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Abstract

A nonlinear multicomponent diffusion equation incorporating uphill
diffusion and capillarity effects is studied. In the binary case the
problem is the Cahn-Hilliard equation for a regular solution free
energy. Global existence is proved. It is shown that the deep quench

limit is a parabolic type obstacle problem.



§1 Introduction

This paper is concerned with a system of nonlinear diffusion
equations modelling isothermal phase separation of an ideal mixture of
N (22) components occupying an isolated region Q c R? (d = 1,2,3).
(Morral and Cahn [19711, Kirkaldy and Young [19871, Purdy [19901).
We begin by deriving the equations in the framework of
non-equilibrium thermodynamics. (c.f. de Groot and Mazur [1962],
Gurtin [1988].) The basic physical quantities, defined for all x ¢ QO
and all time t, are the mass fraction ui(x,t), the mass
flux J_)i(x,t) and the chemical potential ui(x,t) for each
component i = 1,2. . N together with the total free energy
G(x,t). Clearly, by definition,

N
Z ui(x,t) =1 xe), t=20 (1-1a)
i=1
and
Osui (x,t) <1 xeQ)l, t=20 (1-1b)

The law of mass conservation is written as, for any subregion R

of Q,

%
T‘ldT f ui(x,t) dx = f J. . ;) ds Vi (1-2)
r IR

- . s s
where Vv denotes the unit outward pointing normal. We use the

. -
notation || for N-vectors |, Z for d-vectors and e for



the scalar product of two vectors. It follows from summation of

(1-2) over i that in order for (1-1a) to hold

N
9
Z Ji(x,t) =0 xeQ, t>0 (1-3)

—
1
—

The homogeneous free energy of the mixture with composition
u is given by ‘P(u(x,t)) where Y [RI:LI > R is a prescribed
mapping. In order to model capillarity or interfacial energy associated
with large gradients of the composition we follow Cahn & Hilliard

[19581 and use the gradient energy % I'Vu - Vu where
N
I = {I"ij}ij:1 is constant positive semi-definite fourth order

tensor with I'ij(= I'ji> being d x d matrices and

N
(rvu) :er,, Vu, ; F'Vu-Vv = %rij Vu Vv, .

The total free energy is taken to be the sum of the homogeneous free

energy and the gradient energy so that
Gix,t): = Y(ux,)) + lrvue-vu (1-4)

Thus, as in the Cahn-Hilliard model for phase separation in a

binary mixture, we have a total free energy functional & (-) given by

Ew: = fo[‘P(u) + 2> I'Vu-Vu]dx . (1-5)



In the theory of multi-component diffusion without capillarity

the chemical potentials for each component i is given by

k? = o Y (1-6)
where c)i(-) denotes the partial derivative with respect to
component i . With capillarity effects the vector yu of chemical

potentials is taken to be the functional derivative of &(-) evaluated

at ue¢ H(Q) so that

<, m>: = <D&W),n>

V1 e H(Q) (1-7)

= (rvuva) o« (0 )

Formally it follows that the relationship between # and u is given

by the boundary value problem

p=u - v(rva) xeQ, t>0 (1-8a)

(rvu), - Vv =0 Vi x€dQ, t>0 (1-8b)

The constitutive relation for the mass fluxes is assumed to be of the

isotropic form

N N
Ji = _Z Li_Vu. = - (Lvu)i (1-9)



where L is a symmetric N x N matrix with constant elements
Lij (L = {Lijl} is a fourth order tensor) which, for (1-3) to
hold, is assumed to satisfy

L e=0 (1-10)

where {e }i =1 Vi . Thus the diffusion equations arising from the

mass balance equations (1-2) become

ou _
S = v(Lvy) XxeQ, t>0 (1-11a)

coupled with the no mass flux boundary condition

(Lve) -3V = o Vi XcdQ, t>0 (1-11b)

