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Abstract

In many applied problems for which the spatial distribution of physical quantities is

recorded over time, the temporal evolution of this spatial distribution is of interest. Fur-

ther, comparison of the temporal evolution of different samples in a test of dependence may

determine the existence of a relationship between the physical quantities represented in each

sample. One such problem is the interaction between biomolecular species. We introduce the

methods currently applied to this particular problem, including their drawbacks, before for-

mulating an alternative methodology that both estimates local bulk movement patterns and

compares between two such patterns in a test of dependence. Application to both simulated

and real data sets indicate that our methodology may be effectively applied to the problem of

interacting biomolecular species and a wider class of more general problems.

1 Introduction

For many phenomena in which recordings of a physical process are made across various times

and locations, a question of interest is the evolution in location over time and the comparison

of this evolution between observations. In cases of small numbers of clearly defined individual

units, estimation of movement patterns may be obtained via object tracking algorithms. Such

procedures may be used for application to the movement of a species of animal (McFarlane and

Schofield, 1995) or the movement of specific subcellular structures (Chenouard et al., 2014).

Our interest extends further to physical processes for which individual units are not resolvable

or for which a very large number of individual units precludes use of more standard object tracking

procedures. The example considered in this report is the location of biomolecules of a particular

species within cells, as observed by microscope imaging. In this case each biomolecule is a discrete

unit, but their large number and limits on microscope resolution make it impossible to identify

and attempt to track each biomolecule. Observations are therefore interpreted as a density of

biomolecules across space which evolves in time, from which we propose an estimation of movement

patterns. An additional example may be the distribution of water molecules, observed via depth

of water within a tank. The problem of determining movement patterns using a sequence of

observations is an ill-posed inverse problem and as a result we provide an estimate of movement

patterns averaged over local regions, which we term local bulk movement patterns.

Once movement patterns have been estimated, it may be desirable to compare between obser-

vations to determine whether the degree of dependence between movement patterns is statistically
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significant. In the case of this report the purpose is to investigate whether two biomolecular species

of interest interact, a process which typically requires biomolecules from each species to become

conjoined, at which times they are similarly located and undergo similar movements. Comparison

of movement patterns may also be of interest in other settings, for example for animal species to

understand predator-prey relationships (Mitchell and Lima, 2002). We introduce a methodology

which summarises and compares the high dimensional data resulting from estimation of movement

patterns in a manner which is both meaningful and takes into account the spatial nature of the

observations.

Proposed methodologies are applied to independent simulated data, the results of which support

the theoretical validity of the permutation testing procedure. Further testing on simulations with

varying degrees of dependence indicate that the testing procedure is able to identify such scenarios

with good power.

The methodology is then applied to a data set comprised of fluorescence microscopy images

of TACC3, Transforming Acidic Coiled-Coil Containing Protein 3, and EB3, End-Binding protein

3. As an end binding protein, EB3 is known to locate at the growing end of microtubules during

mitosis (Mimori-Kiyosue et al., 2000). It is further believed that TACC3 influences microtubule

structure during mitosis (Booth et al., 2011), with our investigation considering whether EB3 and

TACC3 undergo dependent movements in order to make inference on the location of TACC3.

Following this introduction, required statistical background information is included in Section

2. Section 3 describes in detail the methodology for estimating movement patterns and their

comparison, with Section 4 then introducing a selection of simulations for which movement patterns

and dependence is known. Analysis of a data set arising from fluorescence microscope images of

EB3 and TACC3 during mitosis is then carried out in Section 5, after which conclusions are

presented in Section 6.

2 Statistical Background

2.1 Existing measures of colocalisation

Colocalisation analysis is a widely used technique for the analysis of fluorescence microscopy images

(Adler and Parmryd, 2012). A number of colocalisation statistics have been proposed, formulated

to quantify the degree to which biomolecules are deemed to interact based upon similarities in their

location. Although a commonly used term, colocalisation is poorly defined and may be used by

different authors to refer to both co-occupation and correlation (Adler and Parmryd, 2012). Co-

occupation is deemed to occur when light of sufficiently high intensity is observed in the same places

for both channels, while correlation occurs when there is a linear relationship between intensity

values paired at the same locations.

Given pixel intensity values m0(x) and m1(x) across locations x within a region of interest

χ∗, a subset of the image space χ∗ ⊆ χ = {1, 2, . . . , n1} × {1, 2, . . . , n2}, a number of the most

commonly used colocalisation statistics are as follows:
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Definition 1. Pearson’s correlation coefficient (Pearson, 1895) is given by

rρ =

∑
x∈χ∗(m

0(x)− m̄0)(m1(x)− m̄1)√∑
x∈χ∗(m

0(x)− m̄0)2
√∑

x∈χ∗(m
1(x)− m̄1)2

∈ [−1, 1],

where

m̄0 =
1

|χ∗|
∑
x∈χ∗

m0(x) m̄1 =
1

|χ∗|
∑
x∈χ∗

m1(x).

As a measure of colocalisation, Pearson’s correlation coefficient is clearly a measure of corre-

lation. A variant on Pearson’s correlation coefficient, formulated to highlight the implication of

values of m(x) = 0 and m(x) > 0, is Manders’ overlap coefficient.

Definition 2. Manders’ overlap coefficient (Manders et al., 1993) is given by

r =

∑
x∈χ∗m

0(x)m1(x)√(∑
x∈χ∗ m

0(x)2
)(∑

x∈χ∗ m
1(x)2

) ∈ [0, 1],

which in turn leads to the specification of the split overlap coefficients

k1 =

∑
x∈χ∗ m

0(x)m1(x)∑
x∈χ∗ m

0(x)2
k2 =

∑
x∈χ∗ m

0(x)m1(x)∑
x∈χ2 m1(x)2

,

such that r =
√
k1k2.

Manders’ overlap coefficient quantifies a combination of correlation and co-occupation in unclear

proportions, leading some to recommend against its use in favour of the alternatives (Adler and

Parmryd, 2010). A further alternative, Manders’ colocalisation coefficients quantify colocalisation

solely through co-occupation.

Definition 3. Manders’ colocalisation coefficients (Manders et al., 1993) are given by

M0 =

∑
x∈χ∗ m

0(x)1{m1(x) > 0}∑
x∈χ∗ m

0(x)
∈ [0, 1] M1 =

∑
x∈χ∗ m

1(x)1{m0(x) > 0}∑
x∈χ∗ m

1(x)
∈ [0, 1].

A development of Manders’ colocalisation coefficients which sets an automatic threshold, t > 0,

to reduce the impact of background noise is given by Costes approach.

Definition 4. Costes’ approach (Costes et al., 2004) suggests coefficients

M̃0 =

∑
x∈χ∗ m

0(x)1{m0(x) > t,m1(x) > at+ b}∑
x∈χ∗ m

0(x)
∈ [0, 1]

M̃1 =

∑
x∈χ∗ m

1(x)1{m0(x) > t,m1(x) > at+ b}∑
x∈χ∗ m

1(x)
∈ [0, 1],

based upon a threshold value of t. The values of a and b are determined as the intercept and slope

respectively of the orthogonal regression of m1(x) on m0(x), x ∈ χ∗. The threshold is reduced from

max{m0(x), (m1(x) − b)/a} to a critical value t at which the correlation of {(m0(x),m1(x)), x :

m0(x) < t or m1(x) < at+ b} is zero.
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Differences in the quantity being measured between colocalisation statistics make them difficult

to interpret and compare between experiments where different statistics have been used. Co-

occupation based measures are typically easier to interpret as the proportion of each biomolecular

species observed at shared locations, but ignore the fact that interacting biomolecules require a

fixed number of biomolecules of each species and thus a linear relationship between intensities.

Correlation based measures do take into account the relationship between intensity values. In the

commonly expected presence of background noise co-occupation may be recorded at every pixel

location, an issue which Costes’ approach attempts to resolve through thresholding. Background

noise may also impact correlation statistics, for which specification of a region of interest χ∗

containing large numbers of pixels with intensity levels consistent with noise alone may mask the

strength of any linear relationship between intensity values.

The majority of the presented colocalisation statistics take values in the range [0,1], with

zero indicating absence of colocalisation and one indicating complete colocalisation. Pearson’s

correlation coefficient differs, taking values in the range [-1,1], with zero indicating absence of

colocalisation and one indicating strong colocalisation. Negative values of Pearson’s correlation

coefficient are difficult to interpret in the biological context although well understood in a statistical

context. Fixed ranges of values provide some ability to interpret the strength of colocalisation, but

there is no convincing method of analysing the significance of obtained colocalisation statistics.

Instead, colocalisation statistic values may be classified into one of five categories from very weak

to very strong based upon crude threshold values (Zinchuk and Zinchuk, 2008).

The biggest criticism of each of the proposed and often used colocalisation statistics is their

ignorance of the spatial nature of the data within the region of interest χ∗. Statistical fields

such as geostatistics and disease modelling analyse spatial data via methodologies which take the

spatial nature into account, tools from which may be adapted to the study of colocalisation. Of

particular interest may be common component models (Fanshawe and Diggle, 2011; Knorr-Held and

Best, 2001), for which each observation is modelled as the combination of an observation-specific

component and a scaled shared component. Comparison of the common component to observation-

specific components could quantify the expected degree of interaction between biomolecules, with

a plot of the common component illustrating where any interactions might be taking place. A

difficulty of applying such techniques to biological images or more general data sets is their reliance

upon modelling assumptions which may not be satisfied.

In cases where a single pair of images are compared to analyse colocalisation, it is difficult

to distinguish between coincidental co-occupation of biomolecular species and true interaction.

When a sequence of images is collected over time, colocalisation may be quantified at each time

point to provide a more reliable indicator of interaction. We approach the problem of determining

interaction by estimating and comparing movement patterns between consecutive time points, on

the basis that chance similar movements are less likely to occur than chance similar localisations.

On an experimental level FRET, Fluorescence (or Förster) resonance energy transfer (Clegg,

1995), is an alternative methodology which may more accurately determine interaction between

biomolecular species. However, false negatives may be recorded by FRET due to the require-

ment that fluorophores be very closely separated, which may not be the case even for interacting

biomolecules, and false positives may be recorded as a result of cross-talk or bleed-through between

fluorophore colours (Piston and Kremers, 2007).

4

Paper No. 17-03, www.warwick.ac.uk/go/crism



2.2 Earth mover’s distance

In cases where observed spatio-temporal processes are non-negative and finite, observations may

be normalised to be considered as probability densities over space which evolve over time

µ0(x) =
m0(x)∑
y∈χm

0(y)
µ1(x) =

m1(x)∑
y∈χm

1(y)
.

Similar to colocalisation statistics presented in the previous section, there are a number of methods

for quantifying the distance between probability distributions including total variational distance

and Hellinger distance, see for example the summary by Gibbs and Su (2002). A distance of

particular interest is the Wasserstein metric (Givens and Shortt, 1984).

Definition 5. Let (χ, d) be a metric space. The Wasserstein metric between µ0 and µ1 on (χ, d)

is then W (µ0, µ1) = inf E[d(X,Y )], taken over joint distributions of X and Y with marginals µ0

and µ1 respectively.

Importantly for our analysis, the Wasserstein metric takes into account the space on which

the probability measures are defined, through d, in a manner that alternatives such as the total

variation distance and Hellinger distance do not.

