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Abstract. In this article we consider a model that generalizes the Perona-
Malik and the total variation models. We consider discretizations of this new
model and show that the discretizations conserve certain properties of the
continuous model, in particular convergence of the iterative scheme to a critical
point and existence of a discrete Liapunov functional. Computational results
are obtained that illustrate different features of the family of models.

1. Introduction. Partial differential equations (PDEs) and curvature-dependent
flows are often used in image processing. The main idea behind such techniques is to
deform a given image (typically a noisy image) under the flow of the PDE to obtain
a denoised image as the solution of this PDE. Along with stochastic modelling and
wavelets, PDE techniques are an important class in modern image processing (see
Aubert and Kornprobst [1] for more details). Our goal is to develop a model for
image processing that generalizes the Perona-Malik model (PM) (see [16]) and the
total variation model (TV) (see, e.g., Rudin, Osher and Fatemi [19] or Osher and
Fedkiw [15]). We analyse the global dynamics of a fully discrete model and discuss
the problem of a well suited stopping time. This is important, because most PDE
based models (including the two mentioned above) yield the best denoising results
when the evolution is halted after a finite time.

2000 Mathematics Subject Classification. Primary: 35K35, 65M06.
Key words and phrases. Perona-Malik, total variation model, discrete Liapunov functional.

181



182 C.M. ELLIOTT, B. GAWRON, S. MAIER-PAAPE AND E.S. VAN VLECK

Consider the following PDE on the domain Ω ⊂ R
2:

−ε∆ut + ut = ∇(g(|∇u|2)∇u) in Ω for t > 0
∂νu = 0 on ∂Ω for t > 0

u(t)|t=0 = unoi in Ω,

where g : [0,∞) → [0,∞) with

g(s) =
1

(1 + s
γ
)α

,

and ε ≥ 0 and α, γ > 0 are parameters and ν is the outward unit normal on ∂Ω.
The initial condition unoi is the noisy data (e.g. a picture) which is supposed

to be denoised by the evolution of (1.1) without losing characteristic features like
edges, for instance. Note that taking ε = 0 and α = 1 in (1.1) delivers the (PM)
model, whereas ε = 0 and α = 0.5 with γ = 1 represents a regularized version of
the (TV) model, which is given by g(s) = 1√

s
.

Therefore our choice of g in (1.1) generalizes the PDE ansatz of both the PM
and TV model. We also extend these models by a viscous ε regularization. This
regularization leads to a well posed PDE problem even when g yields a non-convex
variational problem. In this paper we focus mainly on the analysis and long time
dynamics of a special discrete scheme associated to (1.1), which in effect yields a
stable time stepping scheme for the forward parabolic and the forward-backward
parabolic case (even if the regularization parameter ε is zero). The discrete scheme
yields a linear system of equations and is stable for all choices of the time step and
spatial mesh size.

The family of PDEs we consider includes several well-known, existing models.
For instance, the regularization we employ is related to the regularization used
in [3] and the well-posedness of regularized continuous Perona-Malik models was
considered in [5]. Early experiments with similar models appear in [18] and discrete
well-posedness for diffusion filtering is described in [20].

The choice of this special family of functions g = gα,γ is motivated by several
considerations. There are some properties the evolution should have which lead
to corresponding restrictions for g. For instance the condition g(0) = 1 implies
behavior almost like the heat equation when |∇u| is small. In other words it leads
to isotropic smoothing in flat regions. At points near a steep edge the evolution
locally should be stopped which yields the restriction lims→∞ g(s) = 0. In a more
precise examination it turns out that the function b(s) = g(s) + 2sg′(s) plays an
important role (see e.g. [1], Theorem 3.3.6 and [9], Section 3). The signs of g(|∇u|2)
and b(|∇u|2) determine whether our equation is locally forward parabolic or not.
If both are positive we have local parabolicity which leads to a smoothing model.
But it is absolutely reasonable to consider a smoothing-enhancing model, i.e. a
model where edges are smoothed out or enhanced depending on the steepness of
the edge. This leads to a replacement of the condition b > 0 by b(s) > 0 for s ≤ s0

and b(s) < 0 for s > s0 for some threshold s0 > 0. If in the considered point the
condition |∇u|2 > s0 is valid, we get a locally backward parabolic equation in the
direction of sharpest increase, which leads to sharpening of significant edges. With
our special choice of g this condition only depends on the parameter α. We get a
smoothing model for α ≤ 1

2 and a smoothing-enhancing one for α > 1
2 .
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Finally we mention some classical existence results for this equation. For ε > 0
equation (2.6) (which generalizes (1.1) by having an optional reaction term depend-
ing on unoi) has a classical solution on a maximal time of existence [0, T ) in an
appropriate Banach space. For ε = 0 we can generalize the problem by considering
u ∈ BV (Ω). With the help of the notion of maximal operators one can prove the
existence of a unique solution u = u(t) : [0,∞) → L2(Ω) of the generalized problem
(1.1) in case of unoi ∈ BV (Ω), see [1], Theorem 3.3.1.

This paper is outlined as follows. In Section 2 we introduce the continuous mod-
els we will consider, and state two energy–based stopping criteria. In Section 3 we
describe the discretization of our PDE on which the following numerical analysis is
build on. Many properties of the continuous model can be preserved for the dis-
crete model. For instance, both continuous and discrete models posses a Liapunov
functional. Furthermore, the discrete models we consider inherit natural invariance
properties like conservation of the average value or gray-level shift invariance from
the continuous model (see Section 3). They will be useful to prove the convergence
theorem in Section 4 and the existence of a discrete Liapunov functional. In the
Appendix we report on some computations using the discretization from above and
both stopping methods and on technical details on the discrete realizations of the
differential operators involved.