In order for this diffusion process to be dissipative we also assume

that L is positive semi-definite. This yields the property that the

total free energy functional is decreasing in time viz

{D& (), u > <“’“t>

dé (u(t))
dt

(0, vLVy) (-Lvg, Vi) <o

Furthermore the following version of the second law of

thermodynamics



d JG(x,t)dx + J [F’J\, -u - (I‘Vu)v]ds <0 (1-12)

dt - o
is satisfied for each subregion R of Q , where we have set
7o d > .
{J\)}i = J,- v and {(F Vu)v}i = > ij u;-v o Inequality

j=1
(1-12) is a generalisation to multi-component diffusion with
capillarity of the Clausius-Duhem inequality for binary diffusion with
capillarity given by Gurtin [1988]. To see that (1-12) holds,
observe that the left hand side can be rewritten using (1.4),

(1.8) and integration by parts as

J ut'u + J u.JV
r oR

and using (1.9) , (1.11a) and an integration by parts we are left

with

—J LVy - Vupdx
=

Thus the constitutive assumption that L is positive semi-definite

yields the desired inequality.

We now make further constitutive assumptions. First we

assume a 'regular solution' for the homogeneous free energy: -

N
_ _ 1 T _
¥ (w: = 62:1uilnui S u Au (1-13)
l:



where © is the absolute temperature and A is a constant

symmetric NxN matrix with largest eigenvalue > 0. Here we

N
have taken the Boltzman constant to be 1 so temperature is scaled
accordingly. It follows that there exists a critical temperature
6_ so that for 6 greater (lesser) than ©_ the homogeneous free

energy Y() is convex (non-convex).

Second we assume that I is vy I so that

Eu: = J [IP(u) + X IVuIZ:Idx. (1-14)
Q

Third we assume that L is constant, that the kernel of L is

one-dimensional and that

Lyn-n = 4 Pn-Pq (1-15)

where

It is convenient to introduce the vector of generalised chemical

potential differences w defined by
w:=Pp . (1-16)

The equations (1-7) and (1-10) become



w =P(6g(w - Au) - yAu xeQ, t>0 (1-17a)

v & oo XedQ, t>0 (1-178’
where {¢(u)}i: = glu) = ¢'(u)-1; ¢(): = rlnr,
and AU - v(Lvw) xeQ, t>0 (1-18a)
(Lvw), = o xcdQ, t>0 (1-18b)

Here we have used the facts 2 w =20 = E u-1/. -

The principal result of this paper is an existence theorem for

the system (1-17, 1-18) with the initial condition

u(x, 0) = u_ . (1-19)

The major difficulty is that ¢(r) is singular at r=0 and (1-17)
can have no meaning if u = 0 in an open set of non-zero
measure. Also there is no maximum principle which precludes
this. However it is precisely this form of ¢(-) that maintains the
constraint (1-1b) on the composition. Our result is stated as

follows. We use the notation f-'t] = fﬂn dx/ 1Ql .
Theorem 1

Let T>0 and wyeK ={nc¢H'@:>a=Y%, n=0}.



Suppose that Je < f u, < (1-8)e then there exists a unique

pair {u, w} such that

uecloT(H W) ]n L0, T; H' (@)

du 20,1 (H@) ), & Fer*(0TH @)

w = w—JEWG Lz(O,T;Hi(Q))
/£ wel® (0, T; H'()

J£o g @ ¢ L°(0,T;L%Q)
u(,0) =u

O ’

u(,t) e K Vt>0 , fu(-,t): :Fuo

and for all Ee¢ C[O,T1 and 7 e H' (Q)

T
J ew {4 <und> o« (Lvw,vn)}dt =0 (1-20a)
(0]

T
J e {(w-0pw+Au-e>(6p@ - Au), 1) - v(Vu, va) }dt =0_ (1-200)

Based upon this existence theorem it is possible to justify the deep
quench limit problem © > 0 studied by Blowey and Elliott [1991a,b]
for binary diffusion with capillarity. See also Oono and Puri [19881.



Theorem 2

Let T > O and u, e K . There exists

pair {u,w} such that

a unique

uec[oT; (H'@) ] n1®(0,T; H (D)
du

Feron(E@)) |, vE . 1201 HW)

Wi=w- JC wel?(0T:H' Q) , /fwel® (o.T:H' ()

and for Ee¢ CI[0,T]1 and 17 ¢H!(Q)

T
d = _
Jg(t){a<u,n> + (Lvw, va)}dt=o0 (1-21a)
o
and for E(20)e¢CI0,T) and ne<K

T
J E(t){y(Vu, vy - Vu) - (Au - ezAu +wW,q - u)} dt =2 0 - (1-21b)
o

- 10 -



The layout of the paper is as follows. In Section 2 an
approximation to (1-10) is studied. Using estimates derived in
Section 2, Theorem 1 is proved in Section 3. The proof of Theorem 2

is given in Section 4.