In application, it may undesirable to normalise observations m0 and m1 into distributions µ0

and µ1 as the relative total mass of each observation is informative. In such cases an alternative,

but closely related, measure of the distance between m0 and m1 is provided by the earth mover’s

distance (Rubner et al., 2000).

Definition 6. The earth mover’s distance between two non-negative spatial processes m0 and m1

over discrete spaces χ0 and χ1 is given by

EMD(m0,m1) =

∑
x∈χ0,y∈χ1 f̂(x, y)d(x, y)∑

x∈χ0,y∈χ1 f̂(x, y)

f̂ = arg min
f∈η(m0,m1)

f(x, y)d(x, y),

for d(x, y) a cost function and η(m0,m1) the set of f for which

f(x, y) ≥ 0 ∀x ∈ χ0, y ∈ χ1∑
x∈χ0

f(x, y) ≤ m1(y) ∀y ∈ χ1

∑
y∈χ1

f(x, y) ≤ m0(x) ∀x ∈ χ0

∑
x∈χ0,y∈χ1

f(x, y) = min

∑
x∈χ0

m0(x),
∑
y∈χ1

m1(y)

 .

If m0 and m1 are interpreted as spatial distributions of mass and the cost of moving unit mass

from x ∈ χ0 to y ∈ χ1 is d(x, y) then the earth mover’s distance is the minimal total cost of

rearranging m0 into m1 normalised by the total mass moved. The conditions on η(m0,m1) ensure

that only positive quantities of mass are moved, the total mass moved into y ∈ χ1 is no more than

m1(y), the total mass moved out of x ∈ χ0 is no more than m0(x) and that the total amount of

mass moved is the minimum of the total mass in m0 and the total mass in m1.
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In the case where the total mass of m0 and m1 and the spaces χ0 and χ1 are identical, the

earth mover’s distance is equivalent to the Wasserstein distance (Levina and Bickel, 2001). The

earth mover’s distance is typically defined over a discrete space, but may be alternatively expressed

for continuous spaces. In the case where
∑
x∈χ0 m0(x) >

∑
y∈χ1 m1(y) the earth mover’s distance

may be equated to the Wasserstein distance by augmenting χ1 with the location z such that

d(x, z) = 0 ∀x ∈ χ0 and specifying m1(z) =
∑
x∈χ0 m0(x) −

∑
y∈χ1 m1(y). A similar argument

may be given for
∑
y∈χ1 m1(y) >

∑
x∈χ0 m0(x).

Specification of the earth mover’s distance and its use in practice has been motivated by prob-

lems in image analysis and in particular image comparison and retrieval (Peleg et al., 1989; Rubner

et al., 2000). Given a colour image, a histogram may be produced which summarises the number

of pixels satisfying intensity constraints in each of the blue, red and green channels according to a

proposed binning. Related images are expected to result in histograms resulting in small values of

the earth mover’s distance when compared, allowing the single or multiple best matching images

within a collection to be retrieved.

Calculation of the earth mover’s distance is an optimal transportation problem, which with the

augmentation of χ0 or χ1 to equalise total mass is an assignment problem (Munkres, 1957). The

computational complexity of solving such a problem is O(n3 log n) for n = |χ0| + |χ1|, the total

number of locations (Rubner et al., 2000). An implementation of the earth mover’s distance is

available in R (R Core Team, 2016) via the emdist package (Urbanek and Rubner, 2012), which

returns the value of the earth mover’s distance and, important in later considerations, the optimal

set of flows f̂ .

2.3 Permutation testing

Within the framework of statistical hypothesis testing, a null hypothesis H0 is tested in the pres-

ence of data x using an observed test statistic t(x). In the case where the distribution of the

corresponding random statistic T (X) under H0 is known analytically, the value of t(x) may be

compared to this distribution to obtain a p-value, the probability of observing values of the test

statistic as or more extreme than that calculated for the observed data. Alternatively, the distri-

bution of T (X) under H0 may not be known analytically. In such cases, if under H0 there exists

exchangeability of X under a set of operations Λ = {λ0, λ1, . . . , λm}, that is the joint distribution

of λX is identical to that of X for all λ ∈ Λ, then H0 may be tested using what is known as a

permutation test.

Denoting by λ0 ∈ Λ the identity operation, that is λ0X = X, an exact permutation test

(Edgington, 1964) requires calculation of the test statistic under all exchangeability operations

λi ∈ Λ, producing {t(λ0x), t(λ1x), . . . , t(λmx)}. The reported p-value in the case of a two-sided

test of H0 is then given by

p =
1

m+ 1

∑
λ∈Λ

1[|t(λx)| ≥ |t(λ0x)|],

the proportion of the calculated t(λix) under exchangeability determined by H0 which are as or

more extreme than the observed value of the test statistic.

In the case where it is not feasible to calculate every test statistic t(λx) under H0, potentially

because calculation of t(λx) is computationally expensive or the number of possibilities m + 1 is
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too large, the null hypothesis may be tested using what is known as an approximate permutation

test (Edgington, 1969). Of the m+ 1 possible exchangeability operations, a simple random sample

Λ′, including λ0, of size m′ < m + 1 is taken from Λ. The reported approximate p-value in the

case of a two-sided test of H0 is then given by

p =
1

m′

∑
λ∈Λ′

1[|t(λx)| ≥ |t(λ0x)|],

the proportion of test statistics under exchangeability determined by H0 which are as or more

extreme than the observed value of the test statistic.

For both exact and approximate permutation tests the null hypothesis is then rejected at

significance level α if p < α. Both the exact and approximate permutation tests are valid as

exchangeability under permutations λ under the null hypothesis implies that the t(λX) are iden-

tically distributed. Thus, the probability that the observed value t(λ0x) lies in the most extreme

α proportion of the set of all considered t(λx), i.e. p < α, is α. In the case of the approximate

permutation test power increases with the size of the random sample, m′. When testing at the

α = 0.05 significance level with m′ = 1000 the power of the approximate permutation test is at

least 94.5 percent of the exact test (Jöckel, 1986), rising to at least 98.3 percent when m′ = 10000.

3 Estimating movement patterns and a test for dependence

3.1 Modelling data mathematically

We wish to analyse the spatio-temporal process M , that is Mt(x) ∈ Q for locations x ∈ χ and times

t ∈ τ , under a minimum of modelling assumptions. We require that the process M is non-negative

across all locations and times, such that M may be likened to the distribution of a collection

of basic units or particles. In situations where the number of basic units is very large, M may

be likened to a density and tracking individuals becomes theoretically and computationally very

difficult. We therefore propose a methodology to investigate bulk movement patterns on a scale

greater than that of individual units for application in such cases.

The data available for the analysis of M is a collection of observation values m(x, t) ∈ Q+

across locations x ∈ Ψ and times t ∈ Υ. Observed values may be obtained from a realisation of the

processM via projection or averaging, with observations also subject to noise. Motivating examples

have been provided in the introduction, with our focus in this report on M the distribution of

biomolecules of a single species and mt(x) an average of the light intensity emitted by biomolecules

in a neighbourhood of pixel locations x ∈ Ψ = {1, 2, . . . , n1}×{1, 2, . . . , n2} at discrete time points

t ∈ Υ = {t1, t2, . . . , tn3
} as recorded in the presence of background noise by a digital camera

attached to a confocal microscope.

In future it will be necessary to refer to the collection of values across a set of locations ψ ⊆ Ψ

and times υ ∈ Υ which will be denoted by mυ(ψ). Our aim is to make inference on the dependency

between two processes M0 and M1 via the comparison of two collections of observations, denoted

by m0
Υ(Ψ) and m1

Υ(Ψ), over identical location, Ψ, and time, Υ, spaces.
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3.2 Approximation of movement

Under the specification in the previous section as a scaling of the number of basic units at each

location at each time point, M may be interpreted as a spatial distribution of mass which evolves

over time. The process describing the quantity of such mass moving from location x at time s to

location y at time t may then be denoted by Fs,t(x, y). We specifically consider direct dependency

in movement patterns F 0 and F 1, corresponding to processes M0 and M1, such that F 0
s,t(x, y)

is positively associated with F 1
s,t(x, y). That is, the quantity of mass moving from locations x to

y between time points s and t is positively associated between processes M0 and M1, across all

pairs of locations and times. Although Fs,t is described as a movement pattern, it also includes a

description of those masses which remain fixed in place through Fs,t(x, x), considered as movements

which both start and end at the same location.

Determination of Fs,t(x, y) using the information available in m{s,t}(ψ) may be formulated as

a solution of the inverse problem of minimising

δψs,t =

∣∣∣∣∣∣
∣∣∣∣∣∣mt(x)−

ms(x)−
∑
y∈ψ∗

Fs,t(x, y) +
∑
y∈ψ∗

Fs,t(y, x)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

subject to the constraints

Fs,t(x, y) ≥ 0 ∀x, y,∈ ψ∗∑
y∈ψ∗

Fs,t(x, y) = ms(x) ∀x ∈ ψ∗

∑
x∈ψ∗

Fs,t(x, y) = mt(y) ∀y ∈ ψ∗,

where ψ∗ is the augmentation of ψ with the additional location z such that

ms(z) = min

∑
x∈ψ

mt(x)−ms(x), 0


mt(z) = min

∑
x∈ψ

ms(x)−mt(x), 0

 ,

to account for differences in the total mass at times s and t. The first constraint ensures that only

positive masses are moved, the second ensures that the total mass moving out of each location x

at s is ms(x) and the third ensures that the total mass moving into each location y at t is mt(y).

There exist solutions to this problem for which δψs,t = 0. However, the problem is ill-posed

because the solution is not unique. We therefore consider F̂ψs,t = ∪x,y∈ψF̂s,t(x, y), the solution to

the regularised problem of minimising

δ̂ψs,t =

∣∣∣∣∣∣
∣∣∣∣∣∣mt(x)−

ms(x)−
∑
y∈ψ∗

Fs,t(x, y) +
∑
y∈ψ∗

Fs,t(y, x)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ ||Fs,t||c,

according to the same set of constraints as previously and where

||Fs,t||c =
∑
x,y∈ψ

Fs,t(x, y)c(x, y),
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for some cost function c. The resulting F̂ψs,t is that which obtains δψs,t = 0 and minimises ||F̂s,t||c.
The minimiser of δ̂ψs,t is not necessarily unique (see further discussion in the following section), but

the problem is closer to being well-posed and later steps in the methodology are designed to result

in identical outcomes for a majority of the solutions.

