,Gv (0))|
≤ |(vk (0) ,G [vk (0)− v (0)])|+ |(vk (0)− v (0) ,Gv (0))|
≤

(
‖vk (0)‖−1 + ‖v (0)‖−1

)
‖vk (0)− v (0)‖−1

≤ 2 ‖v (0)‖−1 ‖vk (0)− v (0)‖−1 → 0 as k →∞,

|(vk (0) ,Guε,k (0))− (v (0) ,Gu0,ε)|
≤ |(vk (0)− v (0) ,Guε,k (0))|+ |(v (0) ,Guε,k (0)− Gu0,ε)|
≤ ‖uε,k (0)‖−1 ‖vk (0)− v (0)‖−1 + ‖v (0)‖−1 ‖uε,k (0)− u0,ε‖−1

→ 0 as k →∞,

‖uε,k (0)‖2−1 → ‖u0,ε‖2−1 ask →∞.

By Lemma 4.4, passage to the limit k → ∞ of each term in the variational in-
equality (60) gives that uε satisfies the variational inequality (31) if v ∈ C1(0, T ;C1

(Ω)) ∩ C1(0, T ;V). Further, C1 (Ω) ∩ V is dense in BV (Ω) ∩ F with respect to
strict convergence ([2], p. 132) and C1 (0, T ;BV (Ω)) ∩ C1 (0, T ;F) is dense in
L1 (0, T ;BV (Ω)) ∩ C (0, T ;F) with respect to norm convergence. It follows that
C1

(
0, T ;C1 (Ω)

)
∩C1 (0, T ;V) is dense in L1 (0, T ;BV (Ω))∩C (0, T ;F). Hence uε

satisfies the variational inequality (31).
As in Feng and Prohl [7], an argument of Lichnewsky and Temam [8] is used to

prove that uε (0) = u0,ε and uε ∈ C (0, T ;F). Indeed, for δ > 0, the following initial
value problem is considered:

δu′ε,δ (t) + uε,δ (t) = uε (t) ∀t ∈ (0, T ) , uε,δ (0) = u0,ε.

This initial value problem is used because its unique solution uε,δ is known to belong
to C (0, T ;F).
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Replacing v by uε,δ in the variational inequality (31) gives that

1
2
‖uε,δ (s)− uε (s)‖2−1

≤
∫ s

0

[Jλ,ε (uε,δ (t)) dt− Jλ,ε (uε (t))] dt− 1
δ

∫ s

0

‖uε,δ (t)− uε (t)‖2−1 dt

≤
∫ s

0

[Jλ,ε (uε,δ (t)) dt− Jλ,ε (uε (t))] dt

=
∫ s

0

∫
Ω

[
|∇uε,δ (t)|ε − |∇uε (t)|ε

]
dxdt

+
λ

2

∫ s

0

[
‖uε,δ (t)− f‖2−1 − ‖uε (t)− f‖2−1

]
dt.

It follows from Lemma 1.2 that∣∣∣∣∫ s

0

∫
Ω

[
|∇uε,δ (t)|ε − |∇uε (t)|ε

]
dxdt

∣∣∣∣ ≤ ∫ T

0

∫
Ω

|∇ [uε,δ (t)− uε (t)]| dxdt

≤ ‖uε,δ − uε‖L1(0,T ;BV (Ω)) .

Since (a− c)2 − (b− c)2 = (a− b) (a + b− 2c),∣∣∣∣∫ s

0

[
‖uε,δ (t)− f‖2−1 − ‖uε (t)− f‖2−1

]
dt

∣∣∣∣
=

∣∣∣∣∫ s

0

(∇G [uε,δ (t)− uε (t)] ,∇G [uε,δ (t) + uε (t)− 2f ]) dt

∣∣∣∣
≤ ‖uε,δ − uε‖L2(0,T ;F) ‖uε,δ + uε − 2f‖L2(0,T ;F)

≤ ‖uε,δ − uε‖L2(0,T ;F)

(
‖uε,δ − uε‖L2(0,T ;F) + 2 ‖uε − f‖L2(0,T ;F)

)
.

As in [7] and [8],

uε,δ → uε in L2 (0, T ;F) ∩ L1 (0, T ;BV (Ω)) as δ ↓ 0.

It follows that

‖uε,δ − uε‖C(0,T ;F) = sup
s∈[0,T ]

‖uε,δ (s)− uε (s)‖−1 → 0 as δ ↓ 0,

which yields

uε ∈ C (0, T ;F) , uε (0) = u0,ε in F .