§2 A regularised problem

We shall consider a family of regularised problems

parameterised by £ and obtain the existence result by passing to

the limit g = 0. For each ¢ small and positive we define
Inr r 2 ¢ (2_1)
¢E(r) =
(lns -1+ I—;) r <e
We set

The regularised equations are:

‘;_t‘f = v(Lvw) (2-2a)
ws=—YAue+9¢8—q8+ez(q8-6¢8) (2-2b)

holding in  Q for t > 0, together with the boundary conditions
on 9Q

(Lvw), =0 M =0 (2-20)

and initial condition

- 12 -



w(-,00=u ) (2.2d)

By using standard arguments based on Galerkin approximations
is easy to show that (2.2) possesses a pair of solutions

it
{us, wg} such that for each T > O,
100, T H @), di¥/de « L2 (0, Ty(H' @)))
wt < 12(0,T; H ()

and for a.e. t ¢ (0,T) equations (2-2a,b,c) hold in the following

weak sense: for all 1 ¢ H(Q)
% <u€; 1 > + (L VWS,V'I]) = 0 (2-3a)
(ws,n) = Y(VuE,V'n) + (9 ¢£— qs— eE(e 8 - qs),n). (2-3b)

For our purposes we wish to obtain sufficient estimates independent

of ¢ in order to pass to the limit.

We define a regularised homogeneous free energy by

rinr r e
P¥(r): = (2-4)
2
( %E— + r lne - —3— ) r<ce

- 13 -



N
€
T =02 ¢'a) - LiTar (2-5)

Lemma 2-1

There exists an €y > O and k > 0 such that for all ¢ < £

€
Pmz-k vreRY suchthat >r- Y (2-6)

Proof

Observe that

N
i - 2 [0 ¢ -nr2l] vregN
i=1

Since for gy < Ve,

$°(r) > - Ve

3
we need only consider estmating Y (r) from below for

max |r|> 1.
i 1
Set

- 14 -



It follows that

1- (N-1) <R < Bm
Rm m (N-1)
and
€ R 2 2, 2
Y > -omN-D /% + 6 ( m e R Ine - %) - NX,(N-1)2R2 /2.
€

Choosing ¢, sufficiently small (depending on 6 , N and )\A)

gives the result.

In the next proposition we show that (2.2) possesses
natural mass conservation and energy decay properties. We introduce

the total regularised energy by
3
es(v):=J [Z1wvi® + Yw ]ax (2-7)
2
Q

Proposition 2-1

a) Conservation of Mass
S - -
](u (.,t) = ]Cuo (2-8a)
b) Conservation of Total Local Mass

zus(x,t) = N xeQ ,t>0 (2-8b)

- 15 -



c) Energy Decay

d &  + JLVWE'VWS dx = O. (2-8¢)

d) Conservation of Total Chemical Potential
> whix,t) = 0 (2-8d)

Proof

a) Taking 1 e = {Sik}i for each k yields (2-8a)

immediately.

b) Setting

and taking 1 = 1 e (k=1,.N)  with 7 « H(Q) in (2-2a,b)

we obtain after summing,

%lt_ls,n> + (LYW®,Vq)=0
(Wn) + v (vu®,vm)=o0

Since

- 16 -



we find that these linear equations have the unique solution

ut(x,t) =1, W' (x,t) =0

which implies (2-8b).

c) By differentiating (2-7) with respect to t we find

that the regularised energy satisfies

d&% ,.en _ (_ 3 ss_eéug

(we s e (3 (o) -a), &)

£
=(W£’g—lt£) + (E(eyf—qg),%% )

Since ut

1]
——

and (2-3a) holds we finally obtain (2-8c¢). O

Proposition 2-2

There exist constants Cj(j=1,2,3) depending only on the

initial data and independent of ¢ so that

_17_



t
v oule) 12+ J | v wé 2 dt < C (2-9a)
o

fut@ I, =< C (2-9b)