The resulting estimator, F̂ψs,t(x, y), may be interpreted as the set of movements which minimises

the total cost of rearranging the distribution of mass ms(ψ) into mt(ψ) according to a cost function

c(x, y). This can be calculated using the earth mover’s distance with

F̂ψs,t = arg min
f∈ηψs,t

∑
x,y∈ψ

fs,t(x, y)c(x, y)

where F̂ψs,t = ∪x,y∈ψF̂ψs,t(x, y) and ηψs,t is the set of all functions f satisfying

fs,t(x, y) ≥ 0 ∀x, y,∈ ψ (1)∑
y∈ψ

fs,t(x, y) ≤ ms(x) ∀x ∈ ψ (2)

∑
x∈ψ

fs,t(x, y) ≤ mt(y) ∀y ∈ ψ (3)

∑
x,y∈ψ

fs,t(x, y) = min

∑
x∈ψ

ms(x),
∑
y∈ψ

mt(y)

 . (4)

For the analyses proposed we focus on a single cost function, c(x, y) = ||x − y||, equal to

Euclidean distance. This cost function is chosen to be homogeneous and isotropic across x, y ∈ ψ
and penalises proposed movements only according to the distance moved, as we wish to avoid

further assumptions. Returning to the interpretation of m as a distribution of mass, if we assume

that applied forces are constant between s and t then c(x, y) = ||x − y|| is exactly the energy

required to move unit mass from x to y. The estimated collection of movements F̂ψs,t is then that

which minimises the total energy required to rearrange ms(Ψ) into mt(Ψ). Some further discussion

of the choice of cost function follows in Sections 3.3 and 3.7.

3.3 Movement summary statistic

The collection of movements F̂ψs,t is a straightforward estimator of Fψ, taking values in the high

dimensional set (Q+)ψ×ψ. To facilitate comparison between F̂ψ,0 and F̂ψ,1 resulting from obser-

vations m0 and m1 we first summarise the information in F̂ψ via Ŝψ ∈ (R+)8.

Defining a(v) ∈ (0, 2π] to be the anticlockwise angle between the vector (1, 0) and the vector

v ∈ R2, θ1 = (15π/8, 2π]∪(0, π/8] and θj = ((2j−3)π/8, (2j−1)π/8] for j ∈ {2, 3, . . . , 8}, elements

of the summary statistic are given by

(Ŝψs,t)j =
∑

x,y∈ψ:a(y−x)∈θj

F̂ψs,t(x, y)||x− y||2 j ∈ {1, 2, . . . , 8}.

An illustration of this summary is presented in Figure 1. To elaborate on the formulation of

the summary statistic, (Ŝψs,t)j is equal to the total momentum in directions within an angle of π/8

of the cardinal or ordinal direction (E,NE,N,NW,W,SW,S,SE) corresponding to j, multiplied by

t− s. This formulation is specific to ψ ⊆ R2 as is the focus of this report, however, generalisation

may be made to spaces of dimension other than two.
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m = 1

m = 2

F̂ψs,t = 1

F̂ψs,t = 2

(Ŝψs,t)1 = 0

(Ŝψs,t)2 = 0

(Ŝψs,t)3 = 1× 1 + 1×
√

10

(Ŝψs,t)4 = 0

(Ŝψs,t)5 = 2× 2

(Ŝψs,t)6 = 1×
√

2

(Ŝψs,t) = 0

(Ŝψs,t) = 0

θ1

θ2θ3θ4

θ5

θ6 θ7 θ8

Figure 1: Distribution of ms(ψ), top left, and mt(ψ), top right, estimated F̂ψs,t, bottom left, and

contributions to the calculation of Ŝs,t, bottom right.

The division of movements into eight different directions provides more detail than if they were

for instance separated into the four cardinal directions. In the particular instance where ψ is a

regular grid, ψ = {1, 2, . . . , n1} × {1, 2, . . . , n2}, the proposed division also avoids peculiarities at

the boundaries of sets θj as there exists no direction y−x lying exactly on the border of any of the

sets θj . To establish this, note that a(y − x) = π/8 if and only if (y − x)2/(y − x)1 = tan(π/8) =

1 +
√

2 ∈ R \ Q, whereas ψ restricts (y − x)2/(y − x)1 ∈ Q. A similar argument holds for all

boundaries between θi and θi+1, each of which occurs at angles which are odd multiples of π/8.

Particular distributions ms and mt alongside the specification of c(x, y) = ||x − y||2 may

lead to non-uniqueness of F̂ψs,t. For example, consider three colinear locations ψ = {x, y, z} with

||x−y||+ ||y−z|| = ||x−z|| and Υ = {0, 1} with m0(ψ) = (1, 1, 0) and m1(ψ) = (0, 1, 1). In such a

scenario F̂ψ0,1(a, b) = 1{a = x, b = z} and F̂ψ0,1(a, b) = 1{a = x, b = y or a = y, b = z} both satisfy

the requirements in the previous section. However, in both cases
∑
a,b∈ψ F̂

ψ
0,1(a, b)||a− b||2 = 2 is

identical. The specification of Ŝψ in terms of momentum, moving masses multiplied by distances

moved, therefore resolves the most common scenario of non-unique F̂ψ into a consistent value of

Ŝψ. Alternative scenarios in which F̂ψs,t is not unique and which result in different values of Ŝs,t

do exist, but require particular values of ms and mt at more than three locations and complex

interactions with values of ms and mt at the remaining locations in ψ, which are expected to be

unlikely and increasingly so for larger spaces ψ.
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3.4 Summary statistic comparison

Our interest is in the degree to which movement patterns differ between observations m0 and m1

and the significance of any difference. In order to quantify this we require a method of comparing

summary statistics Ŝψ,0s,t and Ŝν,1s,t between subsets ψ, ν ∈ Ψ. We propose to make this comparison

using the function Ĝψ,νs,t .

Before specifying Ĝψ,νs,t we first define the intermediate quantity

µψ,0s,t (x) =
8∑
j=1

1

{
x = ej

(
Ŝψ,0s,t

)
j

}
x ∈ R2,

where ej is the unit length vector such that a(ej) = (j − 1)π/4. The intermediary µψ,0s,t may then

be seen as the spatial distribution of eight unit masses, each of which is at a distance (Ŝψ,0s,t )j from

the origin in the direction ej .

The value of the comparison is then given by

Ĝψ,νs,t = EMD(µψ,0s,t , µ
ν,1
s,t ),

the minimal cost required to rearrange the eight unit masses with cost function Euclidean dis-

tance. Small values of Ĝ imply close agreement of bulk movement patterns, with large values of

Ĝ indicating differences.

Comparison of summarised movement patterns Ŝ is proposed using this method rather than

a more straightforward alternative because the Ŝ summarise spatial information. The first ele-

ment of Ŝ quantifies momentum in easterly directions (between east north east and east south

east), with the second in north-easterly directions and the fifth in westerly directions. Intu-

itively, Ŝ = (0, 1, 0, 0, 0, 0, 0, 0) is therefore more similar to Ŝ = (1, 0, 0, 0, 0, 0, 0, 0) than to Ŝ =

(0, 0, 0, 0, 1, 0, 0, 0). The earth mover’s distance takes this into account, while approaches which

treat Ŝ as a vector generally do not.

In the case where M is the distribution of a physical quantity the elements of Ŝ are proportional

to the momentum of the movements, with Ĝψ,ν then proportional to the impulse required to

transform Ŝψ,0 into Ŝν,1.

3.5 Combination of summary statistic comparisons

As previously stated, the high dimensionality of estimated movement patterns, F̂ , makes them

difficult to compare. We have therefore proposed summary statistics Ŝ and a method to compare

them between observations m0 and m1 via Ĝ.

A comparison of bulk movement patterns across the entire space Ψ between two consecutive

time points is given by ĜΨ,Ψ
s,t . However, aggregating movements over Ψ for large image spaces may

result in unintuitive values of ĜΨ,Ψ
s,t . For example, if movement in the upper half of Ψ is in easterly

directions and in the lower half of Ψ is in westerly directions for m0 and vice versa for m1 then

ŜΨ,0
s,t and ŜΨ,1

s,t are expected to be very similar and the value of ĜΨ,Ψ
s,t very small.

A more effective comparison may be obtained by comparing bulk movement patterns over

smaller subregions of Ψ and then combining these values. We therefore consider the partition of

11
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Ψ into w subregions denoted by Ψw = {ψ1, ψ2, . . . , ψw} and the comparison statistic

ĤΨw,Ψw

s,t =
w∑
j=1

Ĝ
ψj ,ψj
s,t .

Choice of the number, sizes and organisation of subregions clearly has an effect on the value of

Ĥ. In future examples we consider the regular grid location space Ψ = {1, 2, . . . , n1}×{1, 2, . . . , n2}
which may be partitioned into identically sized square subregions which tessellate Ψ, an illustration

which may be seen in Figure 2. This restricts the number of subregions to w = u1u2 for u1 dividing

n1 and u2 dividing n2. Selection of a large value of w results in comparisons over smaller subregions,

resulting in a value of ĤΨw,Ψw which is sensitive to differences in bulk movement patterns on a

smaller local scale.

On the other hand, ĤΨw,Ψw

s,t is dependent upon estimated movement patterns F̂
ψj
s,t which are

calculated using only the information in m{s,t}(ψj). Movements estimated using all available data,

F̂Ψ, are expected to be the closest estimator of the true F , with the combination of regional

estimates ∪wi=1F̂
ψj expected to decrease in accuracy with w as movements between subregions are

not taken into consideration. There is therefore a balance in choosing w large enough that the

local comparisons are sensitive, but small enough that the local movement patterns are accurate.

Partition of Ψ into Ψw has computational benefits, discussed in more detail in Section 3.7.

Assuming mass is evenly distributed over the space and moves at a consistently distributed

speed, the magnitude of Ŝψj is approximately proportional to subregion size which is in turn

inversely proportional to the number of subregions. Values of ĤΨw,Ψw may therefore be considered

to be on the same scale regardless of the choice of w. Despite this, we do not compare ĤΨw,Ψw

for different values of w as we are more interested in tests of the significance of ĤΨw,Ψw through

comparison to ĤΨw,λΨw for some rearrangement operator λ on the collection of subregions Ψw.

3.6 Significance quantification

Our aim is to determine whether or not the evolutions of M0 and M1 over time are dependent. The

formulation of ĤΨw,Ψw gives an insight into this, with small values indicating similarity in local

bulk movement patterns and evidence for dependence and the converse for large values. However,

without making further assumptions on the evolution of processes M0 and M1 it is not possible

specify a parametric distribution of Ĥ under which its significance may be quantified. We therefore

consider nonparametric testing of the significance of the observed value ĤΨw,Ψw

s,t .

In particular, we consider a permutation test under the action of λ = {λ1, λ2, . . . , λw} ∈ Λ on

the collection of subregions Ψw = {ψ1, ψ2, . . . , ψw} with λΨw = {λ1ψ1, λ2ψ2, . . . , λwψw}, chosen

such that under a specified null hypothesis H0 there exists exchangeability of the set {Sψ1

s,t , S
ψ2

s,t . . . ,

Sψws,t } under the action of any λ ∈ Λ, that is

{Sψ1

s,t , S
ψ2

s,t . . . , S
ψw
s,t }

d
={Sλ1ψ1

s,t , Sλ2ψ2

s,t . . . , Sλwψws,t },

with
d
= denoting equality in distribution. In practise, the set Λ is too large to calculate ĤΨw,λΨw

s,t

for all λ ∈ Λ and so an approximate permutation test is carried out using a random subset Λ′ of

Λ which includes the identity operator λ0 : λ0Ψw = Ψw. The resulting p-value is then given by

p =
1

|Λ′|
∑
λ∈Λ′

1{ĤΨw,λΨw

s,t ≤ ĤΨw,Ψw

s,t }.
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Each null hypothesis tested according to this method is comprised of three statements. The

first statement is that there is between-sample independence of local bulk movement patterns,

that is {Sψ1,0
s,t , Sψ2,0

s,t , . . . , Sψw,0s,t } is independent of {Sψ1,1
s,t , Sψ2,1

s,t , . . . , Sψw,1s,t }. The second statement

is required to specify the set of operations Λ under which permutation testing is carried out,

in particular those operations for which the marginal distributions are identical, S
ψj
s,t

d
=S

λjψj
s,t ,

examples of which are provided in Section 3.6.2. The final statement is that there is within-sample

independence of local bulk movement patterns. That is S
ψj
s,t is independent of Sψks,t for j 6= k,

required to ensure exchangeability under the action of λ ∈ Λ.