4.7. Proof of stability estimate (36). As in Feng and Prohl [7], an argument
of Lichnewsky and Temam [8] is used to prove the stability estimate (36). Indeed,
let uε,i (i = 1, 2) be weak solutions of (Pε) for data u0,ε,i, fi. The function uε ∈
C (0, T ;F) is defined by

uε (t) :=
uε,1 (t) + uε,2 (t)

2
∀t ∈ [0, T )

(
⇒ uε (0) =

u0,ε,1 + u0,ε,2

2

)
.
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Adding the inequalities (31) for i = 1, 2 gives that

2
∫ s

0

(v′ (t) ,G [v (t)− uε (t)]) dt

+
∫ s

0

[2J0,ε (v (t)) dt− J0,ε (uε,1 (t))− J0,ε (uε,2 (t))] dt

+
λ

2

∫ s

0

[
‖v (t)− f1‖2−1 + ‖v (t)− f2‖2−1

−‖uε,1 (t)− f1‖2−1 − ‖uε,2 (t)− f2‖2−1

]
dt

≥ 1
2

[
‖v (s)− uε,1 (s)‖2−1 + ‖v (s)− uε,2 (s)‖2−1

−‖v (0)− u0,ε,1‖2−1 − ‖v (0)− u0,ε,2‖2−1

]
.

(61)

For δ > 0, uε,δ ∈ C (0, T ;F) is taken to be the solution of the initial value problem

δu′ε,δ (t) + uε,δ (t) = uε (t) ∀t ∈ (0, T ) , uε,δ (0) = uε (0) .

Replacing v by uε,δ in inequality (61) yields∫ s

0

[2J0,ε (uε,δ (t))− J0,ε (uε,1 (t))− J0,ε (uε,2 (t))] dt

+
λ

2

∫ s

0

[
‖uε,δ (t)− f1‖2−1 + ‖uε,δ (t)− f2‖2−1

−‖uε,1 (t)− f1‖2−1 − ‖uε,2 (t)− f2‖2−1

]
dt

≥ 1
2

[
‖uε,δ (s)− uε,1 (s)‖2−1 + ‖uε,δ (s)− uε,2 (s)‖2−1

]
− 1

4
‖u0,ε,2 − u0,ε,1‖2−1 .

(62)

As in Section 4.6,

uε,δ → uε in L2 (0, T ;F) ∩ L1 (0, T ;BV (Ω)) and uε,δ (s) → uε (s) in F as δ ↓ 0.

The convexity of J0,ε ([1], Theorem 2.4) implies that

2J0,ε (uε (t)) ≤ J0,ε (uε,1 (t)) + J0,ε (uε,2 (t)) .

Letting δ ↓ 0 in inequality (62) and using(
a + b

2
− c

)2

+
(

a + b

2
− d

)2

− (a− c)2 − (b− d)2 ≤ 1
2

(d− c)2 ∀ a, b, c, d ∈ R

(63)
yields

‖uε,2 (s)− uε,1 (s)‖2−1 ≤ λs ‖f2 − f1‖2−1 + ‖u0,ε,2 − u0,ε,1‖2−1 .

4.8. Proof of existence of a weak solution of (P). For ε > 0, take uε to be
the weak solution of (Pε) with

u0,ε = u0. (64)

It follows from the bounds (53), (54) that there exists C ≡ C (u0, f, λ, T, ε, Ω),
which remains bounded as ε ↓ 0, such that

‖uε‖L∞(0,T ;F) , ‖u′ε‖L2(0,T ;F) , ‖uε‖L∞(0,T ;BV (Ω)) ≤ C. (65)
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Hence there exist a subsequence of {uε}ε>0, still denoted by {uε}ε>0, and u ∈
L∞ (0, T ;BV (Ω)) ∩ L∞ (0, T ;F) such that u′ ∈ L2 (0, T ;F) and as ε ↓ 0,

uε ⇀ u in L2 (0, s;F) ∀s ∈ (0, T ] ,

uε (s) ⇀ u (s) in F
uε (s) → u (s) ∈ BV (Ω) in L1 (Ω)

}
for a.e. s ∈ [0, T ] .