2. Models. In this section we introduce two different parameter–depending models
for image restoration based on a PDE flow of (1.1) and (2.6). The comparison of
these models induced by different parameters is done as follows. We choose a target
data utar, a function on Ω = [0, 1]2 showing some geometric figures (see Figure 1).
As initial data for (1.1) we use (Figure 2):

unoi = utar + “noise”. (2.1)

Besides finding good parameters, an important issue will be to find a good stop-
ping criterion, i.e., some stopping time t∗ at which the denoising procedure is halted.
Unfortunately (except for some special cases, like the heat equation model [6]) there
is no satisfactory answer. In case utar is known (as in our case), one could choose as
t∗ that time t when ‖u(t) − utar‖L2 stops decreasing. The closer u(t∗) gets to utar

for some stopping time t∗ > 0, the better the reconstruction of the original picture
works.

For practical applications, however, utar is usually not known. Therefore we need
different stopping criteria for the denoising procedure which take this into account
(see, e.g., [17] and the references therein for a more detailed discussion of stopping
time techniques).

We define the function H(s) by H ′(s) = 1
2g(s), i.e.,

H(s) =
1

2
γ log(1 +

s

γ
) for α = 1 (2.2)

and otherwise

H(s) =
1

2(1 − α)
γ [(1 +

s

γ
)1−α − 1]. (2.3)

We see that H(0) = 0 and H ′(s) > 0 which implies H(s) ≥ 0. From g′(s) < 0 we
deduce that H is non-convex. With the additional parameter λ > 0 we construct
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Figure 1. utar
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Figure 2. unoi

an energy functional given by

G(unoi, u) :=
λ

2
‖unoi − u‖2

L2 +

∫

Ω

H(|∇u|2) dx. (2.4)

The first term measures the fidelity of the image u with the original noisy image
unoi whereas the second term measures the smoothness of the image u. In order to
vary the balance of these two measures one has the scalar λ. Based on this energy
functional we tested two different methods :
Method (1):

Set λ = λ1. Solve (1.1) and stop when E(unoi, t) := G(unoi, u(t)) achieves a first
local minimum in t. Note that the integral of H in (2.4) is a Liapunov functional
for the evolution of (1.1). Therefore our stopping criterion balances the smoothing
evolution of (1.1) represented by the term

∫

Ω
H(|∇u|2) dx with a fidelity term

λ1

2 ‖unoi − u‖2
L2 that punishes u going too far away from unoi. In our numerical

implementation we will see that for any discrete solution of (1.1) u → cnoi for
t → ∞ (see Lemma 3.2 and Corollary 4.2). Here cnoi ∈ R is the average gray–level
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of unoi. Therefore we get

E(unoi, t) →
λ1

2
‖unoi − cnoi‖

2
L2 for t → ∞.

Furthermore we will prove that E(unoi, . ) is decreasing for small t (see Corollary
3.4). If unoi is sufficiently smooth we can choose λ1 large enough to achieve

E(unoi, 0) =

∫

Ω

H(|∇unoi|
2) dx ≤

λ1

2
‖unoi − cnoi‖

2
L2 (2.5)

and a positive finite minimum of E(unoi, . ) is guaranteed yielding a well defined
stopping criterion. For practical application unoi will in general not be smooth.
However, due to discretization the integral above will be replaced by a finite sum
which has finite value. Again, sufficiently large λ1 yields a well defined stopping
criterion. In fact choosing λ1 such that the inequality in (2.5) is an equality will
always work.

In our second method we depart from the evolution (1.1) and consider the gra-
dient flow for the energy (2.4):

Method (2):

Instead of the PDE (1.1) we consider:

−ε∆ut + ut = ∇(g(|∇u|2)∇u) + λ2(unoi − u) in Ω for t > 0
∂νu = 0 on ∂Ω for t > 0

u(t)|t=0 = unoi in Ω,
(2.6)

where λ2 > 0. This evolution is a H1 gradient flow for the energy functional
G(unoi, u) with λ = λ2. Notice that Nordstrom [14] has used the same fidelity term
(following λ2) in a modified Perona–Malik model.

We will show that the discrete solution u of (2.6) converges as t → ∞ (see
Theorem 4.1) and we stop when u reaches a small neighborhood of a steady state,
i.e., the evolution is halted when

‖u(t∗ + ∆t) − u(t∗)‖L2

∆t
≤ tol (2.7)

for some fixed small tolerance tol > 0 and at some discrete time point t∗ > 0.
The reaction term in (2.6) then ensures similarity to the original image. One easily
verifies that the PDE (2.6) is a gradient flow for the Liapunov functional E(unoi, ·).
For Method 2 one should note that the steady state problem is independent of ε.
This is reflected in the numerical results.

In both methods the problem of selecting a stopping time is replaced by the
problem of selecting good parameters (e.g. ε or λi). Hence we end up having a
parameter identification problem. Therefore at the first glance nothing is gained.
However, parameters may be fixed after testing on problems with known optimal
solutions. The optimal stopping is then bypassed, because everything is included in
the algorithm. Furthermore, recently developed techniques of Aujol and Gilboa [2]
may be used to automatically select the λi parameter using SNR (signal to noise
ratio) based estimates on the quality of the stopping time t∗ depending on λi.

3. Numerical Algorithm, Invariance Properties and Liapunov Functional.
In this section we describe how the evolution equations described in Section 2 are
implemented as a discrete scheme.
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If we consider the evolutions (1.1) and (2.6) we see that (2.6) includes (1.1) by
setting λ2 = 0. Corresponding to that we set λ2 = 0 in the algorithm, if we work
with Method (1). We give a formal derivation of our algorithm: First we rewrite
the original evolution with g := g − 1 to

−ε∆ut + ut = ∇(g(|∇u|2)∇u) + λ2(u(0) − u)
= ∇(ḡ(|∇u|2)∇u) + ∆u + λ2(u(0) − u)

(3.1)

and discretize the time and space. We use the time discretization t0 = 0, tn+1 =
tn + ∆tn. The width of the time steps ∆tn can be constant or regulated in an
adaptive way. However in the following we shall assume that {∆tn} is bounded.
To discretize the space variable of the function un = u(tn) : Ω → R we replace
Ω = [0, 1]2 by an equidistant grid of d2 points (see the Appendix). Hence any

function v : Ω → R has a discrete counterpart v ∈ R
d2

. In order to discretize
(3.1) we replace the differential operators with difference operators that act on

v ∈ R
d2

. The details are contained in the Appendix. For instance ∆d ∈ R
d2×d2

is

a discrete analog of the Laplacian. B : R
d2

× R
d2

→ R
d2

is used to approximate

|∇v|2 ≈ B(v, v) and B in turn is used to define D(v) ∈ R
d2×d2

for v ∈ R
d2

(see
(5.5)) such that D(v) v ≈ ∇(g( |∇v|2∇v)).