1; {][[‘“f 1 ][[uf -1]+} < C3/<Gllnel) (2-9¢)

Proof

These estimates are consequences of the fact that &°(.) is a
Lyapunov functional for the system. Integrating (2-8c) with respect

to t and using (1-15) yields

t

€ 2
v V@2 + 2, J

€
|V we (o) [®de + J ¥~ (uf(t) dx < es(l.b). (2-10)
o Q

Inequality (2-9a) follows from Lemma 2-1 and the fact that,

since {u_} ¢ [0,11,
O'i

€
1
L)LP (uo) < -5 (Auo, uo)

Noting (2-8a) we obtain  (2-9Db) by a direct use of Poincare's

inequality.

- 18 -



Turning to (2-9c), we first observe that (2-9b) implies that

(Au®, uf) < Cc VYt

Since
Jqf(uﬁdx = -elal/e + eJ g, (uf) dx
Q [uf<s]
> -0|Ql/e + OBlne J uigdx + ©O¢ lne 1Q1 -06¢ 1Q1I,
2

tuf <01
1
it follows from the inequality

€
J ¥ @) dx < C
Q

that

Mz

—
1]
.

][[_uf(.,t)L < c/(ellnsl)

for &< g, sufficiently small.
Finally we have that, using (2-8b),

_19_



£ _
[ui _1:|+ = ﬁl' Z u? (x,t) dx

=i
[uf> 11
1
< 1S [-ufl, 4
r | &= Y e 9X
et > 11
1
< Z :|: -u®]
j#i b
a
Proposition 2-3
There exist constants C 4 and C5 depending on the
initial data and T such that
T
t Ivwe (o) ® + uvgﬁell2 ds = C (2-11)
w o s dt 4

etll(¢s—f¢e)—e(25 —{E,ﬁ)llz < C (2-12)

Proof

Differentiating (2-3b) with respect to t and taking

£
= du yields

LT3

- 20 -



(dw®  dufy | YIvdu 2 o (pad) du’ duc )

S Ag ) & ((aes), W),

where D(uf®) is the diagonal matrix with entry {6 @' (u_s)} .
€ i

Since ;g' (-) =0 and Ue(x,t) =1, it follows from the above

equation that

o

€
Ivwe(e) 2 -+ Y||vfi—'t1||2 < (aduf du® )

N =
[o N

t

_ Since taking 7 = A-g—%s in (2-3a) yields

du® du® - - € du®
(Agt &) (-Lvw, va gt)
<c MLl Ivws ) | vy
A de "

we obtain after multiplying by t that
d €2 duf® 2 €12
dlenvwi?] + elvd? < csd IVw

Inequality (2-11) now follows after integrating with respect to

t and noting  (2-9a).

- 21 -



Turning to the proof of estimate (2-12) we set

g8 = ¢° - (>¢)e andtake 1 - € - f&° in (2-3b) yielding
6llg" - f£gI7 + y(vu®, vge)
= (W fwh g - fef) ¢ (- S, g - fe)
+ y(evus,vgt) /N
Therefore it holds that
ollg” - F&°I” < c(iw® - fwii? « lg° - fq°I?)

and the estimates (2-9b) and (2-11) together with the Poincaré

inequality imply (2-12).

We are now in a position to state the crucial estimate which

will allow us to pass to the limit.

Proposition 2-4

There exists a constant C6 depending on T, the initial data

and © such that for £ sufficiently small

- 22 -



Ig"I < c et (2.13)

Proof
Recall that there exists 8¢(0,1) such that for each iel1,N1]
£
8§ < fuf < 1-5. (2-14)
Our estimates will be independent of 3 but will depend on 3
and ©; in particular they require 3 and S to be positive.

We shall fix t > 0 and suppress the dependence on t in the

following.

