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0 Uncertain inference

It has been a standard response to Hume’s criticism of induc-
tion that, of course, inductive arguments are not deductively
valid, but they are inductively valid. An inductive conclusion
c does not follow with certainty from the empirical assump-
tions or premises a. At best, c is partially deducible from a.

The conclusion of a valid inductive argument is not proved
from the assumptions of the argument, but it is said to be
confirmed by them. In what philosophers call inductive logic
or confirmation theory, it is usually taken for granted that the
degree of deducibility or the uncertainty of an inductive argu-
ment from a to c is best measured by the probability p(c |a).
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0 Confirmation is not partial deducibility

The hypothesis c is confirmed by the evidence a, and has the
degree of confirmation σ(c,a) = p(c |a) − p(c), if & only if
a is relevant to c, that is, if p(c |a) > p(c |⊤) = p(c). There
are other measures, for example p(c |a)/p(c), but none of
them is a measure of degree of deducibility. In particular,
probabilistic independence or irrelevance, p(c |a) = p(c) (or
σ(c,a) = 0), is not a generalization of logical independence.

The probability p(c |a), often identified with the degree of be-
lief c(c |a) that c enjoys on a, may be substantial even when
a intuitively counts against c. The function p(c |a) measures
degree of deducibility, but it does not measure confirmation.
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0 The aim of this talk

Several serious mistakes have led to this divorce between logic
and confirmation theory. My aim today is to expose and to
correct the most interesting mistake — the uncriticized as-
sumption that the probability p(c | a) is the best generaliza-
tion of the relation of deducibility; that is, that p(c | a) ade-
quately measures the degree to which c is deducible from a.

There are at least five other functions φ definable in terms of
p that generalize deducibility in the sense that φ(c | a) = 1
whenever c is deducible from a. I shall suggest that one of
them, the function q(c | a), which I shall call the deductive
dependence of c on a, combines the best features p and σ.
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1 Elementary theory of probability

We begin with an uninterpreted abstract binary measure func-
tion p on an algebra of sentences or propositions. It will be
assumed that p obeys the axiom system for probability given
by Popper in The Logic of Scientific Discovery, appendix ∗v.

This system is more general than the system of Kolmogorov
(and more general even than those of Hosiasson-Lindenbaum
and of Rényi). In particular, p(c |a) is defined for all a, c,
even inconsistent a, and p(c |a) = 1 whenever c is deducible
from a. It follows that p(c |⊥) = 1 for all c, and hence
that the complementation law p(c |a) + p(c′ |a) = 1 fails
when a ≡ ⊥. The identity p(b |b) = 1 is universally valid.
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1 Popper’s axioms

A0 ∃c∃dp(a | c) ̸= p(b | d)
A1 ∀b(p(a | b) = p(c | b)) ⇒ p(b | a) = p(b | c)
A2 p(a | a) = p(c | c)
B1 p(ac | b) ≤ p(a | b)
B2 p(ac | b) = p(a | cb)p(c | b)
C p(a |a) ̸= p(b |a) ⇒

p(a | a) = p(c | a) + p(c′ | a).

When factored by a ∼ c =df ∀b(p(a,b) = p(c,b)) (indis-
tinguishability), the domain is reduced to a Boolean algebra.
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1 Probabilistic definition of deducibility

We shall assume here that logically distinguishable sentences
are distinguishable in measure; that is, that if a and c are not
interdeducible, then p(a | b) ̸= p(c | b) for some sentence b.
We do not make the stronger assumption that p is a strictly
positive or regular measure (sometimes called a Carnap func-
tion). That is, p(c |a) = 1 is a necessary condition, but not
always a sufficient condition, for the deducibility of c from a.