Consider the discretized initial function u0 = u(0) = unoi ∈ R
d2

and compute
iteratively the solutions at later times u1 = u(t1), u

2 = u(t2), .... The time deriv-

ative is approximated by ut ≈
un+1−un

∆tn and using the difference operators used to
approximate the differential operators we obtain

(−ε∆d + I)
un+1 − un

∆tn
= D(un)un + ∆du

n+1 + λ2(u
0 − un+1) .

If we order the terms with un+1 to the left hand side this is equivalent to the
iterative scheme:

Cnun+1 = Aun + ∆tn[D(un)un + λ2u
0] (3.2)

with

A = I − ε∆d ∈ R
d2×d2

and

Cn = A + ∆tn(λ2I − ∆d) ∈ R
d2×d2

.

This is a well posed discrete scheme since Cn is symmetric positive definite and
in particular bijective for all ∆tn > 0 and ε ≥ 0.
To see this we write Cn as Cn = ζ1I − ζ2∆d with ζ1, ζ2 > 0. In terms of the proof
of Lemma 5.1 (see the Appendix) we obtain

(Cnv, v) =

d2

∑

i=1

a2
i (ζ1 + ζ2µi) > 0 for all v 6= 0,

where (·, ·) is the standard Euclidean inner product on R
d2

. The symmetry of Cn

follows from the symmetry of ∆d and I.
The scheme (3.2) is a linearised implicit scheme. In the following we show that it

is stable and convergent as n → ∞ independent of the grid size. This means that it
has computational advantages over explicit schemes which require grid dependent
time step restrictions and which do not necessarily converge as n → ∞. Furthermore
the matrix Cn has constant coefficients and hence can be solved by a fast Fourier
transform if so desired. For large grids the discretization is very efficient.
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With this discretization of the evolution it is easy to see that the average value
of u is conserved. Furthermore we have gray-level shift invariance. To be more
precise:

Lemma 3.1. Given the iterative scheme (3.2) the equation

(11, un) =
(

11, u0
)

holds for all n.

Lemma 3.2. Let u0 generate the sequence (un) via (3.2) with equal time steps
∆tn = n∆t for all n ∈ N and let K ∈ R be given, then the modified start vector
ũ0 = u0 + K 11 generates the sequence (ũn) = (un + K 11).

A formal calculation shows that the right hand side of (2.4) with λ2 instead of λ
gives a Liapunov functional for (2.6). This leads to the conjecture that the iterative

scheme (3.2) has the discrete Liapunov functional J : R
d2

→ R,

J(u) =
λ2

2
‖u0 − u‖2

2 +
1

d2

(

11, H(B(u, u))
)

, (3.3)

where ‖ . ‖p is introduced in the Appendix (see (5.1)).

Theorem 3.3. For the sequence (un) generated from (3.2) and some constant c2 >
0 the inequality

J(un+1) +
c2

∆tn
‖un+1 − un‖2

2 ≤ J(un) holds for all n ∈ N0. (3.4)

In particular, J is a discrete Liapunov functional for Method (2). Setting λ2 = 0
it is also a discrete Liapunov functional for Method (1).

Proof. If we use Taylor expansion of J around un and the shortcut h = un+1 − un,

we receive a ξ ∈ {sun + (1 − s)un+1 | s ∈ [0, 1]} ⊂ R
d2

with:

d2(J(un+1) − J(un))

=
(

11, λ2(u
n − u0) ◦ h + g(B(un, un)) ◦ B(un, h)

)

+
1

2

(

11, λ2h
2 + 2g′(B(ξ, ξ)) ◦ B(ξ, h)2 + g(B(ξ, ξ)) ◦ B(h, h)

)

g′≤0

≤

(

11, λ2

(

un+1 + un

2
− u0

)

◦ h + g(B(un, un)) ◦ B(un, h)

)

+

(

11,
1

2
g(B(ξ, ξ)) ◦ B(h, h)

)

g−1=̄g≤0

≤

(

11, λ2

(

un+1+un

2
−u0

)

◦ h +g(B(un, un)) ◦ B(un, h)+
1

2
B(h, h)

)

(5.8),(5.6),(3.2)
= −

(

λ2

2
+

1

∆tn

)

(h, h) −

(

1

2
+

ε

∆tn

)

(h,−∆dh)

≤ −
1

∆tn
(h, h) .

since −∆d is positive (see Lemma 5.1).



188 C.M. ELLIOTT, B. GAWRON, S. MAIER-PAAPE AND E.S. VAN VLECK

In particular, for λ2 = 0 and n = 0 from (3.4):

(

11, H(B(u1, u1))
)

−
(

11, H(B(u0, u0))
)

≤ −
1

∆t0
(

u1 − u0, u1 − u0
)

. (3.5)

These results can be applied to Method (1):

If we discretize the functional (2.4), we obtain K : R
d2

→ R,

K(u) :=
λ1

2
‖u0 − u‖2

2 +
1

d2
(11, H(B(u, u))) .

The following corollary gives conditions under which Method 1 is justified:

Corollary 3.4. If the sequence (un) is generated from (3.2) with λ2 = 0 and the
first time step ∆t0 fulfills ∆t0 ≤ 2

λ1
, then

K(u1) ≤ K(u0).