Set

Q% = {xe Q: max u® > 1 + Cs } (2-15)
IsisN ! Ollnel

It follows from (2-9c) that

( Cs )/2 Q%1 < (max u.e-l)dx
Ol11lnel

6 llnel

- 23 -



and we have

€ 1Ql
AT < K G 22 (2-16)
Set
€ _ S P
Qi:~ {XGQ : LliE > —2—}\ & (2-17)
and assume that £ is sufficiently small so
C 8
3 < o
6llne! 4 (2.18)

Noting (2-14), (2-9¢) and (2-18) we find that

JC min {uiE , 1} = fuis - Jﬁ[uf— 1]+

0
|w

> 3 - 3 >
Ollnel

But also, setting

- 24 -



we find that

:i:min{uis’l} < TAEL L TAZT 5 A
Ie] Ie] ZTOY

€
IQi ! . Told!
Q1 1Ql

N

The above inequalities together with (2-16) imply that

Toldl
1
Q1

(2-19)

ool

provided that £ is sufficiently small so that

K, <

(GIlnel)l/2

ooje”

Since ¢E(~) is monotone increasing we have that, using (2-18),

1
. X e C 7o
¢e(ui ) < Pe (lr:iaSN uj ) = % (1 i (ellsnsl) )

< ln(1+81/2) o1

on the complement of Qf . It follows that on QiE ,

- 25 -



gfi =g, - > g > In(3) - In(1+572). (2-21)

£
Let z°: = J[gs . If zis < 0 then from (2-12) and (2-21)

and this implies

&2 o g ¢t (2-22)

where K2 depends on § . If z° > 0 then

N
0= ][ z gf implies that

and by (2-22),
1

1257 < N-D? Kt
1

- 26 -



Thus we have shown the existence of K3 such that

IJCgflz < K t7! i=1,2,... N (2-23)
It follows from (2-12) that
2 _ 2
Jgf dx < C 7! 4 ml(Jng)
1
O
_1 _
< K4t . (2-24)
Set
AE. . € - max € -
QFf: = {er. u N } . (2-25)

N €
Since ¢_(-) is monotone we have that on Q,

’

g, 20 and P (uis) > ¢s(

)

ALy

SO

8 = [¢s<113) B E¢E]+ on 65,

which yields

- 27 -



J (gig)z dx = J (gis)Z dx = j [¢e (#) - E¢s]+2
Q 0 0¢
and summing this inequality over ij=1,2,... N, using (2-24),

JQ [%(ﬁ) - 2¢8]+2 dx = % Jﬂ(gs)z dx < K_t!. (2-26)

’

N
lTjast & % (121?:1\1 uj) ) IL\J Z ¢8(u§)

N
where u® = max y® and we have used the fact that Z uf=1 .,
m o jgjeN j=1

Hence JQ[E #° - 7

AL
1
+ N

o

X

A
—

- 28 -



2 max £\ 2 2 -1
< N J 15N (gj> dx < N K t
Q
and this together with (2-26) yields

2
JQ (E¢E‘¢e(§)) dx < Kt (2-27)
Combining (2-24) and (2-27) we obtain

N
> e WiIZ w1302 < Kt (2-28)
i=1

which completes the proof of the proposition.

- 29 -




§3 Proof of Theorem 1

It follows from the results of §2 that there exist

{uE,ws} uniformly bounded independently of 5 in the spaces,

@ ccloT; (H@)]NL2(oT; H @) (3-1a)
/T du®/g e L2(0,T; H'@) (3-1b)
w-w - fwel?(0T; H W) (3-10)
£ w 1°(o,1; H@) (3-1d)
such that
£ W« 120, T L2@) (3-2)
u®(-,0) = ug (3-3)

and for each £E<¢C[0,T] and 7 ¢ H! (),

T

J E(t){%(ug,n> + (LVWS,VT])}dt=O (3-4a)
o

- 30 -



T

J g {(we- 08" + Au® - eX (04 ) - Au®), 7) (3-4b)
o

- v(vu, vn)}dt = o

Thus passing to the limit ¢ =0 in (3-4) using (3-1) and
(3.2) yields a pair {u,w} satisfying (1-20) provided we
can show that
T T
lim J E(t) (¢S(u8), 7|) dt = J E(t) (g (W), n) dt (3-5)
€0
(o) o
It follows from (2-9¢c) that u = lim u® satisfies
€E>0
{u}i e [0,1] Vi (3-6)

and from (3-2) that there exists ¢* such that

It ¢* € LOO(O, T; Lz (Q))
and

T T

JL‘“O J E(t) (¢8(us), 11) dt = J E(t) (¢*,1|)dt.