(66)

In Section 4.6, Lemma 4.4 was used to pass to the limit k → ∞ in the variational
inequality (60) (a corollary of the Galerkin problem (48)), yielding the variational
inequality (31). For v in a dense subspace of the test space in inequality (31) and
suitably chosen vk, Lemma 4.4 identified the k → ∞ limit of each term in the
variational inequality (60) as being (up to inequality) the corresponding term in
the variational inequality (31). Analogously, Lemma 4.5 below identifies the ε ↓ 0
limit of each term in the variational inequality (31) as being (up to inequality) the
corresponding term in the variational inequality (30).

By the same density argument as that in Section 4.6, it is sufficient to consider
v ∈ C1

(
0, T ;C1 (Ω)

)
∩ C1 (0, T ;V).

Lemma 4.5. For any v ∈ C1
(
0, T ;C1 (Ω)

)
∩ C1 (0, T ;V),

(i) lim
ε↓0

∫ s

0

(v′ (t) ,Guε (t)) dt =
∫ s

0

(v′ (t) ,Gu (t)) dt,

(ii) lim
ε↓0

∫ s

0

Jλ,ε (v (t)) dt =
∫ s

0

Jλ (v (t)) dt,

(iii) lim inf
ε↓0

∫ s

0

Jλ,ε (uε (t)) dt ≥
∫ s

0

Jλ (u (t)) dt,

(iv) lim inf
ε↓0

‖v (s)− uε (s)‖2−1 ≥ ‖v (s)− u (s)‖2−1 ,

(v) lim
ε↓0

‖v (0)− u0,ε‖2−1 = ‖v (0)− u0‖2−1 .

Proof. The proofs of (i) and (iv) are analogous to (and simpler than, since it is
not necessary to pass to the limit of {vk}k∈N) those of parts (ii) and (v) of Lemma
4.4 given in Section 4.6.

(ii) follows from ||p|ε − |p|| ≤ ε:∣∣∣∣∫ s

0

(|∇v (t)|ε − |∇v (t)| , 1) dt

∣∣∣∣ ≤ εT |Ω| → 0 as ε ↓ 0.

The proof of (iii) is similar to that of part (iv) of Lemma 4.4 given in Section 4.6:
the convexity of Jλ (·) (see proof of Theorem 3.1), the inequality Jλ (·) ≤ Jλ,ε (·)
and the limits (66) yielding

Jλ (u (t)) ≤ lim inf
ε↓0

Jλ (uε (t)) ≤ lim inf
ε↓0

Jλ,ε (uε (t)) .

(v) follows from the initial condition (64).

5. Convergence of weak solutions to minimizers of energies.

5.1. Statement of result.
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Theorem 5.1 (c.f. [6], Theorem 2.2). Let 2 ≤ d ≤ 3, u0, u0,ε ∈ BV (Ω) ∩ F ,
f ∈ F and u, uε be the minimizers of Jλ (·), Jλ,ε (·). The weak solutions u, uε of
(P), (Pε) satisfy

∀ p ∈
[
1,

d

d− 1

)
, u (t) →

Lp(Ω)
u and uε (t) →

Lp(Ω)
uε as t →∞. (67)

5.2. Technical Lemma.

Lemma 5.2. Let u0, u0,ε ∈ BV (Ω) ∩ F and f ∈ F . Then for all s0 ∈ (0, T ), the
weak solutions u, uε of (P), (Pε) satisfy∫ s

s0

〈u′ (t) ,G [w (t)− u (t)]〉 dt +
∫ s

s0

[Jλ (w (t))− Jλ (u (t))] dt ≥ 0

∀w ∈ L1 (0, T ;BV (Ω)) ∩ L2 (0, T ;F) , s ∈ [s0, T ] ; (68)

∫ s

s0

〈u′ε (t) ,G [w (t)− uε (t)]〉 dt +
∫ s

s0

[Jλ,ε (w (t))− Jλ,ε (uε (t))] dt ≥ 0

∀w ∈ L1 (0, T ;BV (Ω)) ∩ L2 (0, T ;F) , s ∈ [s0, T ] . (69)

Hence u, uε satisfy

〈u′ (t) ,G [w − u (t)]〉+ Jλ (w)− Jλ (u (t)) ≥ 0
∀w ∈ BV (Ω) ∩ F and a.e. t ∈ (s0, T ) , (70)

〈u′ε (t) ,G [w − uε (t)]〉+ Jλ,ε (w)− Jλ,ε (uε (t)) ≥ 0
∀w ∈ BV (Ω) ∩ F and a.e. t ∈ (s0, T ) . (71)

Proof. The inequalities (68) and (70) are proved (the inequalities (69) and (71)
can be proved analogously). Choose s0 ∈ (0, T ), and take w ∈ L1 (0, T ;BV (Ω)) ∩
L2 (0, T ;F). The inequality (68) follows from taking s ∈ [s0, T ] and

v (t) =
{

u (t) for t ∈ [0, s0]
w (t) for t ∈ (s0, s] ,

in inequality (28). The inequality (70) follows from inequality (68) by the Lebesgue
differentiation theorem (see [2]).