The universal identity ∀b p(c | ab) = 1 is the simplest defini-
tion of the deducibility of c from a in terms of the measure p.
But since ∀b p(c | ab) = r implies that r = 1, degrees of de-
ducibility can be introduced only by generalizing p(c | a) = 1.
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1 A few words from W.E. Johnson’s Logic

The position assumed by probability in logical discussion has always
been dubious. On the one side the topic has been assumed to be the
exclusive property of the mathematician, or rather more precisely, the
arithmetician. On this view the quantity called probability is a mere
abstract fraction, and the rules of probability are merely those of arith-
metic. The fraction is, in short, the ratio of two numbers, the number
holding for a species to that holding for its proximate genus, this ratio
being necessarily a proper fraction, the limits of which are zero and
unity. If this view were correct, there would be no separate topic
to be called probability. A precisely reverse account of probability is
that it is a measure of a certain psychological attitude of thought to
which the most obvious names that could be given are belief or doubt,
taken as subject to different degrees. On either of these two ex-
treme views probability would have no particular connection with logic.
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2 Degrees of deducibility

The credence function c(c | a), is here defined to have the
same value everywhere as the measure p(c | a), taking the
value 1 when c is deducible from a, and, provided that a ̸≡ ⊥,
the value 0 when the negation c′ of c is deducible from a.
Values of c between 0 and 1 represent degrees of deducibility.

There are other ways to generalize the relation of deducibility.
The function t(c | a) = p(a → c |⊤) = 1 takes the value 1
when c is deducible from a, and the value 0 when a ≡ ⊤ ≡ c′.
The function a(c | a) = p(c | a ∨ c) takes the value 1 when
c is deducible from a, and the value 0 when a ̸≡ ⊤ ≡ c. If p
is regular, these sufficient conditions for 0 are also necessary.
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2 Eight functions that grade deducibility

There are essentially eight distinct pairs X, Z of truth func-
tions of a and c such that p(Z |X) = 1 whenever c is de-
ducible from a. ↑ is Sheffer stroke, △ is symmetric difference.

function in terms of p mnemonic

t(c |a) p(a → c |⊤) tautology

s(c |a) p(a′ |a ↑ c) Sheffer stroke

a(c |a) p(c |a ∨ c) alternation

b(c |a) p(a → c |c → a) biconditional

c(c |a) p(c |a) credence

q(c |a) p(a′ |c′) deductive dependence

d(c |a) p(a′c |a △ c) directed distance

r(c |a) p(⊥|ac′) refutation
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2 The eight functions ordered by magnitude
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2 The extremal functions r(c |a) and t(c |a)

Note that r(c |a) equals 0 for all a, c except those for which
ac′ ≡ ⊥. In other words, r(c | a) equals 1 if & only if c

is deducible from a, and equals 0 otherwise. It is a de-
generate case of a numerical measure of deducibility. The
function t is also unsatisfactory as a measure of deducibility.
Since relative measures are not definable in terms of abso-
lute measures, full deducibility itself is not definable from t.

Closest to the refutation function r, but pairwise incompara-
ble by magnitude, are the credence function c, the deductive
dependence function q, and the directed distance function d.
The names given to q and d will be explained as we proceed.
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3 The function q

The focus of today’s talk is the deductive dependence func-
tion q. This properly generalizes the deducibility relation since
q(c |a) = 1 if & only if p(a′ |c′) = 1, which holds if a′ is de-
ducible from c′, which holds if & only if c is deducible from a.

It will be suggested that q(c |a) is in many respects a bet-
ter measure of the confirmation of c by a than is either the
credence function q(c |a) or the relevance function σ(c |a) =
c(c |a) − c(c). Indeed, q(c |a) combines the virtue of c(c |a),
that it is a measure of deducibility, with the virtue of σ(c |a)
that it takes the value 0 when a ≡ ⊤ (except when c ≡ ⊤);
that is to say, if there is no evidence, there is no confirmation.
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3 Content

The content of the proposition b is commonly measured by
p(b′) = 1 − p(b). Since a ∨ c is the content that a shares
with c, its measure is p((a ∨ c)′). The ‘proportion’ of the
content of c that is included within the content of a is thus
p((a ∨ c)′)/p(c′)=p(a′c′)/p(c′) = p(a′ | c′) = q(c | a). It
measures how much of c is deducible from a. Miller & Popper
(1986) called q(c | a) the deductive dependence of c on a.