In particular, the discretized version of functional (2.4) of Method 1 decreases at
the beginning of the iteration.

Proof. We set h = u1 − u0:

d2 (K(u1) − K(u0))
(3.5)

≤

(

λ1

2
−

1

∆t0

)

(h, h) ≤ 0,

if we choose ∆t0 ≤ 2
λ1

.

4. Convergence. Due to the conservation of the average value (Lemma 3.1) and
the gray-level shift invariance (Lemma 3.2) we can restrict to the subspace W =

{u ∈ R
d2

|(11, u) = 0} of functions with mass zero.

Theorem 4.1. Assume α ∈ [0, 1
2 ] and u0 ∈ W and let arbitrary positive constants

0 < c < C be given. If c < ∆tn < C for all n then the sequence (un) constructed by
(3.2) (with ε ≥ 0) converges to a unique critical point u satisfying the condition:

−∆du = D(u)u + λ2(u
0 − u). (4.1)

Proof. The concept of this proof is adapted from [4] and [8]. We define p = 1 − α
and p̃ = 2p. Then p ∈ [12 , 1] and p̃ ∈ [1, 2].

It is easy to see that for nonnegative numbers a, b the following inequality holds:

ap − bp ≤ |a − b|p.

We deduce from Hölder’s inequality:

ap + bp ≤ 21−p(a + b)p. (4.2)

This yields for nonnegative numbers a, b, c, d:

(ap − bp)2 + (cp − dp)2 ≤ |a − b|2p + |c − d|2p ≤ 21−p[(a − b)2 + (c − d)2]p. (4.3)

The bilinear form B(u, u) = (Dxu) ◦ (Dxu) + (Dyu) ◦ (Dyu) (see (5.4)) is a vector
with components of the form

(ui − uj)
2 + (uk − ul)

2

for some indices i, j, k, l ∈ 1, ..., d2. This follows from the simple structure of the ma-
trices Dx and Dy (see (5.2) and (5.3)), which approximate the differential operators
∂x and ∂y. We infer:
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1

d2
(11, B(|u|p, |u|p)) =

1

d2

∑

[(|ui|
p − |uj|

p)2 + (|uk|
p − |ul|

p)2]

(4.3)

≤ 21−p 1

d2

∑

[(|ui| − |uj |)
2 + (|uk| − |ul|)

2]p

≤ 21−p 1

d2

∑

[(ui − uj)
2 + (uk − ul)

2]p

= 21−p 1

d2
(11, B(u, u)p). (4.4)

Finally we obtain a discrete Poincare inequality:
There is a constant c1 > 0 so that for all p̃ ∈ [1, 2] and u ∈ W we have:

c1‖u‖
p̃
p̃ = c1

1

d2
(11, |u|2p) = c1

1

d2
(|u|p, |u|p)

(5.13)

≤
1

d2
(|u|p,−∆d|u|

p)
(5.6)
=

1

d2
(11, B(|u|p, |u|p))

(4.4)

≤ 21−p 1

d2
(11, B(u, u)p). (4.5)

We have α ∈ [0, 1
2 ] and therefore (see (2.3)):

H(s) =
1

2(1 − α)
γ

[

(

1 +
s

γ

)1−α

− 1

]

=
1

2p
γ

[(

1 +
s

γ

)p

− 1

]

(4.2)

≥
1

2p
γ

[

1 + ( s
γ
)p

21−p
− 1

]

= c3s
p − k (4.6)

for s ≥ 0 and some constants c3 > 0, k ∈ R.
From Theorem 3.3 we deduce that the sequence un is bounded in the p̃-norm:

J(u0) ≥ J(un) ≥
1

d2
(11, H(B(un, un)))

(4.6)

≥ c3
1

d2
(11, B(un, un)p) − k

(4.5)

≥ 2p−1c1c3‖u
n‖p̃

p̃ − k. (4.7)

Repeated use of (3.4) leads to:

J(un) + c2

n
∑

k=1

‖uk − uk−1‖2
2

∆tk−1
≤ J(u0).

Because J(u) ≥ 0 the sum converges for n → ∞, which implies

‖un+1 − un‖2
2

∆tn
n→∞
−→ 0.

Recalling ∆tn < C for all n we obtain:

‖un+1 − un‖2
n→∞
−→ 0. (4.8)

Due to c < ∆tn:
‖un+1 − un‖2

∆tn
n→∞
−→ 0. (4.9)
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Therefore we obtain for some positive constants c5, c6:

‖D(un)un − D(un−1)un−1‖2

(3.2)
= ‖

1

∆tn
A(un+1 − un) + (λ2I − ∆d)u

n+1

−
1

∆tn−1
A(un − un−1) − (λ2I − ∆d)u

n‖2

≤ c5
‖un+1 − un‖2

∆tn
+ c5

‖un − un−1‖2

∆tn−1
+ c6‖u

n+1 − un‖2 .

From (4.8) and (4.9) we infer:

‖D(un)un − D(un−1)un−1‖2
n→∞
−→ 0. (4.10)

The sequence un is bounded in the p̃ norm. Then a convergent subsequence (unk)
exists with

‖unk − u‖p̃
k→∞
−→ 0.

We write (3.2) in detail for unk−1:

Aunk + ∆tnk−1(λ2u
nk − ∆du

nk) = Aunk−1 + ∆tnk−1(D(unk−1)unk−1 + λ2u
0)

or

−∆du
nk =

1

∆tnk−1
A(unk−1 − unk) + D(unk)unk

+[D(unk−1)unk−1 − D(unk)unk ] + λ2(u
0 − unk).