Within-sample dependence between S
ψj
s,t and Sψks,t is caused by movements between subregions,

Fs,t(x, y) > 0 for x ∈ ψj , y ∈ ψk. In cases where the interval between time points, t − s, is small

in comparison to the speed at which mass moves in M , Fs,t(x, y) is expected be non-zero only for

those locations x and y close to the border between adjacent subregions ψj and ψk. In the rest

of this report we consider observations from designed experiments for which the time points are

chosen close together to satisfy this. The proportion of movements which are inter-subregion may

be further limited by reducing the number of subregions w, limiting the proportion of the space Ψ

which is adjacent to a boundary between subregions.

Variation in the second statement of the null hypothesis allows for the testing of independence

under differing assumptions. In Section 3.6.2 four example null hypotheses are given with corre-

sponding sets of operators Λ. However, the methodology is by no means restricted to these four

null hypotheses, but rather is more broadly applicable to any null hypothesis for which a suitable

set of operations Λ may be determined under which the Sψj are exchangeable. Sets of operations

Λ are typically created based upon null hypothesis statements that permit reflection or rotational

symmetry.

3.6.1 Operator definitions

In the following sections we will repeatedly refer to particular rearrangements of the sets ψj which

we therefore define here.

Let Re define a set of rearrangements of ψj based upon reflections. Firstly, ρ1ψj is the rear-

rangement based upon the reflection of locations x ∈ ψj across the line passing through the centre

of ψj in the direction (1, 0). Similarly, ρ2ψj across the line in direction (1, 1), ρ3ψj across the line

in direction (0, 1) and ρ4ψj across the line in direction (−1, 1). Further, let ρ0ψj = ψj be the

identity rearrangement.

Let Ro define a set of rearrangements of ψj based upon rotations. Firstly, %1ψ1 is the rear-

rangement based upon the rotation of locations x ∈ ψj anticlockwise about the centre of ψj by

angle π/2. Similarly, %2ψj by an angle of π and %3ψj by an angle of 3π/2. Further, let %0ψj = ψj

be the identity rearrangement.

A diagram illustrating ρ ∈ Re and % ∈ Ro for Ψ may be seen in Figure 2.

Applied in combination ρ% or %ρ with ρ ∈ Re = {ρ0, ρ1, ρ2, ρ3, ρ4} and % ∈ R0 = {%0, %1, %2, %3}
a number of permutations are identical. For example, ρ3%1ψj = ρ2%0ψj . There are a total of eight

unique transformations of ψj of this form, one listing of which is {ρ0%0, ρ1%0, ρ2%0, ρ3%0, ρ4%0, ρ0%1,

ρ0%2, ρ0%3}.
The value of Ŝ

ρ%ψj
s,t for any of the ρ ∈ {ρ0, ρ1, ρ2, ρ3, ρ4} and % ∈ {%0, %1, %2, %3} is obtained by

a straightforward rearrangement of Ŝ
ψj
s,t . For example, Ŝ

ρ3%1ψj
s,t = ((Ŝ

ψj
s,t)3, (Ŝ

ψj
s,t)2, (Ŝ

ψj
s,t)1, (Ŝ

ψj
s,t)8,
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(Ŝ
ψj
s,t)7, (Ŝ

ψj
s,t)6, (Ŝ

ψj
s,t)5, (Ŝ

ψj
s,t)4).

3.6.2 Example hypotheses

Definition 7. The isotropic null hypothesis, HI
0 , specifies on a scale according to w between-

sample independence of local bulk movement patterns, that local bulk movement patterns, Sψj ,

are homogeneous and isotropic across the whole space Ψ and within-sample independence of local

bulk movement patterns. The corresponding set of operators for which there exists exchangeability

under HI
0 is denoted by ΛI .

Under the assumption of isotropy, local bulk movement patterns Sψj are identically distributed

under rearrangement of ψj by rotation and reflection by the action of ρ%, ρ ∈ Re, % ∈ Ro on ψj . Fur-

ther, under the assumption of homogeneity, local bulk movement patterns Sψj are identically dis-

tributed under any rearrangement of subregions, realised as a reordering of Ψw = {ψ1, ψ2, . . . , ψw}.
The set of operators ΛI is therefore

ΛH,I = {(λ1, λ2, . . . , λw) : λjψj = ρ%ψσ(j), ρ ∈ Re, % ∈ Ro, σ ∈ Sw},

where Sw is the symmetric group of size w. The total number of unique operators is |ΛI | = 8w×w!.

Definition 8. The homogeneous null hypothesis, HH
0 , specifies on a scale according to w between-

sample independence of local bulk movement patterns, that local bulk movement patterns, Sψj , are

homogeneous across the whole space Ψ and within-sample independence of local bulk movement

patterns. The corresponding set of operators for which there exists exchangeability under HH
0 is

denoted by ΛH .

Under the sole assumption of homogeneity the set of operators ΛH is given by

ΛH = {(λ1, λ2, . . . , λw) : λjψj = ψσ(j), σ ∈ Sw}.

The total number of unique operators is |ΛH | = w!. Note that ΛH ⊂ ΛI .

Definition 9. The symmetric null hypothesis, HS
0 , specifies on a scale according to w between-

sample independence of local bulk movement patterns, that local bulk movement patterns, Sψj ,

are symmetric across the whole space under the application of ρ%, ρ ∈ Re, % ∈ Ro to Ψ and within-

sample independence of local bulk movement patterns. The corresponding set of operators for

which there exists exchangeability under HS
0 is denoted by ΛS .

Symmetry in the distribution of Sψj under a limited set of rotations and reflection of Ψ allows

us to partition Ψw into classes for which ψj and ψk are members of the same class if and only

if Sψj
d
=Sρ%ψk for some suitable choice of ρ and %. The specification of symmetry under the

application of all rotations and reflections ρ%, ρ ∈ Re, % ∈ Ro to Ψ requires Ψ to be square.

An example in the case of w = 25 is illustrated in Figure 2, for which the exchangeability classes

are {ψ13}, {ψ8, ψ12, ψ14, ψ18}, {ψ7, ψ9, ψ17, ψ19}, {ψ3, ψ11, ψ15, ψ23}, {ψ2, ψ4, ψ6, ψ10, ψ16, ψ20, ψ22,

ψ24} and {ψ1, ψ5, ψ21, ψ25}. Examples of allowed transformations are Sρ%ψ13
d
=Sψ13 ∀ρ ∈ Re, % ∈

Ro, S
ρ4ψ8

d
=S%1ψ8

d
=Sψ14 and Sρ3ψ2

d
=Sψ4 .
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ρ2

ρ3

ρ4

ρ1

%1

%2

%3

Ψ Ψ

ψ1 ψ2 ψ3 ψ4 ψ5

ψ6 ψ7 ψ8 ψ9 ψ10

ψ11 ψ12 ψ13 ψ14 ψ15

ψ16 ψ17 ψ18 ψ19 ψ20

ψ21 ψ22 ψ23 ψ24 ψ25

Figure 2: Illustration of rotations and reflections of Ψ, left, and the division of Ψ into subregions

ψj ∈ Ψ25 with shading according to the exchangeability classes, right.

The total number of unique operators is

|ΛS | =



8 if w = 1

24 × 4! if w = 4

8× (24 × 4!) if w = 9

(k × 24 × 4!)×
(
k(k−1)

2 × 8!
)

if w = (2k)2, k = 2, 3, . . .

8× (2k × 24 × 4!)×
(
k(k−1)

2 × 8!
)

if w = (2k + 1)2, k = 2, 3, . . . .

Note that ΛS ⊂ ΛI as ΛI includes all rearrangements, rotations and reflections and ΛS includes

only those which preserve the classes of Ψw. Further, ΛS * ΛH as ΛH includes only rearrangements

of subregions and ΛS requires rotations and reflections of subregions alongside rearrangements, and

ΛH * ΛS as ΛH includes all rearrangements of subregions and ΛS restricts rearrangements within

the classes partitioning Ψw.

Definition 10. The horizontal reflection null hypothesis, HR
0 , specifies on a scale according to w

between-sample independence of local bulk movement patterns, that local bulk movement patterns,

Sψj , are horizontally symmetric across the whole space under the application of ρ3 to Ψ and

within-sample independence of local bulk movement patterns. The corresponding set of operators

for which there exists exchangeability under HR
0 is denoted by ΛR.

Under HR
0 subregions ψj are each paired with the corresponding subregion located at the same

position as (ρ3Ψw)j for which rearrangement is allowed under the application of ρ3 to both ψj and

(ρ3Ψw)j .
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In the case where Ψw is u1 subregions wide and u2 subregions high, with w = u1u2, the total

number of unique operators is

|ΛR| = 2d
u1
2 eu2 ,

where due is the value of u rounded up to the nearest integer.

3.7 Computational considerations

Estimation of local bulk movement patterns Ŝψs,t first requires estimation of movement patterns F̂ψs,t

resulting from calculation of the earth mover’s distance between ms(ψ) and mt(ψ). Calculation

of the earth mover’s distance is based upon solution of an assignment problem, the computational

cost of which is superlinear in the number of origin and destination locations x, y ∈ ψ, requiring

O(|ψ|3 log |ψ|) operations (Rubner et al., 2000). As a result, partitioning Ψ into w subregions ψj

results in a collection of Ŝ
ψj
s,t which may be determined at less overall computational cost than ŜΨ

s,t,

by a factor of 1/w2 as

w ×O(|ψj |3 log |ψj |) = O(w|ψj |3 log |ψj |)

= O

(
w

(
|Ψ|
w

)3

log
|Ψ|
w

)

= O

(
1

w2
|Ψ|3 log Ψ− 1

w2
|Ψ|3 logw

)
=

1

w2
O(|Ψ|3 log |Ψ|).

Furthermore, as calculation of Ŝ
ψj
s,t is independent of calculation of Ŝψks,t for disjoint sets ψj and ψk,

partitioning of Ψ into subregions ψj permits parallelisation of earth mover’s distance calculations.

The cost function for estimating movements, F̂ψs,t(x, y), is specified as c(x, y) = ||x − y||2, the

Euclidean distance between locations x and y. This cost function satisfies the triangle inequality,

that is for locations x, y and z we have c(x, z) ≤ c(x, y) + c(y, z). An interpretation of the triangle

inequality for our application is that it is always as or more expensive to move mass from x into y

and equal mass from y to z than it is to move mass directly from x to z. As a result, provided c

satisfies the triangle inequality, we can state before calculation of the earth mover’s distance that

F̂ψs,t(x, x) = min{ms(x),mt(x)}. Calculation of F̂ψs,t(x, y) may therefore be based upon the collec-

tion of data {ms,+(ψ),mt,−(ψ)} = {ms(x)−min{ms(x),mt(x)},mt(x)−min{ms(x),mt(x)}, x ∈
ψ}. However, for every pair ms,+(x),mt,−(x) at least one is zero. Therefore, the total number

of origin and destination locations is reduced by at least half, resulting in a large computational

saving when c satisfies the triangle inequality.