Hempel & Oppenheim (1948) interpreted Q(c |a) = q(a |c)
as a measure of the systematic power of the hypothesis c to
organize the evidence a. Hilpinen (1970) interpreted q(a |c)
as a measure of the information transmitted by a about c.
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3 Approximate validity

Deductive validity is defined by the principle of transmission
of truth: it is necessary, given that the assumption a of a valid
inference is true, that its conclusion c is true. Falsificationists
prefer an equivalent formulation, the principle of retransmis-
sion of falsity: it is necessary, given that the conclusion c

of a valid inference is false, that its assumption a is false.

There is no equivalence for approximate validity. It is prob-
able, given that the assumption a of an approximately valid
inference is true, that its conclusion c is true is not equivalent
to It is probable, given that the conclusion c of an approxi-
mately valid inference is false, that its assumption a is false.
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3 Numerical comparison of c and q

The approximate identities p(c |a) ≈ 1 and p(a′ |c′) ≈ 1 are
not equivalent. Salmon (2005) gives this (frequentist) exam-
ple: ‘[f]rom the statement that the large majority of men are
not physicists, it does not follow that the vast majority of
physicists are not men’. c and q are not the same function.

More exactly, if the assumption a is consistent, and p(c) ̸= 1,

q(c | a) − c(c | a) =

[1 − p(c | a)][1 − p(c) − p(a)]/[1 − p(c)],

and therefore c(c | a) S q(c | a) if & only if p(c) + p(a) S 1.
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3 Lower limits of c and q

By construction, if φ is any one of the eight functions a, b,
c, d, q, r, s, t listed above then φ(c | a) takes the value 1
when c is deducible from a (and if p is a regular measure, only
then). But the conditions are different under which each func-
tion takes the value 0, as we have already noted for c, a, and t.

The functions c and q are dual. Indeed c(c |a) = p(c |a) = 0
when a ̸≡ ⊥ and ac ≡ ⊥; that is, when a is consistent (non-
contradictory) and c′ is deducible from a (or a and c are con-
traries). Likewise q(c | a) = p(a′ |c′) = 0 when c ̸≡ ⊤ and
a ∨ c ≡ ⊤; that is, when c is contentful (non-tautological),
and a is deducible from c′ (or a and c are subcontraries).
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3 Some properties of q

It follows that q(c |⊤) = 0 unless c is a tautology ⊤ (in
which case q(c |⊤) = 1). Since ⊤ is deducible from every
assumption a, we have q(⊤|a) = 1. At the other extreme,
q(c |⊥) = 1 for every c, while q(⊥|a) may assume any value.

The monotony laws for the first argument of p translate
readily into monotony laws for the second argument of q;
that is, q(c |a ∨ b) ≤ q(c |a) ≤ q(c |ab). The general add-
ition law assumes the following form: q(c |a) + q(c |b) =
q(c |a ∨ b) + q(c |ab). This implies that whenever a and b

are mutual subcontraries, q(c |a) + q(c |b) = q(c |ab) (un-
less c ≡ ⊤, in which case all three terms have the value 1).
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4 Hypothesis and evidence

We see that if c and a in the expression q(c |a) represent
a non-tautological hypothesis c and a statement of evidence
a, as they do in c(c |a), then q(c |a) takes the value 0 when
there is no evidence, that is, a ≡ ⊤, and never decreases
when more evidence is adduced [weak monotonic increase].

Sentences a and b are maximally independent if they are sim-
ply independent and mutually subcontrary; that is, a ̸≡ ⊤ ≡
a ∨ b ≡ ⊤ ̸≡ b. Provided that c ̸≡ ⊤, the effects on c of
two subcontrary items a, b of evidence are additive: q(c |a)+
q(c |b) = q(c |ab). If a and c are maximally independent,
and p is regular, q(c |ab) exceeds both q(c |a) and q(c |b).
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4 q is not a measure of credence

Since q, is monotone increasing, q(c |a) may exceed 0 when
the assumption a and the conclusion c contradict each other.
Unless it can be rational to believe a hypothesis that contra-
dicts the evidence, q(c |a) cannot be interpreted as a meas-
ure of credence, as a (rational) degree of belief in c given a.