Since we have 1 ≤ p̃ ≤ 2 the p̃ norm is dominated by the 2 norm. This follows
from Hölders inequality:

‖v‖p̃
p̃ =

1

d2
(11, |v|p̃) =

1

d2

d2

∑

i=1

|vi|
2p

≤
1

d2
(

d2

∑

i=1

|vi|
2)p(

d2

∑

i=1

1)1−p = [
1

d2
(11, |v|2)]p [

1

d2
(

d2

∑

i=1

1)]1−p = ‖v‖p̃
2 . (4.11)

Using (4.9), (4.10) and passing to the limit k → ∞ in the p̃ norm
we see that u fulfills (4.1):

−∆du = D(u)u + λ2(u
0 − u). (4.12)

Finally we show that (4.1) has a unique solution: Let u1, u2 be solutions of (4.1).

We consider the function f : R
d2

→ R given by:

f(u) = (∆du + D(u)u − λ2u, h)

with h = u1 − u2.
From (5.8) follows that

f(u) = −(11, g(B(u, u)) ◦ B(u, h) + λ2u ◦ h).

For the derivative we obtain:

Df(u) 〈v〉 = −(11, 2g′(B(u, u)) ◦ B(u, v) ◦ B(u, h) + g(B(u, u)) ◦ B(v, h) + λ2v ◦ h).
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Due to the mean value theorem there exists a vector ξ ∈ R
d2

with:

0 = f(u1) − f(u2) = Df(ξ) 〈h〉

= −(11, 2g′(B(ξ, ξ)) ◦ B(ξ, h)2 + g(B(ξ, ξ)) ◦ B(h, h) + λ2h
2)

≤ −(11, 2g′(B(ξ, ξ)) ◦ B(ξ, h)2 + g(B(ξ, ξ)) ◦ B(h, h)) ≤ . . .

using g′(s) ≤ 0 and (5.9)

. . . ≤ −(11, 2g′(B(ξ, ξ)) ◦ B(ξ, ξ) ◦ B(h, h) + g(B(ξ, ξ)) ◦ B(h, h))

= −(B(h, h), 2g′(B(ξ, ξ)) ◦ B(ξ, ξ) + g(B(ξ, ξ)))

≤ 0.

Note that the function b(s) = g(s) + 2g′(s)s is strictly positive for α ≤ 1
2 .

Hence it follows that B(h, h) = 0:

0 = (11, B(h, h))
(5.6)
= (h,−∆dh)

(5.13)

≥ c1(h, h).

We obtain h = 0.
Altogether we have shown that every convergent subsequence converges to the

same critical point. This, in turn, implies that the whole sequence converges.

Corollary 4.2. For λ2 = 0, i.e. for Method (1) the critical point u from Theorem
4.1 is the constant function with mass zero u = 0.

Proof. For λ2 = 0 (4.1) can be written as

(∆d + D(u))u = 0.

We deduce from (5.8):

(u,−(∆d + D(u))u) = (11, g(B(u, u)) ◦ B(u, u)) = 0.

Since g is positive and B(u, u) ≥ 0 in every component it follows

(11, B(u, u)) = 0

and like in the proof of Theorem 4.1 u = 0.

If we allow that the constants in the estimates may depend on the grid dimension
d, we get boundedness of the sequence un for all α ≥ 0:

Theorem 4.3. Under the hypothesis of Theorem 4.1 but with α ∈ (1
2 ,∞) the se-

quence (un) is bounded and has therefore a convergent subsequence. Every conver-
gent subsequence converges to a critical point u, i.e. a solution of (4.1). If these
critical points are isolated, the whole sequence converges to one of them.

Remark 4.4. In general the solutions of (4.1) are nonunique.

Proof of Theorem 4.3: This proof uses some ideas from Elliott [7], see also [8].

For any vector v ∈ R
d2

we have the estimates 1
d2 ‖v‖∞ ≤ ‖v‖1 ≤ ‖v‖∞. From

Theorem 3.3 we deduce that

d2J(u0) ≥ d2J(un) ≥ (11, H(B(un, un))) = d2‖H(B(un, un))‖1 ≥ ‖H(B(un, un))‖∞.

Since the function H(s) is non-negative and monotone increasing we have
‖H(B(un, un))‖∞ = H(‖B(un, un)‖∞). This implies:

C0 := H−1(d2J(u0)) ≥ ‖B(un, un)‖∞ ≥ ‖B(un, un)‖1.
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With ‖B(un, un)‖1 = 1
d2 (11, B(un, un)) we finally get:

d2C0 ≥ (11, B(un, un))
(5.6)
= (un,−∆du

n)
(5.13)

≥ c1(u
n, un) = d2c1‖u

n‖2
2,

where we used un ∈ W . Hence (un) is bounded. We claim next that every conver-
gent subsequence (unk) of (un) converges to a limit point u that fulfills (4.1). To
see this we can adopt the proof of Theorem 4.1 numbers (4.8)-(4.12) setting p̃ = 2.

Let P be the set of critical points. Assuming that all these critical points are
isolated we have some δ > 0 with

B3δ(ui) ∩ B3δ(uj) = ∅ for all ui, uj ∈ P, i 6= j.

Let σ(u0) ⊂ P be the set of limit points of (un). Suppose û ∈ σ(u0) and let (unq)
be a subsequence of (un) that converges to û. We will show now that then also
(unq+1) converges to û and consequently the whole sequence, i.e. σ(u0) consists of
the singleton û.

As in the proof of Theorem 4.1 repeated use of (3.4) and ∆tn < C for all n yields:

‖un+1 − un‖2
n→∞
−→ 0.

Therefore we may assume that ‖un+1 − un‖2 ≤ δ for all n. Hence (unq+1) ⊂ B2δ(û)
for all q > q0(δ):

‖û − unq+1‖2 ≤ ‖û − unq‖2 + ‖unq − unq+1‖2 ≤ 2δ.