5.3. Proof of Theorem 5.1. The proof of the result for (P) is given (the result
for (Pε) can be proved analogously). Choose s0 > 0 such that u (s0) ∈ BV (Ω)∩F .
Taking w (t) = u (t− τ) for 0 < τ < s0 in inequality (68) with s = T , dividing the
resulting inequality by −τ and passing to the limit τ ↓ 0 yields∫ T

s0

‖u′ (t)‖2−1 dt + Jλ (u (T )) ≤ Jλ (u (s0)) < ∞ ∀ T ∈ [s0,∞) .

Hence there exists a sequence {tj}j∈N and a constant C ≡ C (Ω) such that tj →∞
as j →∞ and

‖u′ (tj)‖−1 → 0 as j →∞ and ‖u (tj)‖BV (Ω) , ‖u (tj)‖−1 ≤ C ∀j ∈ N.

It follows that there exists û ∈ BV (Ω) ∩ F and a subsequence of {u (tj)}j∈N (still
denoted by {u (tj)}j∈N) such that

u (tj)
∗
⇀

BV−w∗
û, u (tj) ⇀

F
û, u (tj) →

L1(Ω)
û as j →∞;
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(see [2], p. 125). Taking t = tj in (70), letting j → ∞ and using the convexity of
Jλ (·) (see proof of Theorem 3.1) gives that

Jλ (w) ≥ lim inf
j→∞

Jλ (u (tj)) ≥ Jλ (û) ∀w ∈ BV (Ω) ∩ F .

The uniqueness of the solution of the minimization problem implies that û = u and
that the whole sequence {u (t)}t>0 satisfies the limit in (67). �

6. Rate of convergence of uε to u as ε ↓ 0. It follows from the proof of the
existence of a weak solution to (P) given in Section 4.8 that if u0,ε = u0 for ε > 0
and f ∈ F , then the weak solutions u, {uε}ε>0 of (P), (Pε) for data u0 and f ,
{u0,ε}ε>0 and f satisfy

uε
?
⇀ u in L∞ (0, T ;F) as ε ↓ 0.

We prove Theorem 6.1 concerning the rate of this convergence.

Theorem 6.1 (c.f. [6], Theorem 3.1). Suppose that 2 ≤ d ≤ 3, u0 ∈ BV (Ω) ∩ F ,
{u0,ε}ε>0 ⊂ BV (Ω) ∩ F and f ∈ F . Let u, {uε}ε>0 be the weak solutions of (P),
(Pε) for data u0 and f , {u0,ε}ε>0 and f . Then

‖u− uε‖C(0,T ;F) ≤ ‖u0 − u0,ε‖−1 + 2
√

εT |Ω|.

Hence, if u0,ε = u0 for ε > 0,

uε → u in C (0, T ;F) as ε ↓ 0.

Proof. The inequality ||p|ε − |p|| ≤ ε gives that |Jλ,ε (·)− Jλ (·)| ≤ ε |Ω|. Hence
taking v = u in the inequality (29) for (Pε) and v = uε in the inequality (28) for
(P) and adding the resulting inequalities gives the desired result.

7. Conclusions. Functional analytic techniques have been used to show the ex-
istence of a unique suitably defined weak solution to partial differential equation
arising from the H−1 gradient flow of the energy consisting of TV regularization
plus H−1 fidelity. A regularized version of the energy was considered, which gave
rise to a regularized partial differential equation. The existence of a unique weak
solution to this regularized problem was used to show the existence of a unique
weak solution to the original problem. The convergence of each weak solution to
the minimizer of the corresponding energy as time t →∞ was established. Further,
a result for the rate of convergence of the weak solution of the regularized problem
to that of the original one as the regularization parameter ε ↓ 0 was established.
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