As stated in Section 3.6.1, the value of Ŝ
ρ%ψj
s,t may be obtained without further calculation

from Ŝ
ψj
s,t by rearrangement if ρ ∈ Re and % ∈ Ro. In cases where the null hypothesis permits

operations of rearrangement, reflection and rotation dramatic savings can therefore by made by

avoiding repeated recalculation of the earth mover’s distance.
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4 Validation study

4.1 Simulation description

A general simulation may be made up of a total of k objects, where the centre of object i at time t

is denoted by ci(t) and its intensity by bi. The evolution over time of the process is determined by

the relationship between ci(s) and ci(t) for time points s and t. The shape of object i is specified

by di(x) the set of points belonging to shape i whose centre is located at x. In this manner the

simulations may be thought of as sequences of germ-grain models, with point locations or germs

ci(t) associated with sets corresponding to object shapes or grains di(x). Simulations may include

an observation error term ε(x, t) at locations x at times t. Under such a formulation we may specify

m(x, t) =
k∑
i=1

bi1{x ∈ di(ci(t))}+ ε(x, t)

Fs,t(x, y) =
k∑
i=1

bi1{x ∈ di(ci(t)), y − x = ci(t)− ci(s)}.

For the validation study investigated in this section we consider a discrete location space Ψ =

{1, 2, . . . , 60} × {1, 2, . . . , 60} and a discrete time space Υ = {1, 2, 3, 4, 5}. The number of objects,

k, differs between simulation classes but objects are all of the same intensity bi = 30. Objects are

further all the same size and shape, that of a Greek cross of the four locations directly adjacent to

x = (x1, x2) and x itself

di(x) = {x, (x1, x2 − 1), (x1, x2 + 1), (x1 − 1, x2), (x1 + 1, x2)},

and initially independently distributed uniformly over Ψ, ci(1) ∼ Uniform{Ψ}. The evolution of

object centres over time also differs between simulations and is therefore described separately. The

observation error is Poisson distributed white noise with mean three, that is ε(x, t) ∼ Poisson(3)

independently for all times t ∈ Υ and locations x ∈ Ψ.

For each class of simulation 15 replicates are produced, allowing 105 unique comparisons be-

tween simulations of the same class. Dependence between movement patterns in observations of

the same class is introduced by the inclusion of a proportion of identical objects in each simulation.

Definition 11. Noise simulations contain no objects, k = 0, and therefore represent only white

noise.

There is no dependence between noise simulations.

Definition 12. Isotropic simulations contain 100 objects, k = 100, for which

ci(t+ 1) = ci(t) + 3(cos(θi,t), sin(θi,t)) mod 60,

for θi,t ∼ Uniform[0, 2π) simulated independently for each object and each time point. Centre

locations are calculated under the specification that 60 mod 60 = 60 and with rounding of ci(t) to

the nearest location in Ψ.

The evolution of object centres for isotropic simulations is independent of location and uniform

across all directions, resulting in movement patterns which are both isotropic, homogeneous and

reflection and rotationally symmetric under combinations ρ%, ρ ∈ Re, % ∈ Ro applied to Ψ. Taking
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object centres modulo 60 ensures that all objects remain within the location space Ψ, appearing

to wrap around from each edge to the opposite edge.

Isotropic 10 simulations each contain the same 10 objects and 90 objects simulated indepen-

dently for each observation. Similarly, isotropic 30 simulations each contain the same 30 objects

and 70 objects simulated independently for each observation.

Definition 13. Homogeneous simulations contain 100 objects, k = 100, for which

ci(t+ 1) = ci(t) + 3
(

cos
(π

4

)
, sin

(π
4

))
mod 60,

again under the specification that 60 mod 60 = 60 and with rounding of ci(t) to the nearest location

in Ψ.

The evolution of object centres for homogeneous simulations is independent of location, result-

ing in movement patterns which are homogeneous. Evolutions are also symmetric under reflection

of Ψ by ρ2 as centres move in the direction of the vector (1, 1). Movement patterns in homogeneous

simulations are neither isotropic nor reflection or rotationally symmetric in any other way. Taking

object centres modulo 60 again ensures that all objects remain within the location space Ψ.

Homogeneous 10 simulations each contain the same 10 objects and 90 objects simulated inde-

pendently for each observation. Similarly, homogeneous 30 simulations each contain the same 30

objects and 70 objects simulated independently for each observation.

Definition 14. Symmetric simulations contain 100 objects, k = 100, for which

ci(t+ 1) = ci(t) + 3
z − ci(t)
||z − ci(t)||

,

where z = (30.5, 30.5) is the point at the centre of Ψ and locations ci(t) are rounded to the nearest

location in Ψ.

The evolution of object centres for symmetric simulations produces movement patterns which

are reflection and rotationally symmetric under combinations ρ%, ρ ∈ Re, % ∈ Ro applied to Ψ.

Movement patterns in symmetric simulations are neither homogeneous nor isotropic, additionally

differing from all other described simulations in that the distribution of the collection of objects is

expected to vary over time as they aggregate towards the centre of Ψ.

Symmetric 10 simulations each contain the same 10 objects and 90 objects simulated indepen-

dently for each observation. Similarly, symmetric 30 simulations each contain the same 30 objects

and 70 objects simulated independently for each observation.

Object speeds have been fixed at three as a compromise, with speeds smaller than three re-

sulting in movements which may be accurately determined by eye alone and speeds larger than

three expected to limit accuracy of F̂ as an estimator of F . The following section provides the

results of testing the described classes of simulations under a variety of hypotheses for a range of

subregion sizes and thus a range of values of w. With square subregions of width 10, 12, 15 and

20 (corresponding to w = 36, 25, 16 and 9), object speeds of three ensures that the proportion of

objects moving between subregions is small.

Illustrative examples of each class of simulation are presented in Figure 3.
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Noise

t = 1 t = 2 t = 3 t = 4 t = 5

Isotropic

t = 1 t = 2 t = 3 t = 4 t = 5

Homogeneous

t = 1 t = 2 t = 3 t = 4 t = 5

Symmetric

t = 1 t = 2 t = 3 t = 4 t = 5

Figure 3: Examples of simulated data. Pixel intensities correspond to values of m, linearly scaled

such that the maximum value of m across all time points is black and the value m = 0 is white.
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4.2 Study Results

4.2.1 Movement pattern estimation

Figure 4 displays a single example of the movements obtained via estimation of F̂s,t and the true

movements given by Fs,t. Data is a single isotropic simulation of 10 objects on a region of size 20

by 20, with the additional condition that objects must remain within the observation window.

Generally good agreement is observed between F̂s,t and Fs,t, in particular when objects are well

separated. In cases where objects overlap and trajectories cross there is a reduction in accuracy

which is to be expected based upon the formulation of the estimator F̂s,t. Investigation of this

example and others suggest that the proposed method of determining F̂s,t results in a reasonable,

but by no means perfect, estimator of Fs,t.

4.2.2 Independent simulations

The first set of tests carried out are for each of the independent simulations under each of the

hypotheses HI
0 , HH

0 and HS
0 . These tests are carried out across all four pairs of consecutive time

points 1 → 2, 2 → 3, 3 → 4 and 4 → 5, and across each of the four considered subregion sizes

20, 15, 12 and 10 corresponding to w = 9, 16, 25 and 36. Table 1 summarises the results of these

approximate permutation tests under 10 000 permutations, presenting the results as the proportion

of the 105 returned between-sample p-values which are less than 0.05. Furthermore, † is used to

denote those collections of between-sample p-values which reject the omnibus null hypothesis of

Uniform[0,1] distribution of between-sample p-values according to the Kolmogorov-Smirnov test

(Massey, 1951) at the five percent level. The issue of multiple testing is discussed in Section 4.2.4.

Noise simulations contain no objects and therefore no structured movements. As a result, local

bulk movement patterns, Ŝψj , are expected to be identically distributed under the action of all

operators λ ∈ ΛI ,ΛH and ΛS . Between-sample independence of simulations and within-sample

independence of local bulk movement patterns Ŝψj by construction therefore suggests that the null

hypotheses should be satisfied, reflected in Table 1 by values close to 0.05 and a general absence of

markers †. This is the observed behaviour, with the two marked occasions rejecting the omnibus

null hypothesis doing so with p-values of 0.013 and 0.009.

Isotropic simulations are also independent and expected to produce local bulk movement pat-

terns Ŝψj which are isotropic, homogeneous and symmetric. A difference between noise and

isotropic simulations is the movement of objects between subregions, which introduce a within-

sample dependence between local bulk movement patterns. The results in Table 1 indicate that

there is not enough evidence to reject within-sample independence as the proportion of between-

sample p-values less than 0.05 remains approximately 0.05 and the single rejection of the omnibus

null hypothesis at the five percent level occurs with p-value 0.024. We therefore conclude that

within simulations local bulk movement patterns are approximately independent, an important

result for the interpretation of future test results and one that has been shown to hold across all

considered subregion sizes.

Homogeneous simulations are independent, producing local bulk movement patterns which are

homogeneous but neither isotropic nor symmetric. The result of this is rejection of null hypotheses

HI
0 and HS

0 as local bulk movement patterns Ŝψj are not identically distributed under the action

of operators λ ∈ ΛI and ΛS . Under HI
0 and HS

0 a generally greater proportion of between-sample
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Figure 4: Illustration of observations ms, top left, mt, top right, estimated F̂s,t and true Fs,t,

bottom left, for a single simulation. A scale is provided in the bottom right. Simulated movements

are represented by green arrows, with grey arrows used to represent estimated movements of varying

quantities of mass and mass distributions displayed as shades of red for ms and blue for mt. The

background image of the bottom left plot displays ms−min{ms,mt} in red and mt−min{ms,mt}
in blue, the information on which movements are estimated.
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p-values are less than 0.05 for larger subregion sizes, potentially because movement patterns F̂ψj

are more accurately estimated for larger subregions. Homogeneous simulations are particularly

susceptible to inaccuracy in the estimation of F̂ψj for small subregion sizes as an object exiting the

northeast of the subregion may be replaced by an object entering the southwest of the subregion,

resulting in an estimated movement in the opposite direction to that which actually occurred. An

increase in significant between-sample p-values for increasing subregion size is counterintuitive in

terms of rejection of the null hypothesis due to within-sample dependence, as smaller subregions are

expected to increase the proportion of objects crossing boundaries, increasing the within-sample

dependence. Homogeneous simulations typically fail to reject the omnibus null hypothesis under

HH
0 at the five percent level as expected, with the one exception doing so with p-value 0.027.

Symmetric simulations produce similarly expected results, consistently rejecting HI
0 and HH

0

as local bulk movement patterns Ŝψj are not identically distributed under the action of λ ∈ ΛI and

ΛH . When testing against HS
0 , failure to reject the omnibus null hypothesis at the five percent

level is also commonly seen, with the two exceptions rejecting with p-values 0.032 and 0.022.