Suppose (unq+1) does not converge to û. Then we get for some η > 0 a subsequence
(unk) ⊂ B2δ(û)\Bη(û) of (unq+1). This subsequence in turn possesses a convergent

subsequence with limit point u∗ ∈ B2δ(û)\Bη(û) ⊂ B3δ(û) but not equal to û,
which is a contradiction to û being isolated. �

5. Appendix. To compute the solution un+1 at a later time tn+1 we have to solve
a linear system of dimension d2 (see (3.2)) This can be done by using the conjugate
gradient scheme (c.f. [13]) or a fast fourier transformation. Note that this algo-
rithm is used for Method (1) and Method (2). In our computations we used
finite differences on a 50 x 50 grid for the spatial discretization. The linear system
in (3.2) is solved by the CGS-Method (iterative scheme).
We tested the following parameter constellations:

α γ method
(a) 0.5 0.01 almost TV
(b) 1 1 Perona-Malik
(c) 0.5 1 regularized TV
(d) 2 1 Geman-McClure

For example (1)(a) means: Use Method (1) and the parameters α = 0.5, γ = 0.01.
The free parameters are ε and λ1 for Method (1)(respectively λ2 for Method (2)).

We note that Method (a) is used to mimic the (unregularized) (TV)-model
(g(s2) = 1

|s| ). Method (d) is related to an energy introduced by Geman and McClure

[10], [11].
In order to compare the Methods (1)(a)-(2)(d) among each other, we use our

knowledge of utar. The closer u gets to utar at the stopping time t∗ , the better the
method works. We investigated the following three norms:

‖u(t∗) − utar‖1, ‖u(t∗) − utar‖2 , and ‖u(t∗) − utar‖∞.

Each table shows on the right the method used in bold face.
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λ1\ε 0 10−4 10−3 (1a)
0 0.153 0.284 1.03 0.153 0.283 1.03 0.147 0.276 1.03
0.1 0.0363 0.0425 0.162 0.0361 0.0425 0.165 0.0417 0.0486 0.176
1 0.0579 0.0642 0.108 0.0589 0.0653 0.106 0.0600 0.0666 0.107
10 0.0611 0.0677 0.101 0.0616 0.0683 0.101 0.0626 0.0695 0.101

λ1\ε 0 10−4 10−3 (1b)
0 0.133 0.254 1.02 0.135 0.256 1.02 0.157 0.288 1.04
0.01 0.0435 0.0791 0.459 0.0465 0.0852 0.500 0.0520 0.0936 0.592
1 0.0557 0.0616 0.105 0.0572 0.0632 0.104 0.0587 0.0650 0.107
10 0.0603 0.0667 0.103 0.0610 0.0675 0.103 0.0624 0.0692 0.101

λ1\ε 0 10−4 10−3 (1c)
0 0.166 0.302 1.04 0.166 0.302 1.04 0.166 0.302 1.04
0.1 0.0394 0.0687 0.416 0.0401 0.0696 0.401 0.0413 0.0697 0.424
1 0.0308 0.0380 0.180 0.0281 0.0374 0.197 0.0397 0.0472 0.184
10 0.0428 0.0483 0.143 0.0474 0.0530 0.133 0.0575 0.0638 0.113

λ1\ε 0 10−4 10−3 (1d)
0 0.0226 0.0462 0.290 0.0219 0.0448 0.255 0.0352 0.0516 0.216
0.1 0.0602 0.0605 0.132 0.0606 0.0665 0.130 0.0608 0.0670 0.128
1 0.0631 0.0699 0.105 0.0631 0.0699 0.106 0.0631 0.0700 0.104
10 0.0632 0.0700 0.103 0.0632 0.0701 0.102 0.0632 0.0701 0.101

λ2\ε 0 10−4 10−3 (2a)
10 0.0583 0.120 0.895 0.0582 0.120 0.891 0.0558 0.114 0.827
100 0.0224 0.0330 0.228 0.0224 0.0330 0.228 0.0224 0.0329 0.227
1000 0.0564 0.0652 0.110 0.0564 0.0625 0.110 0.0564 0.0625 0.109
10000 0.0625 0.0694 0.100 0.0625 0.0694 0.100 0.0625 0.0694 0.100

λ2\ε 0 10−4 10−3 (2b)
10 0.0571 0.113 0.719 0.0572 0.113 0.718 0.0534 0.106 0.608
100 0.0240 0.0440 0.236 0.0240 0.0442 0.236 0.0239 0.0440 0.236
1000 0.0514 0.0568 0.119 0.0514 0.0568 0.119 0.0514 0.0568 0.119
10000 0.0623 0.0691 0.102 0.0622 0.0691 0.102 0.0623 0.0691 0.102

λ2\ε 0 10−4 10−3 (2c)
10 0.129 0.245 0.994 0.129 0.245 0.994 0.129 0.245 0.994
100 0.0639 0.118 0.847 0.0639 0.118 0.847 0.0639 0.118 0.847
1000 0.0255 0.0345 0.229 0.0255 0.0345 0.229 0.0255 0.0345 0.228
10000 0.0565 0.0627 0.110 0.0565 0.0627 0.110 0.0565 0.0627 0.110

λ2\ε 0 10−4 10−3 (2d)
10 0.0194 0.0394 0.245 0.0197 0.0392 0.203 0.0395 0.0515 0.175
100 0.0596 0.0646 0.138 0.0596 0.0647 0.138 0.0598 0.0649 0.136
1000 0.0630 0.0696 0.111 0.0630 0.0696 0.112 0.0630 0.0696 0.112
10000 0.0632 0.0701 0.101 0.0632 0.0701 0.101 0.0632 0.0701 0.101

We see that for Methods (a)-(c), the best choice of the parameter λi, i = 1, 2,
is somewhere intermediate (not too small and not too large), whereas Method (d)
seems to prefer λi small. The range of ε > 0, where our numerical scheme converged,
showed minor differences in the result compared to ε = 0. In case of (2a) and (2c)
the result is almost independent of ε.