It is easily shown that the two-valued function r(c | a) is the
only other one among the eight functions here enumerated
that takes the value 1 whenever c is deducible from a and the
value 0 whenever c′ is deducible from a (and c ̸≡ ⊥). Only
c is a genuine measure of (consistent) belief. But there are
other measures that score this trick, such as the product c · q.
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4 Using q as a measure of confirmation

Because q(c |⊤) = 0 (when c ̸≡ ⊤), the distinction between
credence c and relevance σ, in this context often called the
initial confirmation and the incremental confirmation of c by
a dissolves in the case of q. Confirmation is measured by
q(c |a). We note in passing, however, that relativizing q to
a is not (as it is for c) the same operation as updating p by a.

If q is taken to measure degree of confirmation, it may appear
to be harmless that q(c |a) may exceed 0 when ac ≡ ⊥. For
in science it often happens that the evidence that is cited in
favour of a hypothesis actually contradicts it. On this point,
though not elsewhere, I agree with Lakatos and Feyerabend.
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4 Degrees of truth

Such a misfit between hypothesis and evidence is tolerable,
however, only for hypotheses that are approximately, if not
exactly, true. We cannot allow every false hypothesis to re-
ceive unlimited confirmation even when it has been refuted.

The worry can be relieved if the evidence a is required (reason-
ably) to be true; that is, to belong to the set T of all (empir-
ical) truths. The value of q(c |a) cannot then exceed q(c |T),
which is naturally equated with sup{q(c |a) : a ∈ T}. In 1994
I suggested that q(c |T) is a good measure of degree of ap-
proximation to truth. In this sense only approximately true
hypotheses can be substantially confirmed by true evidence.
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4 Classical versus Bayesian statistics

If we admit the non-classical assumption that probabilities of
hypotheses exist, the function q may be used to contrast clas-
sical and Bayesian statistics. Let h be the alternative to the
null hypothesis H. Typically h states that there is a chance
effect manifested in a positive value of a statistic t, and H de-
nies it. The evidence e is that t has the value ρ. The p-value
(of h) is the probability, given H, that t ≥ ρ. Since H ≡ h′,
this may be written as: c(t ≥ ρ |h′) = 1 − c(t < ρ |h′) = 1−
q(h | t ≥ ρ) ≥ 1 − q(h | t = ρ). A low p-value means a high
value of q(h | t = ρ); that is, q(h |e) ≈ 1. Bayesian statistics,
in contrast, values hypotheses h for which c(h |e) ≈ 1. The
two approaches differ only in how they measure deducibility.
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4 Anglo–American criminal law

The distinction between credence c and deductive depend-
ence q needs to be rigorously maintained also in criminal tri-
als, in which the accused can be convicted only if his guilt c

is proved beyond reasonable doubt by the evidence a. This
can mean only that c is almost deducible from a given the
court’s extensive (though indefinite) background knowledge.

The defence may proceed in two ways. One is to call witnesses
so that the evidence a before the court renders open to doubt
the conclusion c that the accused is guilty: c(c |a) << 1. A
more fundamental defence is that there is no case to answer:
that the evidence a has little bearing on c: q(c |a) << 1.
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4 When high credence may be a bad thing

It can be proved that, provided q(c |a) ̸= 1, the smaller c(c)
and c(a) are, the smaller c(c |a) is, so that a high value of
c(c |a) may not be achievable if both the charge c and the evi-
dence a are a priori improbable. If it is the closeness of q(c |a)
to 1 that is needed for a guilty verdict, this failure to prove the
charge ‘beyond reasonable doubt’ should be of no concern.