The results of testing independent simulations across a number of hypotheses indicate that if

a null hypothesis is chosen which is suitable for the movement patterns of the process, the testing

procedure generally returns between-sample p-values whose distribution is indistinguishable from

Uniform[0,1]. That is to say, local bulk movement patterns are between-sample independent (by

construction), equal in distribution under the action of λ ∈ Λ for an appropriate specification of

Λ (also by construction) and within-sample independent. This suggests that the proposed testing

procedure is valid under considered specification of the null hypothesis, following which rejection of

future tests may be taken as evidence against between-sample independence of local bulk movement

patterns.

4.2.3 Dependent simulations

The power of the proposed testing procedure is assessed by testing dependent simulations under

the most appropriate choice of null hypothesis. That is isotropic 10 and isotropic 30 simulations

under HI
0 , homogeneous 10 and homogeneous 30 simulations under HH

0 and symmetric 10 and

symmetric 30 simulations under HS
0 , where each test is an approximate permutation test using 10

000 random samples from the corresponding set of operators Λ. Table 2 summarises the results

of these tests, presenting the proportion of the 105 between-sample p-values which are less than

0.05 and marking with ‡ those which fail to reject the omnibus null hypothesis of Uniform[0,1]

distribution of between-sample p-values under the Kolmogorov-Smirnov test at the five percent

level. Tests are again carried out over four pairs of consecutive time points and four subregion

sizes varying between 10 and 20.

Over all comparisons the testing procedure is generally able to detect dependence when it exists,

observed as generally consistent rejection of the omnibus null hypothesis at the five percent level.

This is always the case for the simulations sharing 30 out of the 100 total objects, but there are

some failures to reject the omnibus null hypothesis at the five percent level when the degree of

dependence is weaker and only 10 objects are shared. For isotropic 10 simulations the failure to

reject the omnibus null hypothesis occurs with a p-value of 0.739. For homogeneous 10 simulations

there are more cases, failing to reject the omnibus null hypothesis with p-values 0.201, 0.142, 0.145

and 0.439. For symmetric 10 simulations we again see a few failures to reject the omnibus null
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HI
0 HH

0 HS
0

20 15 12 10 20 15 12 10 20 15 12 10

noise 1→ 2 0.03 0.06 0.06 0.04† 0.02 0.08 0.06 0.02† 0.03 0.06 0.05 0.05

2→ 3 0.06 0.03 0.08 0.06 0.06 0.02 0.06 0.06 0.07 0.02 0.06 0.03

3→ 4 0.04 0.04 0.04 0.10 0.06 0.04 0.05 0.09 0.05 0.07 0.04 0.05

4→ 5 0.04 0.04 0.03 0.05 0.04 0.04 0.04 0.04 0.02 0.02 0.04 0.04

isotropic 1→ 2 0.06 0.10 0.07 0.03 0.08 0.09 0.07 0.03 0.07 0.04 0.03 0.03

2→ 3 0.05 0.04 0.03 0.07 0.05 0.01 0.04 0.06 0.08 0.02 0.04 0.06

3→ 4 0.06 0.07 0.10 0.08 0.05 0.06 0.08† 0.06 0.06 0.04 0.08 0.05

4→ 5 0.05 0.03 0.06 0.05 0.04 0.03 0.06 0.05 0.05 0.02 0.04 0.05

homogeneous 1→ 2 0.88† 0.73† 0.62† 0.44† 0.05 0.02 0.05 0.06 0.90† 0.71† 0.67† 0.52†

2→ 3 0.53† 0.40† 0.39† 0.41† 0.04 0.03 0.09 0.05 0.6† 0.40† 0.36† 0.39†

3→ 4 0.80† 0.70† 0.56† 0.55† 0.03 0.06 0.03 0.03 0.79† 0.70† 0.65† 0.60†

4→ 5 0.70† 0.57† 0.57† 0.33† 0.04† 0.03 0.05 0.03 0.70† 0.57† 0.54† 0.33†

symmetric 1→ 2 .00† 1.00† 0.98† 0.94† 1.00† 1.00† 0.98† 0.94† 0.02 0.08 0.07 0.06

2→ 3 1.00† 1.00† 0.91† 0.98† 1.00† 1.00† 0.93† 0.98† 0.08 0.07† 0.07 0.05

3→ 4 0.99† 0.96† 0.99† 1.00† 1.00† 0.96† 0.99† 1.00† 0.08 0.03 0.06 0.06

4→ 5 0.98† 1.00† 1.00† 1.00† 1.00† 1.00† 1.00† 1.00† 0.09 0.07 0.10 0.05†

Table 1: The results of testing each class of independent simulations under each of the three hypotheses HI
0 , HH

0 and HS
0 for a range of consecutive

time points and subregion sizes. Comparison between the 15 simulations in each class produces 105 between-sample p-values for each test, with the table

presenting the proportion of p-values less than 0.05 and † used to denote sets of p-values which reject the omnibus hypothesis of Uniform[0,1] distribution

of between-sample p-values under the Kolmogorov-Smirnov test at the five percent level.
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hypothesis, with p-values 0.935, 0.627, 0.081, 0.273 and 0.116.

Although the omnibus null hypothesis is typically rejected at the five percent level, it is by

no means the case that every between-sample test rejects the respective null hypothesis at the

five percent level, with the proportions of tests that do so varying between 0.04 and 0.90. This

is to be expected due to the difficulty of the problem and the general solution that we propose,

requiring only minor assumptions on movement patterns to determine exchangeability of local

bulk movement patterns. Despite this, when the optimal choice of subregion size is made and the

dependence is 30 percent of all objects the proportion of between-sample tests reported significant

at the five percent level is on average 0.77, which we take as an indicator that the proposed testing

procedure has an acceptable level of power.

There is almost unanimous improvement in detection ability, measured by an increase in the

proportion of between-sample p-values which are less than 0.05, with decreasing subregion size. As

subregion size reduces, the expected number of independent objects in each subregion is reduced.

The relative contribution to Ŝψj by shared objects in the subregions in which they are located

is therefore increased, making their existence more easily detectable under the testing procedure.

Despite this, there is expected to be a limit below which further reduction of subregion sizes will

result in a reduction in power, as the accuracy of the estimator F̂ψj is reduced as the probability

of objects moving between subregions increases.

In general the proportion of between-sample p-values less than 0.05 is greater for isotropic

simulations than for both homogeneous and symmetric simulations, for which the proportions are

broadly comparable. A possible explanation for this may be that for homogeneous and symmetric

simulations movements are determined solely by the location of objects, with closely separated

objects undergoing very similar movements. This could result in greater numbers of coincidentally

similar movements, making dependencies more difficult to identify for homogeneous and symmetric

simulations in comparison to isotropic simulations for which movement direction is independent of

object location and coincident similarities are as a result rarer.

There is expected to be some dependence between tests at different pairs of consecutive time

points, but the form of this dependence is difficult to quantify. For isotropic and homogeneous

simulations local bulk movement patterns are expected to be identically distributed in time and

observed results are similarly consistent over time. This is not the case for symmetric simulations,

as objects aggregate at the centre of Ψ over time. Despite this, there is no discernible difference

in results for symmetric simulations across different pairs of consecutive time points, suggesting

that whether movements are spread over Ψ or congregated closer to its centre has no impact on

the performance of the testing procedure.

The power of the proposed testing procedure is further assessed by testing dependent isotropic

simulations under the three null hypotheses HI
0 , HH

0 and HS
0 . Rejection of any of these hypotheses

may be taken as evidence of between-sample dependence because local bulk movement patterns

for isotropic simulations are exchangeable under operators λ ∈ ΛI and both sets of operators

ΛH ⊂ ΛI and ΛS ⊂ ΛI by construction. Table 3 summarises the results of these tests, presenting

the proportion of the 105 between-sample p-values which are less than 0.05 and marking with
‡ those which fail to reject the omnibus null hypothesis of Uniform[0,1] distribution of between-

sample p-values under the Kolmogorov-Smirnov test at the five percent level. These test are again

carried out over the four pairs of consecutive time points and four subregion sizes varying between
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20 15 12 10

isotropic 10 1→ 2 0.19 0.11 0.23 0.26

2→ 3 0.10 0.12 0.10 0.17

3→ 4 0.07‡ 0.20 0.10 0.23

4→ 5 0.10 0.11 0.18 0.23

isotropic 30 1→ 2 0.37 0.47 0.84 0.90

2→ 3 0.47 0.40 0.83 0.88

3→ 4 0.49 0.51 0.93 0.90

4→ 5 0.57 0.33 0.84 0.88

homogeneous 10 1→ 2 0.03‡ 0.12‡ 0.13 0.13

2→ 3 0.15 0.16 0.22 0.30

3→ 4 0.05‡ 0.06 0.10‡ 0.13

4→ 5 0.10 0.11 0.09 0.21

homogeneous 30 1→ 2 0.37 0.40 0.62 0.80

2→ 3 0.24 0.63 0.50 0.90

3→ 4 0.16 0.45 0.50 0.73

4→ 5 0.20 0.51 0.67 0.69

symmetric 10 1→ 2 0.05‡ 0.11 0.09 0.16

2→ 3 0.07‡ 0.10 0.16 0.17

3→ 4 0.06‡ 0.10 0.10 0.09

4→ 5 0.04‡ 0.12 0.10‡ 0.06

symmetric 30 1→ 2 0.21 0.39 0.53 0.60

2→ 3 0.24 0.48 0.37 0.53

3→ 4 0.19 0.26 0.77 0.70

4→ 5 0.27 0.30 0.40 0.69

Table 2: The results of testing each class of dependent simulations against the most appropriate

hypothesis for a range of consecutive time points and subregion sizes. Comparison between the

15 simulations in each class produces 105 between-sample p-values for each test, with the table

presenting the proportion of p-values less than 0.05 and ‡ used to denote sets of p-values which

fail to reject the omnibus null hypothesis of Uniform[0,1] distribution of between-sample p-values

under the Kolmogorov-Smirnov test at the five percent level.
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10 and 20.

Across all null hypotheses there is consistent rejection of omnibus null hypothesis at the five

percent level. The exceptions to this fail to reject the omnibus null hypothesis with p-values of

0.739 for HI
0 , 0.824 for HH

0 and 0.624 for HS
0 . The proportion of between-sample tests reporting

significance at the five percent significance level is greatest under HI
0 , but only mildly greater

than under HH
0 which is in turn mildly greater than under HS

0 . These two properties support the

effectiveness of the testing procedure using any suitably large valid set of operations Λ under which

local bulk movement patterns are exchangeable, with a minor reduction in power in comparison

to the test carried out under the maximal set of operations Λ under which local bulk movement

patterns are exchangeable.

4.2.4 Multiple testing

Both the testing of simulations in this section and the testing of real data in the following section

raise questions of multiple comparisons. Focusing on a single example, the results presented in

Table 1 for the testing of noise simulations under HI
0 are based upon tests of 105 between-sample

comparisons across four subregion sizes and four pairs of consecutive time points, for a total of 1

680 statistical tests. Considering the testing of the 16 omnibus null hypotheses via the Kolmogorov-

Smirnov test at the five percent level, we observe one rejection of the null hypothesis. However,

this individual result must be considered in the wider picture of all sixteen omnibus tests.