Since ‖.‖2 is the fidelity measure, it is natural to compare the different methods
with respect to that norm. We observed that the optimal ‖.‖2 value for each of
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the methods (1)-(2), (a)-(d) is within a small range from 0.03 to 0.07. Therefore,
from this point of view none of the methods seems to be significantly better than
the others. However, knowing the best choice of λ1/λ2 is a critical issue, since the
ratio of the worst over the best ‖.‖2 result reaches almost the factor 10. Here, as
pointed out earlier, identification of good parameters for the class of data under
consideration is necessary. In case this is not possible (d) could be the method
of choice for a real application, because here the results are uniformly quite good.
Also comparing the data as a whole, Method (2) is slightly better than Method (1).
Figures 3 to 6 illustrate our computations.

In Figure 3 we show the optimal result (2(a), ε = 0.001, λ2 = 100).
It looks kind of rough. This is especially true when compared with Figure 4

(Method 2, α = 1, γ = 100, ε = 0, λ2 = 1000).
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Figure 3. uopt
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Figure 4. usmooth

In Figure 4 the image got smoothed out much better, but the result is further
away from the target utar as we can see when looking at the difference

u(t∗) − utar

in Figure 5 and 6. We have ‖uopt−utar‖2 = 0.0329 and ‖usmooth−utar‖2 = 0.0395.



DISCRETE DYNAMICS PDE IMAGE RESTORATION 195

−0.4

−0.3

−0.2

−0.1

0.1

0.2

0.3

0

0 0

0.2 0.2

0.4
0.4

0.6
0.6

0.8

0.8

1

1

Figure 5. uopt − utar

−0.4

−0.3

−0.2

−0.1

0.1

0.2

0.3

0.4

0

0 0

0.2 0.2

0.4
0.4

0.6
0.6

0.8

0.8

1

1

Figure 6. usmooth − utar

For the spatial discretization we replace Ω = [0, 1]2 by a discrete grid of d2 points

Ωd = {z = (x, y) ∈ Ω | dx −
1

2
, dy −

1

2
∈ Z}

and order these grid points z1, ..., zd2 row-wise.

For any function v : [0, 1]2 → R we name the vector v ∈ R
d2

on the d2 grid points
as its discrete counterpart:

v = (v1, v2, ..., vd2)

with

v1 = v(z1), v2 = v(z2), v3 = v(z3),

Notation
Let v, w ∈ R

d2

be arbitrary vectors (corresponding to functions v, w : [0, 1]2 →
R). We will frequently use the following notation:
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diag(v) ∈ R
d2×d2

is the diagonal matrix

diag(v) =











v1 0 · · · 0
0 v2 · · · 0
...

...
. . .

...
0 0 · · · vd2











,

v ◦ w ∈ R
d2

is the vector valued product {viwi}i=1,...,d2. In fact, the point wise
multiplication of the functions v, w may be simulated by v ◦w = diag(v)w. For v ◦v
we also write v2.

For any function f : R → R we define the vector f(v) ∈ R
d2

by

f(v) = {f(vi)}i=1,...,d2.

We use the shortcut 11 for the vector (1, 1, ..., 1) ∈ R
d2

. It represents the constant

function u = 1. With the usual inner product in R
d2

( , ) we obtain that

1

d2
(11, v)

is the discrete analogue for
∫

Ω
v(x)dx. Hence the L2 product

∫

Ω
v(x)w(x)dx changes

to
1

d2
(11, v ◦ w) =

1

d2
(v, w).

The discrete p-norm (p ≥ 1) is defined by

‖v‖p =
p

√

1

d2
(11, |v|p) . (5.1)

Especially for p = 2 we have that ‖v‖2
2 = 1

d2 (11, |v|2) = 1
d2 (|v|, |v|) = 1

d2 (v, v).
In the case p = ∞ we set ‖v‖∞ = max

i=1,...,d2
|vi|.

Discrete derivatives and the discrete Laplacian:
Our goal is to discretize the Laplacian ∆ and the term ∇(ḡ(|∇u|2)∇u), where ḡ

is defined by
ḡ = g − 1.

To approximate derivatives at grid points we have to incorporate some grid points
in its neighborhood which leads to problems at marginal grid points. For any given
functions v, w on Ωd the general idea is to extend them beyond the boundary on a
greater grid Ωd+2 regarding the Neumann boundary conditions, to apply the usual
derivative operators and to restrict then the result on Ωd again. This restriction is
realized by a linear operator

R : R
(d+2)2 → R

d2

.

It removes all values of a given function v on the marginal grid points of the extended
grid. We call Rv the restriction of v.

For d = 3 we have for instance:

R(v1, ..., v25) = (v7, v8, v9, v12, v13, v14, v17, v18, v19).

Inversely for every linear operator

E : R
d2

→ R
(d+2)2

with
REw = w
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we call Ew an extension of w ∈ R
d2

.
In our problem we have to regard the Neumann boundary condition

∂νv = 0 on ∂Ω.

The derivative in outer normal direction in a point of the boundary may be approx-
imated by the difference 1

d
(vc − vm) where vm = v(zm) is the value at a marginal

point zm (those with distance 1
2d

to the boundary) and vc = v(zc) is its continua-
tion beyond the boundary. If we choose vc = vm we match the Neumann boundary
condition.

In other words missing neighbors are constructed by reflection of marginal points
at the boundary. This special extension of v is realized by a linear operator

E0 : R
d2

→ R
(d+2)2 ,

which we call the Neumann extension. By ”usual derivative operators” we mean
the matrices

Ds
x, Dd

x, Dl
y, Du

y ∈ R
(d+2)2×(d+2)2 :

Ds
x =

1

d











1 0 · · · 0
−1 1 · · · 0
...

. . .
. . .

...
0 · · · −1 1











, Dd
x =

1

d











−1 1 · · · 0
...

. . .
. . .

...
0 · · · −1 1
0 · · · 0 −1











,

Dl
y =

1

d













I −I · · · 0
...

. . .
. . .

...

0
. . . I −I

0 · · · 0 I













, Du
y =

1

d











−I 0 · · · 0
I −I · · · 0
...

. . .
. . .

...
0 · · · I −I











,

where I is the (d+2)×(d+2) unit matrix. They are the sinistral, dexter, lower and
upper derivative operators, respectively (see [9], Subsection 7.2, for more details).