There is much high-minded talk in courts of law of the prob-
ability (or rational indubitability) c(c |a) of the accused’s guilt
c, given the evidence a, but what should be in the forefront
of intelligent minds (judges, advocates, and, one hopes, jur-
ors) is q(c |a); that is, how much c deductively depends on a.
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5 Popper follows Waismann, and goes further

We have seen that the function q is in some ways similar to
the credence function c, and in other ways similar to the re-
levance function σ. It has at times been confused with both.

In his Logic Popper repeated Waismann’s metaphor that prob-
ability p is a measure of logical proximity. Adding content to
this idea in Part II of Realism, he assimilated p (and c) to q:

[in] the logical interpretation of probability, ‘c’ and ‘a’ are inter-
preted as names of statements (or propositions) and p(c | a) = r
is an assertion about the contents of c and a and their degree of
logical proximity; or more precisely, about the degree to which
the statement c contains information which is contained in a.

c⃝ D.W. Miller 2014 Please do not cite without permission. 5-0



5 Misidentification of q and c

It is of course correct that ‘if a is consistent and contradicted
by c, then p(c | a) = 0’. But a consistent proposition a may
contain much information that is also contained in a propos-
ition c that contradicts it (though it contains no information
that is also contained in its contradictory a′). For an example,
take any two competing scientific theories, which inevitably
share many consequences. A more abstract example is pro-
vided by any two distinct maximal theories in a rich language.

But this shows that neither p(c,a) nor c(c,a) is a measure
of ‘the degree to which the statement c contains informa-
tion which is contained in a’. It is q(c,a) that measures this.
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5 Misidentification of c and d

Waismann’s idea (1930), adopted by Popper, that logical
probability (that is, credence) ‘could be called the degree of
“logical proximity” of two statements’, displays another unin-
tended entangling of different generalizations of deducibility.

Since c(c |a) = c(a |c) usually fails, 1 − c is not a (pseudo)-
metric operation. Yet there is a clear sense in which distance
is not symmetric: the directed distance from Cuicuilco to the
summit of Xitle exceeds the distance in the other direction.
The triangle inequality also fails for 1 − c (and for 1 − q), but
it holds (in finite cases) for 1 − d. The function d(c |a) =
p(a′c |a △ c) truly measures the logical proximity of c to a.
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5 Misidentification of q and σ

Zwirn & Zwirn (1989), Rivadulla (1994), and Howson (2000)
have been puzzled by the conclusion of the Popper–Miller
theorem that the excess content a → c of the hypothesis c

— that part of its content that goes beyond the evidence a —
is in general countersupported by a: that σ(a → c,a) < 0
(except in some unexciting cases in which equality obtains).

In Howson’s view this infringes ‘the sceptical tenet [which he
attributes to us] that a only informs us about a and nothing
beyond it’. But since a → c and a are maximally independ-
ent, what sceptics demand is that q(a → c |a) take the value
0. (It does.) The value of σ(a → c,a) is beside the point.
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6 A disclaimer

Having said all this, I must end by emphasizing that my
aim has not been to lay the foundations of a new theory
of confirmation based on the function q, but to raze to the
foundations all those old theories of confirmation that are
based on the functions c and σ. I submit that if c or σ (or
some related measure) is the best measure of confirmation,
then q is better, and therefore neither c or σ is the best one.

I am not recommending q, or anything like it, as a substit-
ute measure of confirmation, since I hold that in science we
do not need any such measure. The outcome of hypothesis
testing is not subsequent selection but immediate deselection.
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6 Falsificationism

For the purpose of testing hypotheses, and their further ex-
amination, but not for their evaluation after testing, selection
rules may be appropriate. I am saying nothing new if I say that
falsificationism prefers for testing a hypothesis c for which
q(c | a) is low, not one for which q(c | a) is high, since little
of the content of such a hypothesis c is deducible from the
evidence a, and it is therefore susceptible to genuine tests.

Only in legal trials (and similar activities, such as professional
examinations) does the yearning for proof and for positive
evidence make any real sense. Here, it seems, a high value
of q(c |a) may be a sine qua non of a positive conclusion.
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