The family wise error rate of a collection of statistical tests is the probability of making one

or more type I errors, rejecting the null hypothesis when it is true, when performing multiple

hypothesis tests (Shaffer, 1995). Assuming the previously described 16 Kolmogorov-Smirnov tests

at the five percent level are independent, the family wise error rate is then 1− (1− 0.05)16 = 0.56.

That is, even if between-sample p-values are Uniform[0,1] distributed under HI
0 we have a greater

than 50 percent chance of rejecting at least one of the 16 tests. Our conclusions must be aware of

this fact and appropriately take it into account.

A method for the control of the family wise error rate across a total of n tests is the Bonferroni

correction, for which each individual test is carried out at the reduced significance level of α/n

(Dunn, 1961). The family wise error rate in the case of independent tests, 1− (1− α/n)n ≤ α by

Boole’s inequality, is controlled by the Bonferroni correction to be no more than the significance

level α. However, for large numbers of comparisons the Bonferroni correction can result in tests

which lack power and are conservative when the results of individual tests are positively correlated

(Simes, 1986).

In all tests of the omnibus null hypothesis we expect strong positive correlation between test

results, the exact form of which is difficult to quantify. This is because tests across different

subregion sizes are applied to the same simulation data each time, and simulation data is identically

distributed across all time points, indicating that tests between s = 1, t = 2 and s = 2, t = 3 are

expected to produce very similar results. The Bonferroni correction and alternative corrections

are therefore not applied, with tests carried out at the nominal five percent level but resulting

conclusions made in light of the presence of multiple testing.
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isotropic homogeneous symmetric

20 15 12 10 20 15 12 10 20 15 12 10

isotropic 10 1→ 2 0.19 0.11 0.23 0.26 0.20 0.11 0.24 0.26 0.17 0.15 0.18 0.22

2→ 3 0.10 0.12 0.10 0.17 0.13 0.14 0.10 0.16 0.08 0.11 0.06 0.15

3→ 4 0.07‡ 0.20 0.10 0.23 0.06‡ 0.19 0.10 0.22 0.05‡ 0.20 0.09 0.19

4→ 5 0.10 0.11 0.18 0.23 0.10 0.13 0.22 0.26 0.10 0.10 0.15 0.17

isotropic 30 1→ 2 0.37 0.47 0.84 0.90 0.27 0.48 0.81 0.89 0.30 0.46 0.76 0.90

2→ 3 0.47 0.40 0.83 0.88 0.47 0.43 0.84 0.89 0.41 0.39 0.83 0.76

3→ 4 0.49 0.51 0.93 0.90 0.30 0.54 0.95 0.84 0.44 0.50 0.75 0.79

4→ 5 0.57 0.33 0.84 0.88 0.41 0.30 0.83 0.79 0.56 0.32 0.73 0.78

Table 3: The results of testing dependent isotropic simulations against the three appropriate hypothesis for a range of consecutive time points and subregion

sizes. Comparison between the 15 simulations in each class produces 105 p-values for each test, with the table presenting the proportion of p-values less

than 0.05 and ‡ used to denote sets of p-values which fail to reject the omnibus null hypothesis of Uniform[0,1] distribution under the Kolmogorov-Smirnov

test at the five percent level.
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5 Investigation of EB3 and TACC3 data

5.1 EB3 and TACC3 background

As stated in the introduction, we aim to make inference on dependence between the local bulk

movement patterns of biomolecular species TACC3, Transforming Acidic Coiled-Coil Containing

Protein 3, and EB3, End-Binding protein 3. The protein EB3 is known to localise at the tip of

growing microtubules during mitosis (Mimori-Kiyosue et al., 2000) and the biological question of

interest is whether TACC3 is similarly located so as to shed light on its potential impact on the

process of mitosis.

The available data is comprised of confocal fluorescence microscopy images collected across

seven samples at a total number of between 47 and 57 time points. Images are collected of live

cells during mitosis with TACC3 tagged with a green fluorescing protein and EB3 tagged with a

red fluorescing protein. Microscope resolution is such that each pixel is 68.9nm square and images

are collected at a rate of one per second. Green and red intensities are recorded at the same

time by two different digital cameras, resulting in two greyscale images for each sample at each

time point, one corresponding to EB3 and one to TACC3. Digital cameras are used for image

acquisition, meaning that the data contained in each image is accessible as a matrix of integer

valued intensity levels, one for each pixel location. We treat intensity levels as a surrogate measure

for quantity of the relevant biomolecular species at each pixel location. Example images from five

consecutive time points for three of the samples may be seen in Figure 5, illustrating the structure

seen, variability within samples between time points and between samples more generally.

The proposed testing methodology requires an assumption under which the subregions ψj may

be rearranged and remain identically distributed. As EB3 is located at the end of microtubules

which grow in a spindle structure during mitosis, we make the assumption that movement patterns

are symmetric across the line connecting microtubule organising centres, the poles of the approxi-

mately ellipsoid spindle structure. Original image sequences are therefore rotated and cropped to

focus on only the spindle region, resulting in consistent image sizes of 180 pixels wide and 240 pixels

high across all samples, permitting exact tessellation by square subregions ψj of side lengths 20,

15 and 12. The miotic spindle is a three dimensional structure, with the resulting two dimensional

images a projection into a single plane.

Collection of images every second is expected to capture the location of biomolecules at a great

enough time resolution that their movement patterns may be estimated. In investigation of the

same data (Gutierrez-Caballero et al., 2015) biomolecule locations were specified and tracked using

an automatic object tracking process requiring specification of a number of parameters tuned based

upon the observed images and prior beliefs about the biology underpinning the process (Applegate

et al., 2011). Results indicated that both biomolecular species are located at the end of growing

microtubules, separated by an average distance of 229nm, with TACC3 closest to the growing tip.

We propose to investigate the same data set without specification of parameters other than the

assumption of reflection symmetry across a single line and further statistically test for dependence

between TACC3 and EB3 movement patterns.
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Sample 2 EB3

TACC3

t = 1 t = 2 t = 3 t = 4 t = 5

Sample 4 EB3

TACC3

t = 12 t = 13 t = 14 t = 15 t = 16

Sample 5 EB3

TACC3

t = 23 t = 24 t = 25 t = 26 t = 27

Figure 5: EB3 and TACC3 images from three samples across five consecutive time points. Pixel

intensities correspond to values of m with the maximum value of m across all time points black

and m = 0 white.
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Figure 6: Boxplots to display the distribution of values of Pearson’s correlation coefficient across

all pairs of consecutive time points for each of the sample comparisons considered.

5.2 Exploratory data analysis

Intensities related to EB3 are in general greater than that of the TACC3 channel due to expression

of TACC3 at a lower level. Greater expression of TACC3 is avoided, as it results in a brighter image

but also aggregation of TACC3 away from microtubule tips, and consequently away from EB3,

which could obscure the ability to investigate interaction between TACC3 and EB3. Estimation

of movement patterns for TACC3 is therefore expected to be more challenging as intensities are in

some cases on a similar scale to background noise. Consistent scaling of intensity in a subregion,

m(ψ), by a positive constant across time points s and t results in an identical scaling of the summary

statistic, Ŝψs,t, and a change to the comparison score Ĝψ,ψs,t . However, if the scaling is consistent

across all subregions and all time points then the impact on test results should be minimal.

As an exploratory investigation, colocalisation between image pairs may be quantified using

Person’s correlation coefficient, the results of which are displayed in Figure 6. Calculations are

made for comparison pairs EB3 × TACC3, for which we are interested in the degree of similarity,

and EB3 × TACC3* and TACC3 × TACC3*, where TACC3* is the vertical reflection of TACC3

and we expect to see only coincidental similarity. For each of the seven samples correlation values

are greater for EB3 × TACC3 than the alternatives, indicating that there is more than coinci-

dental similarity between EB3 and TACC3. However, without a methodology for quantifying the

significance of obtained correlation values, it is impossible to conclude that there is dependence

between the distribution of EB3 and TACC3.

A major foundation of the estimator F̂ψs,t is that ms(ψ) and mt(ψ) represent distributions of

approximately the same masses at two different time points. In the context of the EB3 and TACC3

image data this equates to minimal changes in intensity on a subregion by subregion basis, caused
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Figure 7: Variation in region intensity over time on a per-pixel scale for EB3, left, and TACC3,

right. Solid black line denotes the mean intensity change over Ψ, with solid red, green and blue

lines corresponding to medians over subregions ψj of size 20, 15 and 12 respectively. Coloured

dashed lines denote upper and lower quartiles over the collection of subregions ψj , with dotted

lines denoting maximum and minimum differences. Horizontal black dashed line denotes no change

in average intensity.

by biomolecules moving between subregions, and on a whole image basis, caused by photobleaching

over time. To investigate the validity of these assumptions we plot changes in pixel average intensity

between consecutive time points

1

|ψ|
∑
x∈ψ

mt+1(x)−mt(x),

for subregions ψj of sizes 20, 15 and 12 and for the whole image space Ψ, the results of which may

be seen for sample four in Figure 7.

Average intensity plots indicate that there is a consistent but minor reduction in intensity across

the whole space between consecutive time points, consistent with photobleaching, but not believed

to be significant enough to render the estimation of F̂ as unreliable. There are sometimes large

changes in subregion intensity between consecutive time points, corresponding to particularly large

concentrations of biomolecules moving between subregions, but the vast majority of changes on an

individual pixel scale are small in comparison to average pixel intensity, indicating that movements

are largely contained within subregions. Predictably, larger intensity changes are observed for

smaller subregion sizes as the proportion of locations x ∈ ψj which are close to the subregion

boundary increases, meaning biomolecules are more likely to move between subregions.

31

Paper No. 17-03, www.warwick.ac.uk/go/crism



5.3 Application of proposed methodology

As described in the previous section, we make three comparisons between EB3, TACC3 and

TACC3*, the vertical reflection of TACC3 across the horizontal line through the centre of Ψ.

Testing is carried out as an approximate permutation test of 10 000 random permutations under

HH
0 , which specifies on a scale determined by the number of subregions, w, between-sample inde-

pendence of local bulk movement patterns, identical distribution of the collection of S
ψj
s,t under the

action of any λ ∈ ΛH and within-sample independence of local bulk movement patterns.

Test results are presented in Table 4 as the proportion of between sample comparisons across all

consecutive time points reporting p-values of less than 0.05, with † used to denote those collections

of p-values which reject the omnibus null hypothesis of Uniform[0,1] distribution of between-sample

comparisons under the Kolmogorov-Smirnov test at the five percent level. Note the difference be-

tween presentation of EB3 and TACC3 results in comparison to simulation results - here collections

of p-values tested against the omnibus hypothesis are combined across the between 46 and 56 pairs

of consecutive time points, while for simulation data they were collected across the 105 pairs of

between-sample comparisons at a single pair of consecutive time points.

Rejection of the null hypothesis is expected to occur if any of the three components of HH
0

are not met, however, the biological question of interest relates only to the first condition of

between-sample independence of local bulk movement patterns. It is for this reason that the com-

parison between EB3 and TACC3* is made, for which between-sample independence is expected

by construction and rejection of HH
0 may be attributed to improper specification of ΛH or within-

sample dependence of local bulk movement patterns. The results indicate that the omnibus null

hypothesis is never rejected at the five percent level for comparison between EB3 and TACC3,

suggesting that there is insufficient evidence to refute the assumption of horizontally symmetric

bulk movement patterns and within-sample independence. The omnibus null hypothesis is rejected

in some instances of comparison between TACC3 and TACC3*, but these may be attributed to

between-sample dependencies in particular for subregions along the vertical centre of Ψ which may

be compared to reflections of themselves under λ ∈ ΛH .