For functions v with Neumann boundary conditions restricted to Ωd we can

approximate ∂xv ≈ RDs
xE0v. We see that Dx := RDs

xE0 ∈ R
d2×d2

is an endomor-

phism on R
d2

. In the sequel we use Dx as (sinistral) approximation of ∂x. An
easy calculation gives:

Dx =
1

d











M 0 · · · 0
0 M · · · 0
...

...
. . .

...
0 0 · · · M











(5.2)

with

M =











0 0 · · · 0
−1 1 · · · 0
...

. . .
. . .

...
0 · · · −1 1











∈ R
d×d.

Similarly, for any given functions v, w on Ωd (w with Neumann boundary con-
ditions) we have approximately ∂x(v ∂xw) ≈ RDd

x(Ev ◦ Ds
xE0w). Hence for the
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discretization of ∂x(v ∂xw) we use

RDd
x(Ev ◦ Ds

xE0w) = −D⊤
x diag(v)Dxw.

We call −D⊤
x diag(v)Dxw ∈ R

d2

the discretization of ∂x(v ∂xw) on Ωd.
In the same manner we receive as discrete version of ∂y for functions with Neumann

boundary conditions restricted to Ωd the matrix Dy := RDl
yE0 ∈ R

d2×d2

:

Dy =
1

d











I −I · · · 0
...

. . .
. . .

...
0 · · · I −I
0 · · · 0 0











. (5.3)

Here I is the d × d unit matrix. The discretization of ∂y(v ∂yw) on Ωd is:

∂y(v ∂yw) ≈ RDu
y (Ev ◦ Dl

yE0w) = −D⊤
y diag(v)Dyw.

Now we are able to construct the discrete Laplacian subject to Neumann boundary
conditions. We can write ∆ in the form

∆w = ∂2
xw + ∂2

yw = ∂x(v ∂xw) + ∂y(v ∂yw),

with v = 1. Hence the discrete Laplacian ∆d ∈ R
d2×d2

is given by

∆d = −D⊤
x diag(11)Dx − D⊤

y diag(11)Dy

= −(D⊤
x Dx + D⊤

y Dy).

For the discretization of |∇v|2 we define a vector valued symmetric bilinear form

B : R
d2

× R
d2

→ R
d2

by

B(v, w) = (Dxv) ◦ (Dxw) + (Dyv) ◦ (Dyw) . (5.4)

Especially B(v, v) may be seen as the discrete version of |∇v|2. This is justified by
the approximation:

|∇v|2 ≈ R[(Ds
xE0v)2 + (Dl

yE0v)2] = (RDs
xE0v)2 + (RDl

yE0v)2

= (Dxv)2 + (Dyv)2 = B(v, v).

Using this method and with the definition of the symmetric d2 × d2 matrix

D(w) := −D⊤
x diag[ḡ(B(w, w))]Dx − D⊤

y diag[ḡ(B(w, w))]Dy (5.5)

we see, that ∇(ḡ(|∇w|2)∇w) is discretized by

D(w)w.

The following identities for v, w ∈ R
d2

essentially accord to integration by parts.
They are needed at several occasions

(11, B(v, w)) = (11, Dxv ◦ Dxw + Dyv ◦ Dyw)

= (w, D⊤
x Dxv + D⊤

y Dyv)

= (w,−∆dv) (5.6)
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(11, ḡ(B(v, v)) ◦ B(v, w)) = (11, ḡ(B(v, v)) ◦ [Dxv ◦ Dxw + Dyv ◦ Dyw])

= (w, D⊤
x [ḡ(B(v, v)) ◦ (Dxv)]

+ D⊤
y [ḡ(B(v, v)) ◦ (Dyv)])

(5.5)
= (w,−D(v)v) (5.7)

(11, g(B(v, v)) ◦ B(v, w)) = (11, B(v, w) + ḡ(B(v, v)) ◦ B(v, w))

= (w,−∆dv − D(v)v) (5.8)

We also need:

B(v, v) ◦ B(w, w) − B(v, w)2 = [(Dxv) ◦ (Dyw) − (Dxw) ◦ (Dyv)]2. (5.9)

Further we deduce from Dx11 = Dy11 = 0:

∆d11 = 0 and D(v)11 = 0. (5.10)

For some technical reasons we need that the restriction of −∆d on the subspace

W = {v ∈ R
d2

|(11, v) = 0} consisting of functions with zero mass is strictly positive.

To that end we note that the discrete Laplacian ∆d : R
d2

→ R
d2

with Neumann
boundary conditions has the eigenvectors emn, m, n = 0, ..., d − 1, given by

(emn)j = cos(mπxj) cos(nπyj), j = 1, ..., d2 (5.11)

where (xj , yj) are the coordinates of a grid point zj ∈ Ωd. The corresponding
eigenvalues are

µmn = −
4

d2

(

sin2
(mπ

2d

)

+ sin2
(nπ

2d

))

. (5.12)

Thus we have µmn = 0 for m = n = 0 and otherwise µmn < 0.

Lemma 5.1. For v ∈ W and some constant c1 > 0 we have:

(v,−∆dv) ≥ c1(v, v). (5.13)

Proof. −∆d is symmetric, so we have an orthonormal basis of eigenvectors {e1, ..., ed2}.
We denote the corresponding eigenvalues according to (5.12) as µi, i = 1, ..., d2.

−∆dei = µiei, i = 1, . . . , d2.

Ordering them to µ1 ≤ µ2 ≤ . . . ≤ µd2 we get: µ1 = 0, e1 = 11 and 0 < µ2 ≤ µi for
2 ≤ i.

Suppose that v =
d2
∑

i=1

aiei ∈ W . Now we immediately obtain:

0 = (11, v) =

d2

∑

i=1

ai(e1, ei) = a1

and hence

(v,−∆dv) =





d2

∑

i=2

aiei,

d2

∑

i=2

aiµiei



 ≥ µ2(v, v).
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