o (0]

- 31 -



Hence in order to obtain (3-5) we have to show that
Bl o= s (3-7)
Since (3.2) holds it follows that for each M > 0O
t| [ g, @] > M]| < 1:;_2 : (3-8)

Set

F,,("): = max {-M, min {M,v} } . (3-9)

For each t > O it holds that, using (3-8),

T
|J £) (g, () - F, (g W), n) dt|

T

T

< |J E() J (Ig,®1 + M)Inl dx d |

T [I¢e(uf)|>M]
s €@ IElwlnllo /M.

Since

- 32 -



8li;n0 FM(¢E(uf)) = Eli_r)no Fos (¢(ui€))

= F, (¢(ui) )

it follows that the left hand side of the above inequality

converges to

T

|J e (8- Fylp)),n)dtl < c@lgl=lnle
T M

Taking 71 = F,, (p(u)) we find that

T
J IE,, Gu)IZ dt < C) VM

T

which implies

T

J Il dt < Clo)

T

and

;zS:'e = ¢(ui) on (t,T)

This completes the proof of (3-7) since t is arbitrary.

In order to prove uniqueness we use the idea given in Blowey

N
and Elliott [1991al. Let f = {f.}__ where
iJi=1

- 33 -



1 ! _ -
fe (H @) . <(f,1>=0 ; Zfi-o. (3.10)
We introduce the Green's operator G defined by: -

GfcH'(Q , >XGf=0, J:szo (3-11a)

(LvGe, va) = <f,a> VacHQ (3-11b)

That (3-11) defines a unique G f for an f satisfying (3-10)

follows from (1-15) and the Lax-Milgram theorem.

Let {zu, zw} = {ul— u? , wl - wz} be the difference of
two pairs of solutions to (1-20). Using the monotoncity

of ¢(-) we find from (1-20b) that
u ;12 u w u 2
vivat 2 < (&%, &%) o« A, 0",

Since, by (1-20a),

it follows that

1 d u 2 u 12 u u
—cW“LVG* I + yllve |I© < XA(LVGz- ,V-z-).

A standard Gronwall argument yields uniqueness since

' (0) = 0.

_34__



84 Proof of Theorem 2

Denoting by {ue s we} the solution of (1-20) for fixed 6,
it is clear that from the estimation given in the proof of Theorem
1 that we may pass to the limit.

{u, w} = Jim {u®, w°}

and we need only justify the variational inequality (1-21b) and the

uniqueness of the limit.

Let 7%« K" and 1|a 2 ae for some small positive

o. Since E(na—ue) = 0 we have
0 = (na—ue,egv) Vvel2Q) .

Furthermore ¢(1]°L) « L2 (Q) because %2> ae . Hence it
follows from (1-20b) and the monotoncity of ¢(-) that for
for E(20)<C[0,T],

T
J E(t) {Y(Vue, Vno‘) - (we + AU®, 1% - ue)} dt
o

T
J E(t)y(Vue, Vue) dt
o

| eofol6m) - o). )

T
- J Ew o (g (n*), n* - u®) dt
o

- 35 -



T

T
p J E(t)y(Vue,Vue) dt - J E(t)e(;é (na), 1~ - ue) dt.
o

o

By the weak and strong convergence properties of {ue, We} as

© > 0 we may pass to the limit and obtain,

T
{ E(t){y(Vu,Vna) - (w+Au,1|°‘—u)dt
o

T
= lim J E(t){y(Vue, V‘ﬂa) - (w9+Aue, 1|°C - ue)} dt
-0 o

T

T
> lim inf J £t) v (vu®, vu®) dt - lim J ewe(p(n®) n* - u®) dt
>0 J, e—>0 Jg

T

> J ) y (Vu, Vu) dt.

(o)

Furthermore, since any 1 ¢ K* can be approximated by na ¢ K.
For small o with 1% > o e, we may pass to the limit «=0

in the left hand side of the above inequality and obtain (1-21b).

Uniqueness is proved in the same way as for

the © >0 problem.
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