Across all seven samples the omnibus null hypothesis comparing EB3 and TACC3 is rejected

at the five percent level, taken as strong evidence of between-sample dependence in local bulk

movement patterns between EB3 and TACC3. The proportion of between-sample tests reporting p-

values less than 0.05 varies between 0.36 and 1.00, rising to between 0.58 and 1.00 when subregions

of the smallest size, 12, are considered. This is evidence of regular rejection of HH
0 , improving

with reduction in subregion size but not only detectable at a single subregion size which must be

accurately specified. The effect of varying subregion sizes is similar to that observed for simulated

data sets.

Investigation of the distribution of between-sample p-values across the range of consecutive

time points shows that non-significant values are interspersed within significant values at the five

percent level. This suggests that rather than periods of dependence and periods of independence

of local bulk movement patterns, between some pairs of time points movement estimation may be

particularly inaccurate as objects of considerable intensity move between subregions and resulting

in an insignificant test result.
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20 15 12

Sample 1 EB3 × TACC3 0.48† 0.55† 0.68†

EB3 × TACC3* 0.05 0.07 0.04

TACC3 × TACC3* 0.09 0.14 0.12†

Sample 2 EB3 × TACC3 0.85† 0.98† 1.00†

EB3 × TACC3* 0.11 0.07 0.07

TACC3 × TACC3* 0.11 0.20 0.22†

Sample 3 EB3 × TACC3 0.53† 0.60† 0.69†

EB3 × TACC3* 0.02 0.05 0.04

TACC3 × TACC3* 0.18 0.25† 0.25†

Sample 4 EB3 × TACC3 0.36† 0.67† 0.71†

EB3 × TACC3* 0.05 0.07 0.07

TACC3 × TACC3* 0.11 0.09 0.22†

Sample 5 EB3 × TACC3 0.47† 0.51† 0.58†

EB3 × TACC3* 0.02 0.07 0.05

TACC3 × TACC3* 0.11† 0.13 0.11

Sample 6 EB3 × TACC3 0.78† 0.85† 0.93†

EB3 × TACC3* 0.05 0.07 0.07

TACC3 × TACC3* 0.09 0.18 0.16

Sample 7 EB3 × TACC3 0.47† 0.53† 0.67†

EB3 × TACC3* 0.00 0.05 0.11

TACC3 × TACC3* 0.09† 0.11 0.09†

Table 4: Comparison of seven samples of biological data, each of which comprises two sets of

images representing the locations of EB3 and TACC3 over between 47 and 57 time points and a

resulting third set, TACC3*, which is the vertical reflection of the TACC3 data. Table values are

the proportion of between-sample p-values under HH
0 which are significant at the five percent level

for subregion sizes varying between 20 and 10. † is used to indicate the collections of between-

sample p-values which reject the omnibus null hypothesis of Uniform[0,1] distribution at the five

percent level according to a Kolmogorov-Smirnov test. Testing is carried out using approximate

permutation tests with 10 000 permutations.
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6 Conclusions

We have proposed a method for the estimation of local bulk movement patterns within two samples

and a testing procedure for quantifying the significance of the dependence between these patterns.

The procedure relies upon a minimal set of assumptions, namely consistency of total mass within

the whole space Ψ, the ability to define identically sized and shaped subregions ψj ⊆ Ψ for which

movements of mass between subregions is minimal in comparison to movements within subregions

and symmetry or otherwise of subregion movement patterns such that they may be transformed

and rearranged and remain identically distributed. These assumptions are generally easier to

satisfy for observations derived from physical phenomena where observations have been collected

at a sufficiently high time resolution.

Application of the proposed methodology to simulated data for which movement patterns are

independent results in tests which reject correctly specified null hypotheses at a rate consistent

with that of the size of the test, supporting the theoretical validity of the testing procedures. In

cases of incorrectly specified null hypotheses, tests may reject the null hypothesis when movement

patterns are independent as the null hypothesis is a composite of three statements and failure to

satisfy any one is sufficient for rejection of the null hypothesis.

Application of the proposed methodology to simulated data where movement patterns are

partially dependent often results in rejection of correctly specified null hypotheses, but due to the

complexities of the problem and the minimal set of assumptions is not perfect. In the case of 10

percent dependence between movement patterns, correctly specified null hypotheses are rejected

at the five percent level typically between 10 and 30 percent of the time. In the case of 30 percent

dependence between movement patterns, correctly specified null hypotheses are rejected at the five

percent level between 20 and 90 percent of the time. In almost all cases, the collection of between-

sample p-values rejects the omnibus null hypothesis of Uniform[0,1] distribution according to the

Kolmogorov-Smirnov test at the five percent level, indicating that the omnibus hypothesis may be

useful to detect dependence when comparing over multiple samples or time points.

The statistical testing procedure compares local bulk movement patterns, where local is on a

scale defined by the size of subregions which are inversely proportional to the number of subregions.

In application to simulated data the test is more powerful for smaller subregion sizes, indicating

that dependencies between movement patterns may be insignificant when summaries are made

over larger areas.

Analysis of a biological data set to compare movement patterns of EB3 and TACC3 biomolecule

species during mitosis reports consistent rejection of the omnibus null hypothesis at the five percent

level. Further, there is a general failure to reject the omnibus hypothesis when EB3 observations

are compared to a transformation of TACC3 data by vertical reflection. Taken in combination,

these results suggest that null hypotheses are in this instance rejected on the basis of dependence

between movement patterns rather than due to a lack of exchangeability within each observation

under the specified set of transformations and rearrangement of subregions. As in the case of

simulated data, an increase in the proportion of significant between-sample p-values is seen as

subregion size decreases. Our analysis therefore supports the previous work that the movement

patterns of EB3 and TACC3 are dependent, potentially through their localisation on the tips of

growing microtubules.
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K.-H. Jöckel. Finite sample properties and asymptotic efficiency of Monte Carlo tests. The An-

nals of Statistics, 14(1):336–347, 1986. ISSN 00905364. URL http://www.jstor.org/stable/

2241285.

L. Knorr-Held and N. G. Best. A shared component model for detecting joint and selective clus-

tering of two diseases. Journal of the Royal Statistical Society: Series A (Statistics in Society),

164(1):73–85, February 2001. doi: 10.1111/1467-985x.00187.

E. Levina and P. Bickel. The earth mover’s distance is the mallows distance: some insights from

statistics. In Proceedings Eighth IEEE International Conference on Computer Vision. ICCV

2001, volume 2, pages 251–256. IEEE, Institute of Electrical and Electronics Engineers (IEEE),

2001. doi: 10.1109/iccv.2001.937632.

E. M. M. Manders, F. J. Verbeek, and J. A. Aten. Measurement of co-localization of objects in

dual-colour confocal images. Journal of Microscopy, 169(3):375–382, March 1993. doi: 10.1111/

j.1365-2818.1993.tb03313.x.

F. J. Massey. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical

Association, 46(253):68–78, March 1951. doi: 10.1080/01621459.1951.10500769. URL http:

//dx.doi.org/10.1080/01621459.1951.10500769.

N. J. B. McFarlane and C. P. Schofield. Segmentation and tracking of piglets in images. Machine

Vision and Applications, 8(3):187–193, May 1995. doi: 10.1007/bf01215814.

Y. Mimori-Kiyosue, N. Shiina, and S. Tsukita. The dynamic behavior of the APC-binding protein

EB1 on the distal ends of microtubules. Current Biology, 10(14):865–868, July 2000. doi:

10.1016/s0960-9822(00)00600-x.

W. A. Mitchell and S. L. Lima. Predator-prey shell games: large-scale movement and its im-

plications for decision-making by prey. Oikos, 99(2):249–259, November 2002. doi: 10.1034/j.

1600-0706.2002.990205.x.

J. Munkres. Algorithms for the assignment and transportation problems. Journal of the Society

for Industrial and Applied Mathematics, 5(1):32–38, 1957. ISSN 03684245. URL http://0-www.

jstor.org.pugwash.lib.warwick.ac.uk/stable/2098689.

36

Paper No. 17-03, www.warwick.ac.uk/go/crism

http://www.jstor.org/stable/2241285
http://www.jstor.org/stable/2241285
http://dx.doi.org/10.1080/01621459.1951.10500769
http://dx.doi.org/10.1080/01621459.1951.10500769
http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2098689
http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2098689


K. Pearson. Note on regression and inheritance in the case of two parents. Proceedings of the

Royal Society of London, 58:240–242, 1895. ISSN 03701662. URL http://0-www.jstor.org.

pugwash.lib.warwick.ac.uk/stable/115794.

S. Peleg, M. Werman, and H. Rom. A unified approach to the change of resolution: space and

gray-level. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 11(7):739–742,

July 1989. doi: 10.1109/34.192468.

D. W. Piston and G.-J. Kremers. Fluorescent protein FRET: the good, the bad and the ugly. Trends

in Biochemical Sciences, 32(9):407–414, September 2007. doi: 10.1016/j.tibs.2007.08.003.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2016. URL https://www.R-project.org/.

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image retrieval.

International Journal of Computer Vision, 40(2):99–121, 2000. doi: 10.1023/a:1026543900054.

J. P. Shaffer. Multiple hypothesis testing. Annual Review of Psychology, 46(1):561–584, January

1995. doi: 10.1146/annurev.ps.46.020195.003021.

R. J. Simes. An improved Bonferroni procedure for multiple tests of significance. Biometrika, 73

(3):751–754, 1986. doi: 10.1093/biomet/73.3.751.

S. Urbanek and Y. Rubner. emdist: Earth Mover’s Distance, 2012. URL https://CRAN.

R-project.org/package=emdist. R package version 0.3-1.

V. Zinchuk and O. Zinchuk. Quantitative Colocalization Analysis of Confocal Fluorescence

Microscopy Images, chapter 4.19, pages 1–16. John Wiley & Sons, Inc., 2008. ISBN

9780471143031. doi: 10.1002/0471143030.cb0419s39. URL http://dx.doi.org/10.1002/

0471143030.cb0419s39.

37

Paper No. 17-03, www.warwick.ac.uk/go/crism

http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/115794
http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/115794
https://www.R-project.org/
https://CRAN.R-project.org/package=emdist
https://CRAN.R-project.org/package=emdist
http://dx.doi.org/10.1002/0471143030.cb0419s39
http://dx.doi.org/10.1002/0471143030.cb0419s39

	Introduction
	Statistical Background
	Existing measures of colocalisation
	Earth mover's distance
	Permutation testing

	Estimating movement patterns and a test for dependence
	Modelling data mathematically
	Approximation of movement
	Movement summary statistic
	Summary statistic comparison
	Combination of summary statistic comparisons
	Significance quantification
	Operator definitions
	Example hypotheses

	Computational considerations

	Validation study
	Simulation description
	Study Results
	Movement pattern estimation
	Independent simulations
	Dependent simulations
	Multiple testing


	Investigation of EB3 and TACC3 data
	EB3 and TACC3 background
	Exploratory data analysis
	Application of proposed methodology

	Conclusions
	Acknowledgements

